A hybrid intelligent approach is proposed to help the decision maker to select the appropriate third-party reverse logistics provider. The following process is included: firstly,the evaluation team is established to d...A hybrid intelligent approach is proposed to help the decision maker to select the appropriate third-party reverse logistics provider. The following process is included: firstly,the evaluation team is established to determine the selection criteria and evaluate them by triangular fuzzy numbers; secondly,calculate the weight of criteria by the proposed hybrid algorithm integrating particle swarm optimization( PSO) and simulated annealing( SA); then, the performance evaluation for each supplier is predicted by the proposed self-feedback neural network( SFBNN) based on the historical data. A numerical example is also presented to interpret the methodology above.展开更多
As an integrated part in supply chain,third-party logistics(3PL)has intrinsic connections with upstream manufacturer and downstream retailer.Using a Stackelberg game model consisting of a manufacturer,a retailer and a...As an integrated part in supply chain,third-party logistics(3PL)has intrinsic connections with upstream manufacturer and downstream retailer.Using a Stackelberg game model consisting of a manufacturer,a retailer and a 3PL to explicitly capture the interaction of firms’operations decisions,this paper attempts to better understand the role of integrated logistics and procurement service(ILPS)provided by a 3PL firm in supply chain management.Compared with a supply chain without ILPS,a Pareto region,in which all the supply chain members benefit from working with a 3PL firm offering ILPS,is disclosed.We also show that the Pareto region is more likely to occur with higher demand uncertainty.Finally,we reveal that the manufacturer obtains the highest profit in the Pareto region,and that the retailer can improve his profit share as the standard deviation of demand increases.展开更多
This paper proposes a solution to the open vehicle routing problem with time windows(OVRPTW)considering third-party logistics(3PL).For the typical OVRPTW problem,most researchers consider time windows,capacity,routing...This paper proposes a solution to the open vehicle routing problem with time windows(OVRPTW)considering third-party logistics(3PL).For the typical OVRPTW problem,most researchers consider time windows,capacity,routing limitations,vehicle destination,etc.Most researchers who previously investigated this problem assumed the vehicle would not return to the depot,but did not consider its final destination.However,by considering 3PL in the B2B e-commerce,the vehicle is required back to the nearest 3PL location with available space.This paper formulates the problem as a mixed integer linear programming(MILP)model with the objective of minimizing the total travel distance.A coordinate representation particle swarm optimization(CRPSO)algorithm is developed to obtain the best delivery sequencing and the capacity of each vehicle.Results of the computational study show that the proposed method provides solution within a reasonable amount of time.Finally,the result compared to PSO also indicates that the CRPSO is effective.展开更多
Cloud warehousing service (CWS) has emerged as a promising third-party logistics service paradigm driven by the widespread use of e-commerce. The current CWS billing method is typically based on a fixed rate in a coar...Cloud warehousing service (CWS) has emerged as a promising third-party logistics service paradigm driven by the widespread use of e-commerce. The current CWS billing method is typically based on a fixed rate in a coarse-grained manner. This method cannot reflect the true service value under the fluctuating e-commerce logistics demand and is not conducive to CWS resilience management. Accordingly, a floating mechanism can be considered to introduce more flexible billing. A CWS provider lacks sufficient credibility to implement floating mechanisms because it has vested interests in terms of fictitious demand. To address this concern, this report proposes a blockchain-enabled floating billing management system as an overall solution for CWS providers to enhance the security, credibility, and transparency of CWS. A one-sided Vickrey–Clarke–Groves (O-VCG) auction mechanism model is designed as the underlying floating billing mechanism to reflect the real-time market value of fine-grained CWS resources. A blockchain-based floating billing prototype system is built as an experimental environment. Our results show that the O-VCG mechanism can effectively reflect the real-time market value of CWSs and increase the revenue of CWS providers. When the supply of CWS providers remains unchanged, allocation efficiency increases when demand increases. By analyzing the performance of the O-VCG auction and comparing it with that of the fixed-rate billing model, the proposed mechanism has more advantages. Moreover, our work provides novel managerial insights for CWS market stakeholders in terms of practical applications.展开更多
基金Project of the Shanghai Committee of Science and Technology,China(No.12DZ1510000)
文摘A hybrid intelligent approach is proposed to help the decision maker to select the appropriate third-party reverse logistics provider. The following process is included: firstly,the evaluation team is established to determine the selection criteria and evaluate them by triangular fuzzy numbers; secondly,calculate the weight of criteria by the proposed hybrid algorithm integrating particle swarm optimization( PSO) and simulated annealing( SA); then, the performance evaluation for each supplier is predicted by the proposed self-feedback neural network( SFBNN) based on the historical data. A numerical example is also presented to interpret the methodology above.
