This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2...This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.展开更多
In this paper, we study a singular third-order three-point boundary value problem. By using a fixed-point theorem of cone expansion-compression type,we establish results on the existence of at least one, at least two,...In this paper, we study a singular third-order three-point boundary value problem. By using a fixed-point theorem of cone expansion-compression type,we establish results on the existence of at least one, at least two, and n positive solutions to the boundary value problem. Finally we give an example.展开更多
The paper aims to obtain existence and uniqueness of the solution as well as asymptotic estimate of the solution for singularly perturbed nonlinear thirdorder Robin boundary value problem with a turning point. In orde...The paper aims to obtain existence and uniqueness of the solution as well as asymptotic estimate of the solution for singularly perturbed nonlinear thirdorder Robin boundary value problem with a turning point. In order to achieve this aim, existence and uniqueness of the solution for third-order nonlinear Robin boundary value problem is derived first based on the upper and lower solutions method under relatively weaker conditions. In this manner, the goal of this paper is gained by applying the existence and uniqueness results mentioned above.展开更多
文摘This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.
基金the National Natural Science Foundation of China(11261053)The Natural Science Foundation of Gansu Province(1308RJZA125)
文摘In this paper, we study a singular third-order three-point boundary value problem. By using a fixed-point theorem of cone expansion-compression type,we establish results on the existence of at least one, at least two, and n positive solutions to the boundary value problem. Finally we give an example.
基金Natural Science Foundation of Fujian Province under grant No.S0650010the Foundation of the Education Department of Fujian Province (JB06098).
文摘The paper aims to obtain existence and uniqueness of the solution as well as asymptotic estimate of the solution for singularly perturbed nonlinear thirdorder Robin boundary value problem with a turning point. In order to achieve this aim, existence and uniqueness of the solution for third-order nonlinear Robin boundary value problem is derived first based on the upper and lower solutions method under relatively weaker conditions. In this manner, the goal of this paper is gained by applying the existence and uniqueness results mentioned above.