Higher order finite difference weighted essentially non-oscillatory(WENO)schemes have been constructed for conservation laws.For multidimensional problems,they offer a high order accuracy at a fraction of the cost of ...Higher order finite difference weighted essentially non-oscillatory(WENO)schemes have been constructed for conservation laws.For multidimensional problems,they offer a high order accuracy at a fraction of the cost of a finite volume WENO or DG scheme of the comparable accuracy.This makes them quite attractive for several science and engineering applications.But,to the best of our knowledge,such schemes have not been extended to non-linear hyperbolic systems with non-conservative products.In this paper,we perform such an extension which improves the domain of the applicability of such schemes.The extension is carried out by writing the scheme in fluctuation form.We use the HLLI Riemann solver of Dumbser and Balsara(J.Comput.Phys.304:275-319,2016)as a building block for carrying out this extension.Because of the use of an HLL building block,the resulting scheme has a proper supersonic limit.The use of anti-diffusive fluxes ensures that stationary discontinuities can be preserved by the scheme,thus expanding its domain of the applicability.Our new finite difference WENO formulation uses the same WENO reconstruction that was used in classical versions,making it very easy for users to transition over to the present formulation.For conservation laws,the new finite difference WENO is shown to perform as well as the classical version of finite difference WENO,with two major advantages:(i)It can capture jumps in stationary linearly degenerate wave families exactly.(i)It only requires the reconstruction to be applied once.Several examples from hyperbolic PDE systems with non-conservative products are shown which indicate that the scheme works and achieves its design order of the accuracy for smooth multidimensional flows.Stringent Riemann problems and several novel multidimensional problems that are drawn from compressible Baer-Nunziato multiphase flow,multiphase debris flow and twolayer shallow water equations are also shown to document the robustness of the method.For some test problems that require well-balancing we have even been able to apply the scheme without any modification and obtain good results.Many useful PDEs may have stiff relaxation source terms for which the finite difference formulation of WENO is shown to provide some genuine advantages.展开更多
Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of ...Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids.展开更多
A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achieveme...A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achievement of low dissipation in smooth region and robust shock-capturing capabilities in discontinuities.The Maxwell slip boundary conditions are employed to consider the rarefied effect near the surface.Secondly,several validating tests are given to show the good resolution of the WENO-OS3 scheme and the feasibility of the Maxwell slip boundary conditions.Finally,hypersonic flows around the hollow cylinder truncated flare(HCTF)and the25°/55°sharp double cone are studied.Discussions are made on the characteristics of the hypersonic shock wave/boundary layer interactions with and without the consideration of the slip effect.The results indicate that the scheme has a good capability in predicting heat transfer with a high resolution for describing fluid structures.With the slip boundary conditions,the separation region at the corner is smaller and the prediction is more accurate than that with no-slip boundary conditions.展开更多
In this paper,a new type of finite difference mapped weighted essentially non-oscillatory(MWENO)schemes with unequal-sized stencils,such as the seventh-order and ninthorder versions,is constructed for solving hyperbol...In this paper,a new type of finite difference mapped weighted essentially non-oscillatory(MWENO)schemes with unequal-sized stencils,such as the seventh-order and ninthorder versions,is constructed for solving hyperbolic conservation laws.For the purpose of designing increasingly high-order finite difference WENO schemes,the equal-sized stencils are becoming more and more wider.The more we use wider candidate stencils,the bigger the probability of discontinuities lies in all stencils.Therefore,one innovation of these new WENO schemes is to introduce a new splitting stencil methodology to divide some fourpoint or five-point stencils into several smaller three-point stencils.By the usage of this new methodology in high-order spatial reconstruction procedure,we get different degree polynomials defined on these unequal-sized stencils,and calculate