基金We thank the financial support of National Natural Science Foundation of China(grant number 71531010).
文摘As an integrated part in supply chain,third-party logistics(3PL)has intrinsic connections with upstream manufacturer and downstream retailer.Using a Stackelberg game model consisting of a manufacturer,a retailer and a 3PL to explicitly capture the interaction of firms’operations decisions,this paper attempts to better understand the role of integrated logistics and procurement service(ILPS)provided by a 3PL firm in supply chain management.Compared with a supply chain without ILPS,a Pareto region,in which all the supply chain members benefit from working with a 3PL firm offering ILPS,is disclosed.We also show that the Pareto region is more likely to occur with higher demand uncertainty.Finally,we reveal that the manufacturer obtains the highest profit in the Pareto region,and that the retailer can improve his profit share as the standard deviation of demand increases.
文摘This paper proposes a solution to the open vehicle routing problem with time windows(OVRPTW)considering third-party logistics(3PL).For the typical OVRPTW problem,most researchers consider time windows,capacity,routing limitations,vehicle destination,etc.Most researchers who previously investigated this problem assumed the vehicle would not return to the depot,but did not consider its final destination.However,by considering 3PL in the B2B e-commerce,the vehicle is required back to the nearest 3PL location with available space.This paper formulates the problem as a mixed integer linear programming(MILP)model with the objective of minimizing the total travel distance.A coordinate representation particle swarm optimization(CRPSO)algorithm is developed to obtain the best delivery sequencing and the capacity of each vehicle.Results of the computational study show that the proposed method provides solution within a reasonable amount of time.Finally,the result compared to PSO also indicates that the CRPSO is effective.
基金supported by the National Natural Science Foundation of China(Grant Nos.52005218 and 72071093)RGC TRS Project(Grant No.T32-707-22-N)the Guangdong Basic and Applied Basic Research Foundation(Guangdong Natural Science Fund,Grant No.2019A1515110296).
文摘Cloud warehousing service (CWS) has emerged as a promising third-party logistics service paradigm driven by the widespread use of e-commerce. The current CWS billing method is typically based on a fixed rate in a coarse-grained manner. This method cannot reflect the true service value under the fluctuating e-commerce logistics demand and is not conducive to CWS resilience management. Accordingly, a floating mechanism can be considered to introduce more flexible billing. A CWS provider lacks sufficient credibility to implement floating mechanisms because it has vested interests in terms of fictitious demand. To address this concern, this report proposes a blockchain-enabled floating billing management system as an overall solution for CWS providers to enhance the security, credibility, and transparency of CWS. A one-sided Vickrey–Clarke–Groves (O-VCG) auction mechanism model is designed as the underlying floating billing mechanism to reflect the real-time market value of fine-grained CWS resources. A blockchain-based floating billing prototype system is built as an experimental environment. Our results show that the O-VCG mechanism can effectively reflect the real-time market value of CWSs and increase the revenue of CWS providers. When the supply of CWS providers remains unchanged, allocation efficiency increases when demand increases. By analyzing the performance of the O-VCG auction and comparing it with that of the fixed-rate billing model, the proposed mechanism has more advantages. Moreover, our work provides novel managerial insights for CWS market stakeholders in terms of practical applications.