Our Solar System contains eight planets and their respective natural satellites excepting the inner two planets Mercury and Venus. A satellite hosted by a given Planet is well protected by the gravitational pertubatio...Our Solar System contains eight planets and their respective natural satellites excepting the inner two planets Mercury and Venus. A satellite hosted by a given Planet is well protected by the gravitational pertubation of much heavier planets such as Jupiter and Saturn if the natural satellite lies deep inside the respective host Planet Hill sphere. Each planet has a Hill radius a<sub>H</sub> and planet mean radius R<sub>P </sub>and the ratio R<sub>1</sub>=R<sub>P</sub>/a<sub>H</sub>. Under very low R<sub>1 </sub>(less than 0.006) the approximation of CRTBP (centrally restricted three-body problem) to two-body problem is valid and planet has spacious Hill lobe to capture a satellite and retain it. This ensures a high probability of capture of natural satellite by the given planet and Sun’s perturbation on Planet-Satellite binary can be neglected. This is the case with Earth, Mars, Jupiter, Saturn, Neptune and Uranus. But Mercury and Venus has R<sub>1</sub>=R<sub>P</sub>/a<sub>H</sub> =0.01 and 5.9862 × 10<sup>-3</sup> respectively hence they have no satellites. There is a limit to the dimension of the captured body. It must be a much smaller body both dimensionally as well masswise. The qantitative limit is a subject of an independent study.展开更多
This paper presents the Solution to the “Three-body Problem” in the Light of the Maximum Ordinality Principle. In the first part, however, it starts with the Solution to the Solar System, made up of “11 Bodies”. T...This paper presents the Solution to the “Three-body Problem” in the Light of the Maximum Ordinality Principle. In the first part, however, it starts with the Solution to the Solar System, made up of “11 Bodies”. This is because, in such a context, the “Three-body Problem” can be analyzed in its all descriptive possibilities. Nonetheless, the paper also presents the Solution to the “Three-body Problem” with reference to Systems totally independent from the Solar System, such as, for example, the “Triple Stars” and the “Triple Galaxies”. In this way, the paper offers a sufficiently complete framework concerning the Solution to the “Three-body Problem”, always in the Light of the Maximum Ordinality Principle, described in detail in Appendix A.展开更多
The present paper aims at showing the possible adoption in Psychiatry of a general methodology finalized to prescribe the most appropriate Therapy based on the knowledge of its correlative effects in advance, instead ...The present paper aims at showing the possible adoption in Psychiatry of a general methodology finalized to prescribe the most appropriate Therapy based on the knowledge of its correlative effects in advance, instead of recognizing them ex post. The specific case here considered is the “bipolar disorder”, in which the adoption of three different drugs is the most common practice, although with a possible differentiation between the prescription in the morning and in the evening, respectively. Thus, the proposed methodology will consider the Ordinal Interactions between the various drugs by evaluating their combined effects, which will result as being not a simple additive “sum”, because they are evaluated on the basis of the Maximum Ordinality Principle (MOP) and, in addition, in Adherence to the Explicit Solution to the “Three-Body Problem”. In this way the Methodology here proposed is able to suggest how to account for the synergistic effects of the various drugs, especially when the latter are characterized by different concentrations and, at the same time, by generally different half-lives respectively.展开更多
The main objective of this paper is to demonstrate that the internal processes of Self-Organizing Systems represent a unique and singular process, characterized by their specific generativity. This process can be mode...The main objective of this paper is to demonstrate that the internal processes of Self-Organizing Systems represent a unique and singular process, characterized by their specific generativity. This process can be modeled using the Maximum Ordinality Principle and its associated formal language, known as the “Incipient” Differential Calculus (IDC).展开更多
In the present paper, the establishment of a systematic multi-barycenter mechanics is based on the multi-particle mechanics. The new theory perfects the basic theoretical system of classical mechanics, which finds the...In the present paper, the establishment of a systematic multi-barycenter mechanics is based on the multi-particle mechanics. The new theory perfects the basic theoretical system of classical mechanics, which finds the law of mutual interaction between particle groups, reveals the limitations of Newton’s third law, discovers the principle of the intrinsic relationship between gravity and tidal force, reasonably interprets the origin and change laws for the rotation angular momentum of galaxies and stars and so on. By applying new theory, the multi-body problem can be transformed into a special two-body problem and for which an approximate solution method is proposed, the motion law of each particle can be roughly obtained.展开更多
A mechanics system consisting of three mass points on sphere S 2 is considered. The configuration space of the system is a fibre bundle over S 2 . It is proved that first Chern class of the bundle is -2 c 1...A mechanics system consisting of three mass points on sphere S 2 is considered. The configuration space of the system is a fibre bundle over S 2 . It is proved that first Chern class of the bundle is -2 c 1(γ) where γ is the canonical line bundle over the complex projective space CP 1=S 2 , which shows the bundle is non trivial. The information about the first Chern class makes the cohomology groups and homotopy groups of the configuration space worked out. In addition the effects of these topolo gical properties of the configuration space on the behavior in large scale of the system, as the number of equilibrium positions, periodic orbits and reduced phase space, are discussed.展开更多
In the present work the geodesic equation represents the equations of motion of the particles along the geodesics is derived. The deviation of the curved space-time metric tensor from that of the Minkowski tensor is c...In the present work the geodesic equation represents the equations of motion of the particles along the geodesics is derived. The deviation of the curved space-time metric tensor from that of the Minkowski tensor is considered as a perturbation. The quantities is expanded in powers of c-2. The equations of motion of the relativistic three body problem in the PN formalism are obtained.展开更多
Under the necessary conditions for a double pyramidal central configuration with a diamond base to exist in the real number space, the existence and uniqueness of such configurations were studied by employing combined...Under the necessary conditions for a double pyramidal central configuration with a diamond base to exist in the real number space, the existence and uniqueness of such configurations were studied by employing combinedly the algebraic method and numerical calculation. It is found that there exists a planar curl triangle region G in a square Q such that any point in G and given by the ratio of the two diagonal lengths of the diamond base and the ratio of one diagonal length of the base to the height of the double pyramid configuration determines a unique double pyramid central configuration, while all points in Q-G have no referance to any central configuration.展开更多
In this paper, combining with the L_p-dual geominimal surface area and the general L_p-centroid bodies, we research the Shephard type problems for general L_p-centroid bodies.