the linear weights,smoothness indicators,and nonlinear weights as specified in Jiang and Shu(J.Comput.Phys.126:202228,1996).Since the difference between the nonlinear weights and the linear weights is too big to keep the optimal order of accuracy in smooth regions,another crucial innovation is to present the new mapping functions which are used to obtain the mapped nonlinear weights and decrease the difference quantity between the mapped nonlinear weights and the linear weights,so as to keep the optimal order of accuracy in smooth regions.These new MWENO schemes can also be applied to compute some extreme examples,such as the double rarefaction wave problem,the Sedov blast wave problem,and the Leblanc problem with a normal CFL number.Extensive numerical results are provided to illustrate the good performance of the new finite difference MWENO schemes.展开更多
High-order accurate weighted essentially non-oscillatory(WENO)schemes are a class of broadly applied numerical methods for solving hyperbolic partial differential equations(PDEs).Due to highly nonlinear property of th...High-order accurate weighted essentially non-oscillatory(WENO)schemes are a class of broadly applied numerical methods for solving hyperbolic partial differential equations(PDEs).Due to highly nonlinear property of the WENO algorithm,large amount of computational costs are required for solving multidimensional problems.In our previous work(Lu et al.in Pure Appl Math Q 14:57–86,2018;Zhu and Zhang in J Sci Comput 87:44,2021),sparse-grid techniques were applied to the classical finite difference WENO schemes in solving multidimensional hyperbolic equations,and it was shown that significant CPU times were saved,while both accuracy and stability of the classical WENO schemes were maintained for computations on sparse grids.In this technical note,we apply the approach to recently developed finite difference multi-resolution WENO scheme specifically the fifth-order scheme,which has very interesting properties such as its simplicity in linear weights’construction over a classical WENO scheme.Numerical experiments on solving high dimensional hyperbolic equations including Vlasov based kinetic problems are performed to demonstrate that the sparse-grid computations achieve large savings of CPU times,and at the same time preserve comparable accuracy and resolution with those on corresponding regular single grids.展开更多
In this paper,we present a semi-Lagrangian(SL)method based on a non-polynomial function space for solving the Vlasov equation.We fnd that a non-polynomial function based scheme is suitable to the specifcs of the targe...In this paper,we present a semi-Lagrangian(SL)method based on a non-polynomial function space for solving the Vlasov equation.We fnd that a non-polynomial function based scheme is suitable to the specifcs of the target problems.To address issues that arise in phase space models of plasma problems,we develop a weighted essentially non-oscillatory(WENO)scheme using trigonometric polynomials.In particular,the non-polynomial WENO method is able to achieve improved accuracy near sharp gradients or discontinuities.Moreover,to obtain a high-order of accuracy in not only space but also time,it is proposed to apply a high-order splitting scheme in time.We aim to introduce the entire SL algorithm with high-order splitting in time and high-order WENO reconstruction in space to solve the Vlasov-Poisson system.Some numerical experiments are presented to demonstrate robustness of the proposed method in having a high-order of convergence and in capturing non-smooth solutions.A key observation is that the method can capture phase structure that require twice the resolution with a polynomial based method.In 6D,this would represent a signifcant savings.展开更多
In this paper,a new kind of hybrid method based on the weighted essentially non-oscillatory(WENO)type reconstruction is proposed to solve hyperbolic conservation laws.Comparing the WENO schemes with/without hybridizat...In this paper,a new kind of hybrid method based on the weighted essentially non-oscillatory(WENO)type reconstruction is proposed to solve hyperbolic conservation laws.Comparing the WENO schemes with/without hybridization,the hybrid one can resolve more details in the region containing multi-scale structures and achieve higher resolution in the smooth region;meanwhile,the essentially oscillation-free solution could also be obtained.By adapting the original smoothness indicator in the WENO reconstruction,the stencil is distinguished into three types:smooth,non-smooth,and high-frequency region.In the smooth region,the linear reconstruction is used and the non-smooth region with the WENO reconstruction.In the high-frequency region,the mixed scheme of the linear and WENO schemes is adopted with the smoothness amplification factor,which could capture high-frequency wave efficiently.Spectral analysis and numerous examples are presented to demonstrate the robustness and performance of the hybrid scheme for hyperbolic conservation laws.展开更多
