Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditi...Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.展开更多
The three-dimensional inverse transient thermoelastic problem for a thin rectangular object is considered within the context of the theory of generalized thermoelasticity. The upper surface of the rectangular object o...The three-dimensional inverse transient thermoelastic problem for a thin rectangular object is considered within the context of the theory of generalized thermoelasticity. The upper surface of the rectangular object occupying the space D: -a〈xSa; -b〈_y〈b; 0〈z〈h; with the known boundary conditions. Laplace and Finite Marchi-Fasulo transform techniques are used to determine the unknown temperature, temperature distribution, displacement and thermal stresses on upper plane surface of a thin rectangular object. The distributions of the considered physical variables are obtained and represented graphically.展开更多
基金supported by National Natural Science Foundation of China(11101244,11271231)National Tackling Key Problems Program(20050200069)Doctorate Foundation of the Ministry of Education of China(20030422047)
文摘Transient behavior of three-dimensional semiconductor device with heat conduc- tion is described by a coupled mathematical system of four quasi-linear partial differential equations with initial-boundary value conditions. The electric potential is defined by an ellip- tic equation and it appears in the following three equations via the electric field intensity. The electron concentration and the hole concentration are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite volume element approximation, keeping physical conservation law, is used to get numerical values of the electric potential and the accuracy is improved one order. Two con- centrations and the heat conduction are computed by a fractional step method combined with second-order upwind differences. This method can overcome numerical oscillation, dispersion and decreases computational complexity. Then a three-dimensional problem is solved by computing three successive one-dimensional problems where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by using prior estimate theory and other special techniques of partial differential equations. This type of mass-conservative parallel method is important and is most valuable in numerical analysis and application of semiconductor device.
基金University Grant Commission,New Delhi for providing the partial financial assistance under major research project scheme
文摘The three-dimensional inverse transient thermoelastic problem for a thin rectangular object is considered within the context of the theory of generalized thermoelasticity. The upper surface of the rectangular object occupying the space D: -a〈xSa; -b〈_y〈b; 0〈z〈h; with the known boundary conditions. Laplace and Finite Marchi-Fasulo transform techniques are used to determine the unknown temperature, temperature distribution, displacement and thermal stresses on upper plane surface of a thin rectangular object. The distributions of the considered physical variables are obtained and represented graphically.