In this paper, the equations of motion for spatial restricted circular three body problem will be established using the cylindrical coordinates. Initial value procedure that can be used to compute both the cylindrical...In this paper, the equations of motion for spatial restricted circular three body problem will be established using the cylindrical coordinates. Initial value procedure that can be used to compute both the cylindrical and Cartesian coordinates and velocities is also developed.展开更多
For p > 0, Lutwak, Yang and Zhang introduced the concept of L_p-polar projection body Γ_(-p)K of a convex body K in Rn. Let p ≥ 1 and K, L ? Rnbe two origin-symmetric convex bodies, we consider the question of wh...For p > 0, Lutwak, Yang and Zhang introduced the concept of L_p-polar projection body Γ_(-p)K of a convex body K in Rn. Let p ≥ 1 and K, L ? Rnbe two origin-symmetric convex bodies, we consider the question of whether Γ_(-p) K ? Γ_(-p) L implies ?_p(L) ≤ ?_p(K),where ?_p(K) denotes the L_p-affine surface area of K and K = Voln(K)^(-1/p) K. We prove a necessary and sufficient condition of an analog of the Shephard problem for the L_p-polar projection bodies.展开更多
In this paper of the series, the equations of motion for the spatial circular restricted three-body problem in sidereal spherical coordinates system were established. Initial value procedure that can be used to comput...In this paper of the series, the equations of motion for the spatial circular restricted three-body problem in sidereal spherical coordinates system were established. Initial value procedure that can be used to compute both the spherical and Cartesian sidereal coordinates and velocities was also developed. The application of the procedure was illustrated by numerical example and graphical representations of the variations of the two sidereal coordinate systems.展开更多
The present manuscript examines the circular restricted gravitational three-body problem (CRGTBP) by the introduction of a new approach through the power series method. In addition, certain computational algorithms wi...The present manuscript examines the circular restricted gravitational three-body problem (CRGTBP) by the introduction of a new approach through the power series method. In addition, certain computational algorithms with the aid of Mathematica software are specifically designed for the problem. The algorithms or rather mathematical modules are established to determine the velocity and position of the third body’s motion. In fact, the modules led to accurate results and thus proved the new approach to be efficient.展开更多
Effect of perturbations in Coriolis and centrifugal forces on the non-linear stability of the libration point L4 in the restricted three body problem is studied when both the primaries are axis symmetric bodies (triax...Effect of perturbations in Coriolis and centrifugal forces on the non-linear stability of the libration point L4 in the restricted three body problem is studied when both the primaries are axis symmetric bodies (triaxial rigid bodies) and the bigger primary is a source of radiation. Moser’s conditions are utilized in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff’s normal form with the help of double D’Alembert’s series. It is found that L4 is stable for all mass ratios in the range of linear stability except for the three mass ratios μc1, μc2 and μc3, which depend upon the perturbations ε1 and ε1 in the Coriolis and centrifugal forces respectively and the parameters A1,A2,A3 and A4 which depend upon the semi-axes a1,b1,c1;a2,b2,c2 of the triaxial rigid bodies and p, the radiation parameter.展开更多
The Three-Body Problem, written by Liu Cixin, won the 2015 Hugo Award for Best Novel, with over 200,000 copies in English already sold. This gure is hundreds of times the average sales volume of Chinese novels in the ...The Three-Body Problem, written by Liu Cixin, won the 2015 Hugo Award for Best Novel, with over 200,000 copies in English already sold. This gure is hundreds of times the average sales volume of Chinese novels in the USA. Through qualitative and quantitative analyses of overseas readers' comments on The Three-Body Problem posted on the online platforms of Goodreads and Amazon, this paper concludes that the novel's success overseas lies in its catering to the concerns of overseas readers. The ThreeBody Problem is popular among overseas readership thanks to its re ection on the ultimate existence of mankind, science ction vision & imagination, literary familiarity & identi cation, ideological di erence-triggered cultural curiosity, and a good translation. This paper attempts to interpret Liu Cixin's work on the map of world literature from the perspective of overseas readers' preferences to provide references for contemporary Chinese science ction creation and overseas reception.展开更多
In this article we analyze the motion of a test particle of a planar, circular, restricted three-body problem in resonance, using the Kustaanheimo-Stiefel formalism. We show that a good qualitative description of the ...In this article we analyze the motion of a test particle of a planar, circular, restricted three-body problem in resonance, using the Kustaanheimo-Stiefel formalism. We show that a good qualitative description of the motion can be reduced to three simple equations for semi-major axis, eccentricity and resonance angle. Studying these equations reveals the onset of chaos, and sheds a new light on its weak nature. The 7:4 resonance is used as an example.展开更多