Equations of steady inviscid and laminar flows are solved by means of a third-order finite volume (FV) scheme. For this purpose, a cell-centered discretization technique is employed. In this technique, the flow para...Equations of steady inviscid and laminar flows are solved by means of a third-order finite volume (FV) scheme. For this purpose, a cell-centered discretization technique is employed. In this technique, the flow parameters at the cell faces are computed using a third-order weighted averages procedure. A fourth-order artificial dissipation is used for stability of the solution. In order to achieve the steady-state situation, four-step Runge-Kutta explicit time integration method is applied. An advanced progressive preconditioning method, named the power-law preconditioning method, is used for faster convergence. In this method, the preconditioning matrix is adjusted automatically from the velocity and/or pressure flow-field by a power-law relation. Attention is directed towards accuracy and convergence of the schemes. The results presented in the paper focus on steady inviscid and laminar flows around sheet-cavitating and fully-wetted bodies including hydrofoils and circular/elliptical cylinder. Excellent agreements are obtained when numerical predictions are compared with other available experimental and numerical results. In addition, it is found that using the power-law preconditioner significantly increases the numerical convergence speed.展开更多
This paper presents a simple approach for improving the performance of the weighted essentially nonoscillatory(WENO) finite volume scheme on non-uniform grids. This technique relies on the reformulation of the fifthor...This paper presents a simple approach for improving the performance of the weighted essentially nonoscillatory(WENO) finite volume scheme on non-uniform grids. This technique relies on the reformulation of the fifthorder WENO-JS(WENO scheme presented by Jiang and Shu in J. Comput. Phys. 126:202–228, 1995) scheme designed on uniform grids in terms of one cell-averaged value and its left and/or right interfacial values of the dependent variable.The effect of grid non-uniformity is taken into consideration by a proper interpolation of the interfacial values. On nonuniform grids, the proposed scheme is much more accurate than the original WENO-JS scheme, which was designed for uniform grids. When the grid is uniform, the resulting scheme reduces to the original WENO-JS scheme. In the meantime,the proposed scheme is computationally much more efficient than the fifth-order WENO scheme designed specifically for the non-uniform grids. A number of numerical test cases are simulated to verify the performance of the present scheme.展开更多
A depth-averaged 2-D numerical model for unsteady tidal flow in estuaries is established by use of the finite volume WENO scheme which maintains both uniform high order accuracy and an essentially non-oscillatory shoc...A depth-averaged 2-D numerical model for unsteady tidal flow in estuaries is established by use of the finite volume WENO scheme which maintains both uniform high order accuracy and an essentially non-oscillatory shock transition on unstructured triangular grid. The third order TVD Range-Kutta method is used for time discretization. The model has been firstly tested against four cases: 1) tidal forcing, 2) seiche oscillation, 3) wind setup in a closed bay, and 4) onedimensional dam-break water flow. The results obtained in the present study compare well with those obtained from the corresponding analytic solutions idealized for the above four cases. The model is then applied to the simulation of tidal circulation in the Yangpu Bay, and detailed model calibration and verification have been conducted with measured tidal current in the spring tide, middle tide, and neap tide. The overall performance of the model is in qualitative agreement with the data observed in 2005, and it can be used to calculate the flow in estuaries and coastal waters.展开更多
The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied....The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.展开更多
