In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face ...In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.展开更多
Blasting is a cost-effective technique to break hard rock volumes by using explosives in the mining and civil engineering realms. Moreover, although blasting is a designed process and plays an indispensable role in th...Blasting is a cost-effective technique to break hard rock volumes by using explosives in the mining and civil engineering realms. Moreover, although blasting is a designed process and plays an indispensable role in these industries, it can also have multiple adverse environmental impacts. One such effect is flyrock, which poses risks to nearby machinery, and residential structures, and can even lead to injuries or fatalities. To optimize blasting efficiency as well as restrict side effects, prediction of the blast aftereffects is vital. Therefore, the present work focuses on using two machine learning methods to predict the velocity of flyrock in the open pit mine. To address this issue, a comprehensive dataset was gathered from the open pit mine. Then, Decision Tree and Random Forest algorithms were employed to predict flyrock velocity. The Random Forest model demonstrated superior performance compared to the Decision Tree model. Nonetheless, the performance of the Decision Tree model was deemed satisfactory, as evidenced by its coefficient of determination value of 0.83, mean squared error (MSE) of 4.2, and mean absolute percentage error (MAPE) of 5.6%. Considering these metrics, it is reasonable to conclude that tree-based algorithms can be effective in predicting flyrock velocity.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42102313 and 52104125)the Fundamental Research Funds for the Central Universities(Grant No.B240201094).
文摘In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.
文摘Blasting is a cost-effective technique to break hard rock volumes by using explosives in the mining and civil engineering realms. Moreover, although blasting is a designed process and plays an indispensable role in these industries, it can also have multiple adverse environmental impacts. One such effect is flyrock, which poses risks to nearby machinery, and residential structures, and can even lead to injuries or fatalities. To optimize blasting efficiency as well as restrict side effects, prediction of the blast aftereffects is vital. Therefore, the present work focuses on using two machine learning methods to predict the velocity of flyrock in the open pit mine. To address this issue, a comprehensive dataset was gathered from the open pit mine. Then, Decision Tree and Random Forest algorithms were employed to predict flyrock velocity. The Random Forest model demonstrated superior performance compared to the Decision Tree model. Nonetheless, the performance of the Decision Tree model was deemed satisfactory, as evidenced by its coefficient of determination value of 0.83, mean squared error (MSE) of 4.2, and mean absolute percentage error (MAPE) of 5.6%. Considering these metrics, it is reasonable to conclude that tree-based algorithms can be effective in predicting flyrock velocity.