In this paper,the finite difference weighted essentially non-oscillatory (WENO) scheme is incorporated into the recently developed four kinds of lattice Boltzmann flux solver (LBFS) to simulate compressible flows,incl...In this paper,the finite difference weighted essentially non-oscillatory (WENO) scheme is incorporated into the recently developed four kinds of lattice Boltzmann flux solver (LBFS) to simulate compressible flows,including inviscid LBFS Ⅰ,viscous LBFS Ⅱ,hybrid LBFS Ⅲ and hybrid LBFS Ⅳ.Hybrid LBFS can automatically realize the switch between inviscid LBFS Ⅰ and viscous LBFS Ⅱ through introducing a switch function.The resultant hybrid WENO-LBFS scheme absorbs the advantages of WENO scheme and hybrid LBFS.We investigate the performance of WENO scheme based on four kinds of LBFS systematically.Numerical results indicate that the devopled hybrid WENO-LBFS scheme has high accuracy,high resolution and no oscillations.It can not only accurately calculate smooth solutions,but also can effectively capture contact discontinuities and strong shock waves.展开更多
A new numerical scheme of 3rd order Weighted Essentially Non-Oscillatory (WENO) type for 2.5D mixed GLM-MHD in Cartesian coordinates is proposed. The MHD equations are modified by combining the arguments as by Dellar ...A new numerical scheme of 3rd order Weighted Essentially Non-Oscillatory (WENO) type for 2.5D mixed GLM-MHD in Cartesian coordinates is proposed. The MHD equations are modified by combining the arguments as by Dellar and Dedner et al to couple the divergence constraint with the evolution equations using a Generalized Lagrange Multiplier (GLM). Moreover, the magnetohydrodynamic part of the GLM-MHD system is still in conservation form. Meanwhile, this method is very easy to add to an existing code since the underlying MHD solver does not have to be modified. To show the validation and capacity of its application to MHD problem modelling, interaction between a magnetosonic shock and a denser cloud and magnetic reconnection problems are used to verify this new MHD code. The numerical tests for 2D Orszag and Tang's MHD vortex, interaction between a magnetosonic shock and a denser cloud and magnetic reconnection problems show that the third order WENO MHD solvers are robust and yield reliable results by the new mixed GLM or the mixed EGLM correction here even if it can not be shown that how the divergence errors are transported as well as damped as done for one dimensional ideal MHD by Dedner et al.展开更多
基金support via NSF grants NSF-19-04774,NSF-AST-2009776,NASA-2020-1241NASA grant 80NSSC22K0628.DSB+3 种基金HK acknowledge support from a Vajra award,VJR/2018/00129a travel grant from Notre Dame Internationalsupport via AFOSR grant FA9550-20-1-0055NSF grant DMS-2010107.
文摘Higher order finite difference weighted essentially non-oscillatory(WENO)schemes have been constructed for conservation laws.For multidimensional problems,they offer a high order accuracy at a fraction of the cost of a finite volume WENO or DG scheme of the comparable accuracy.This makes them quite attractive for several science and engineering applications.But,to the best of our knowledge,such schemes have not been extended to non-linear hyperbolic systems with non-conservative products.In this paper,we perform such an extension which improves the domain of the applicability of such schemes.The extension is carried out by writing the scheme in fluctuation form.We use the HLLI Riemann solver of Dumbser and Balsara(J.Comput.Phys.304:275-319,2016)as a building block for carrying out this extension.Because of the use of an HLL building block,the resulting scheme has a proper supersonic limit.The use of anti-diffusive fluxes ensures that stationary discontinuities can be preserved by the scheme,thus expanding its domain of the applicability.Our new finite difference WENO formulation uses the same WENO reconstruction that was used in classical versions,making it very easy for users to transition over to the present formulation.For conservation laws,the new finite difference WENO is shown to perform as well as the classical version of finite difference WENO,with two major advantages:(i)It can capture jumps in stationary linearly degenerate wave families exactly.(i)It only requires the reconstruction to be applied once.Several examples from hyperbolic PDE systems with non-conservative products are shown which indicate that the scheme works and achieves its design order of the accuracy for smooth multidimensional flows.Stringent Riemann problems and several novel multidimensional problems that are drawn from compressible Baer-Nunziato multiphase flow,multiphase debris flow and twolayer shallow water equations are also shown to document the robustness of the method.For some test problems that require well-balancing we have even been able to apply the scheme without any modification and obtain good results.Many useful PDEs may have stiff relaxation source terms for which the finite difference formulation of WENO is shown to provide some genuine advantages.
文摘Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the literature to efficiently solve steady-state solutions of hyperbolic partial differential equations(PDEs).As other types of fast sweeping schemes,fixed-point fast sweeping methods use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of hyperbolic PDEs in a certain direction simultaneously in each sweeping order.The resulting iterative schemes have a fast convergence rate to steady-state solutions.Moreover,an advantage of fixed-point fast sweeping methods over other types of fast sweeping methods is that they are explicit and do not involve the inverse operation of any nonlinear local system.Hence,they are robust and flexible,and have been combined with high-order accurate weighted essentially non-oscillatory(WENO)schemes to solve various hyperbolic PDEs in the literature.For multidimensional nonlinear problems,high-order fixed-point fast sweeping WENO methods still require quite a large amount of computational costs.In this technical note,we apply sparse-grid techniques,an effective approximation tool for multidimensional problems,to fixed-point fast sweeping WENO methods for reducing their computational costs.Here,we focus on fixed-point fast sweeping WENO schemes with third-order accuracy(Zhang et al.2006[41]),for solving Eikonal equations,an important class of static Hamilton-Jacobi(H-J)equations.Numerical experiments on solving multidimensional Eikonal equations and a more general static H-J equation are performed to show that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve large savings of CPU times on refined meshes,and at the same time maintain comparable accuracy and resolution with those on corresponding regular single grids.
基金supported by the National Key Basic Research and Development Program (No.2014CB744100)
文摘A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achievement of low dissipation in smooth region and robust shock-capturing capabilities in discontinuities.The Maxwell slip boundary conditions are employed to consider the rarefied effect near the surface.Secondly,several validating tests are given to show the good resolution of the WENO-OS3 scheme and the feasibility of the Maxwell slip boundary conditions.Finally,hypersonic flows around the hollow cylinder truncated flare(HCTF)and the25°/55°sharp double cone are studied.Discussions are made on the characteristics of the hypersonic shock wave/boundary layer interactions with and without the consideration of the slip effect.The results indicate that the scheme has a good capability in predicting heat transfer with a high resolution for describing fluid structures.With the slip boundary conditions,the separation region at the corner is smaller and the prediction is more accurate than that with no-slip boundary conditions.
基金the NSFC grant 11872210 and the Science Challenge Project,No.TZ2016002the NSFC Grant 11926103 when he visited Tianyuan Mathematical Center in Southeast China,Xiamen 361005,Fujian,Chinathe NSFC Grant 12071392 and the Science Challenge Project,No.TZ2016002.
文摘In this paper,a new type of finite difference mapped weighted essentially non-oscillatory(MWENO)schemes with unequal-sized stencils,such as the seventh-order and ninthorder versions,is constructed for solving hyperbolic conservation laws.For the purpose of designing increasingly high-order finite difference WENO schemes,the equal-sized stencils are becoming more and more wider.The more we use wider candidate stencils,the bigger the probability of discontinuities lies in all stencils.Therefore,one innovation of these new WENO schemes is to introduce a new splitting stencil methodology to divide some fourpoint or five-point stencils into several smaller three-point stencils.By the usage of this new methodology in high-order spatial reconstruction procedure,we get different degree polynomials defined on these unequal-sized stencils,and calculate the linear weights,smoothness indicators,and nonlinear weights as specified in Jiang and Shu(J.Comput.Phys.126:202228,1996).Since the difference between the nonlinear weights and the linear weights is too big to keep the optimal order of accuracy in smooth regions,another crucial innovation is to present the new mapping functions which are used to obtain the mapped nonlinear weights and decrease the difference quantity between the mapped nonlinear weights and the linear weights,so as to keep the optimal order of accuracy in smooth regions.These new MWENO schemes can also be applied to compute some extreme examples,such as the double rarefaction wave problem,the Sedov blast wave problem,and the Leblanc problem with a normal CFL number.Extensive numerical results are provided to illustrate the good performance of the new finite difference MWENO schemes.
文摘High-order accurate weighted essentially non-oscillatory(WENO)schemes are a class of broadly applied numerical methods for solving hyperbolic partial differential equations(PDEs).Due to highly nonlinear property of the WENO algorithm,large amount of computational costs are required for solving multidimensional problems.In our previous work(Lu et al.in Pure Appl Math Q 14:57–86,2018;Zhu and Zhang in J Sci Comput 87:44,2021),sparse-grid techniques were applied to the classical finite difference WENO schemes in solving multidimensional hyperbolic equations,and it was shown that significant CPU times were saved,while both accuracy and stability of the classical WENO schemes were maintained for computations on sparse grids.In this technical note,we apply the approach to recently developed finite difference multi-resolution WENO scheme specifically the fifth-order scheme,which has very interesting properties such as its simplicity in linear weights’construction over a classical WENO scheme.Numerical experiments on solving high dimensional hyperbolic equations including Vlasov based kinetic problems are performed to demonstrate that the sparse-grid computations achieve large savings of CPU times,and at the same time preserve comparable accuracy and resolution with those on corresponding regular single grids.
基金AFOSR and NSF for their support of this work under grants FA9550-19-1-0281 and FA9550-17-1-0394 and NSF grant DMS 191218。
文摘In this paper,we present a semi-Lagrangian(SL)method based on a non-polynomial function space for solving the Vlasov equation.We fnd that a non-polynomial function based scheme is suitable to the specifcs of the target problems.To address issues that arise in phase space models of plasma problems,we develop a weighted essentially non-oscillatory(WENO)scheme using trigonometric polynomials.In particular,the non-polynomial WENO method is able to achieve improved accuracy near sharp gradients or discontinuities.Moreover,to obtain a high-order of accuracy in not only space but also time,it is proposed to apply a high-order splitting scheme in time.We aim to introduce the entire SL algorithm with high-order splitting in time and high-order WENO reconstruction in space to solve the Vlasov-Poisson system.Some numerical experiments are presented to demonstrate robustness of the proposed method in having a high-order of convergence and in capturing non-smooth solutions.A key observation is that the method can capture phase structure that require twice the resolution with a polynomial based method.In 6D,this would represent a signifcant savings.
基金the National Numerical Windtunnel Project NNW2019ZT4-B08the NSFC grant No.11871449.
文摘In this paper,a new kind of hybrid method based on the weighted essentially non-oscillatory(WENO)type reconstruction is proposed to solve hyperbolic conservation laws.Comparing the WENO schemes with/without hybridization,the hybrid one can resolve more details in the region containing multi-scale structures and achieve higher resolution in the smooth region;meanwhile,the essentially oscillation-free solution could also be obtained.By adapting the original smoothness indicator in the WENO reconstruction,the stencil is distinguished into three types:smooth,non-smooth,and high-frequency region.In the smooth region,the linear reconstruction is used and the non-smooth region with the WENO reconstruction.In the high-frequency region,the mixed scheme of the linear and WENO schemes is adopted with the smoothness amplification factor,which could capture high-frequency wave efficiently.Spectral analysis and numerous examples are presented to demonstrate the robustness and performance of the hybrid scheme for hyperbolic conservation laws.
基金the National Natural Science Foundation of China(12071112)and(11471102)the Basic Research Projects for Key Scientific Research Projects in Henan Province(20ZX001)the Research and Practice Project on Education and Teaching Reform in Henan Institute of Science and Technology(2021YB45)。
基金the Shahrood University of Technology for financial support of this study
文摘Equations of steady inviscid and laminar flows are solved by means of a third-order finite volume (FV) scheme. For this purpose, a cell-centered discretization technique is employed. In this technique, the flow parameters at the cell faces are computed using a third-order weighted averages procedure. A fourth-order artificial dissipation is used for stability of the solution. In order to achieve the steady-state situation, four-step Runge-Kutta explicit time integration method is applied. An advanced progressive preconditioning method, named the power-law preconditioning method, is used for faster convergence. In this method, the preconditioning matrix is adjusted automatically from the velocity and/or pressure flow-field by a power-law relation. Attention is directed towards accuracy and convergence of the schemes. The results presented in the paper focus on steady inviscid and laminar flows around sheet-cavitating and fully-wetted bodies including hydrofoils and circular/elliptical cylinder. Excellent agreements are obtained when numerical predictions are compared with other available experimental and numerical results. In addition, it is found that using the power-law preconditioner significantly increases the numerical convergence speed.
基金supported by the National Natural Science Foundation of China (Grant 11672160)the National Key Research and Development Program of China (Grant 2016YF A0401200)
文摘This paper presents a simple approach for improving the performance of the weighted essentially nonoscillatory(WENO) finite volume scheme on non-uniform grids. This technique relies on the reformulation of the fifthorder WENO-JS(WENO scheme presented by Jiang and Shu in J. Comput. Phys. 126:202–228, 1995) scheme designed on uniform grids in terms of one cell-averaged value and its left and/or right interfacial values of the dependent variable.The effect of grid non-uniformity is taken into consideration by a proper interpolation of the interfacial values. On nonuniform grids, the proposed scheme is much more accurate than the original WENO-JS scheme, which was designed for uniform grids. When the grid is uniform, the resulting scheme reduces to the original WENO-JS scheme. In the meantime,the proposed scheme is computationally much more efficient than the fifth-order WENO scheme designed specifically for the non-uniform grids. A number of numerical test cases are simulated to verify the performance of the present scheme.
基金This work was supported by Open Research Fund Programof State Key Laboratory of Water Resources and Hydropow-er Engineering Science ( Grant No. 2005C011)National Natural Science Foundation of China ( Grant No.50479038)
文摘A depth-averaged 2-D numerical model for unsteady tidal flow in estuaries is established by use of the finite volume WENO scheme which maintains both uniform high order accuracy and an essentially non-oscillatory shock transition on unstructured triangular grid. The third order TVD Range-Kutta method is used for time discretization. The model has been firstly tested against four cases: 1) tidal forcing, 2) seiche oscillation, 3) wind setup in a closed bay, and 4) onedimensional dam-break water flow. The results obtained in the present study compare well with those obtained from the corresponding analytic solutions idealized for the above four cases. The model is then applied to the simulation of tidal circulation in the Yangpu Bay, and detailed model calibration and verification have been conducted with measured tidal current in the spring tide, middle tide, and neap tide. The overall performance of the model is in qualitative agreement with the data observed in 2005, and it can be used to calculate the flow in estuaries and coastal waters.
基金Supported by the Natural Science Foundation of Zhejiang Province (Y605144)the XNF of Zhejiang University of Media and Communications (XN080012008034)
文摘The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.
基金This study was supported by the National Natural Science Foundation of China(Grants 11372168,11772179).
文摘In this paper,the finite difference weighted essentially non-oscillatory (WENO) scheme is incorporated into the recently developed four kinds of lattice Boltzmann flux solver (LBFS) to simulate compressible flows,including inviscid LBFS Ⅰ,viscous LBFS Ⅱ,hybrid LBFS Ⅲ and hybrid LBFS Ⅳ.Hybrid LBFS can automatically realize the switch between inviscid LBFS Ⅰ and viscous LBFS Ⅱ through introducing a switch function.The resultant hybrid WENO-LBFS scheme absorbs the advantages of WENO scheme and hybrid LBFS.We investigate the performance of WENO scheme based on four kinds of LBFS systematically.Numerical results indicate that the devopled hybrid WENO-LBFS scheme has high accuracy,high resolution and no oscillations.It can not only accurately calculate smooth solutions,but also can effectively capture contact discontinuities and strong shock waves.
基金Supported by the National Natural Science Foundation of China (40374056, 40536029, 40574068)the International Collaboration Research Team Program of the Chinese Academy of Sciences
文摘A new numerical scheme of 3rd order Weighted Essentially Non-Oscillatory (WENO) type for 2.5D mixed GLM-MHD in Cartesian coordinates is proposed. The MHD equations are modified by combining the arguments as by Dellar and Dedner et al to couple the divergence constraint with the evolution equations using a Generalized Lagrange Multiplier (GLM). Moreover, the magnetohydrodynamic part of the GLM-MHD system is still in conservation form. Meanwhile, this method is very easy to add to an existing code since the underlying MHD solver does not have to be modified. To show the validation and capacity of its application to MHD problem modelling, interaction between a magnetosonic shock and a denser cloud and magnetic reconnection problems are used to verify this new MHD code. The numerical tests for 2D Orszag and Tang's MHD vortex, interaction between a magnetosonic shock and a denser cloud and magnetic reconnection problems show that the third order WENO MHD solvers are robust and yield reliable results by the new mixed GLM or the mixed EGLM correction here even if it can not be shown that how the divergence errors are transported as well as damped as done for one dimensional ideal MHD by Dedner et al.