This paper deals with generation of halo orbits in the three-dimensional photogravitational restricted three-body problem, where the more massive primary is considered as the source of radiation and the smaller primar...This paper deals with generation of halo orbits in the three-dimensional photogravitational restricted three-body problem, where the more massive primary is considered as the source of radiation and the smaller primary is an oblate spheroid with its equatorial plane coincident with the plane of motion. Both the terms due to oblateness of the smaller primary are considered. Numerical as well as analytical solutions are obtained around the Lagrangian point L1, which lies between the primaries, of the Sun-Earth system. A comparison with the real time flight data of SOHO mission is made. Inclusion of oblateness of the smaller primary can improve the accuracy. Due to the effect of radiation pressure and oblateness, the size and the orbital period of the halo orbit around L1 are found to increase.展开更多
文摘Our Solar System contains eight planets and their respective natural satellites excepting the inner two planets Mercury and Venus. A satellite hosted by a given Planet is well protected by the gravitational pertubation of much heavier planets such as Jupiter and Saturn if the natural satellite lies deep inside the respective host Planet Hill sphere. Each planet has a Hill radius a<sub>H</sub> and planet mean radius R<sub>P </sub>and the ratio R<sub>1</sub>=R<sub>P</sub>/a<sub>H</sub>. Under very low R<sub>1 </sub>(less than 0.006) the approximation of CRTBP (centrally restricted three-body problem) to two-body problem is valid and planet has spacious Hill lobe to capture a satellite and retain it. This ensures a high probability of capture of natural satellite by the given planet and Sun’s perturbation on Planet-Satellite binary can be neglected. This is the case with Earth, Mars, Jupiter, Saturn, Neptune and Uranus. But Mercury and Venus has R<sub>1</sub>=R<sub>P</sub>/a<sub>H</sub> =0.01 and 5.9862 × 10<sup>-3</sup> respectively hence they have no satellites. There is a limit to the dimension of the captured body. It must be a much smaller body both dimensionally as well masswise. The qantitative limit is a subject of an independent study.
文摘This paper presents the Solution to the “Three-body Problem” in the Light of the Maximum Ordinality Principle. In the first part, however, it starts with the Solution to the Solar System, made up of “11 Bodies”. This is because, in such a context, the “Three-body Problem” can be analyzed in its all descriptive possibilities. Nonetheless, the paper also presents the Solution to the “Three-body Problem” with reference to Systems totally independent from the Solar System, such as, for example, the “Triple Stars” and the “Triple Galaxies”. In this way, the paper offers a sufficiently complete framework concerning the Solution to the “Three-body Problem”, always in the Light of the Maximum Ordinality Principle, described in detail in Appendix A.
文摘The present paper aims at showing the possible adoption in Psychiatry of a general methodology finalized to prescribe the most appropriate Therapy based on the knowledge of its correlative effects in advance, instead of recognizing them ex post. The specific case here considered is the “bipolar disorder”, in which the adoption of three different drugs is the most common practice, although with a possible differentiation between the prescription in the morning and in the evening, respectively. Thus, the proposed methodology will consider the Ordinal Interactions between the various drugs by evaluating their combined effects, which will result as being not a simple additive “sum”, because they are evaluated on the basis of the Maximum Ordinality Principle (MOP) and, in addition, in Adherence to the Explicit Solution to the “Three-Body Problem”. In this way the Methodology here proposed is able to suggest how to account for the synergistic effects of the various drugs, especially when the latter are characterized by different concentrations and, at the same time, by generally different half-lives respectively.
文摘The main objective of this paper is to demonstrate that the internal processes of Self-Organizing Systems represent a unique and singular process, characterized by their specific generativity. This process can be modeled using the Maximum Ordinality Principle and its associated formal language, known as the “Incipient” Differential Calculus (IDC).
文摘In the present paper, the establishment of a systematic multi-barycenter mechanics is based on the multi-particle mechanics. The new theory perfects the basic theoretical system of classical mechanics, which finds the law of mutual interaction between particle groups, reveals the limitations of Newton’s third law, discovers the principle of the intrinsic relationship between gravity and tidal force, reasonably interprets the origin and change laws for the rotation angular momentum of galaxies and stars and so on. By applying new theory, the multi-body problem can be transformed into a special two-body problem and for which an approximate solution method is proposed, the motion law of each particle can be roughly obtained.
文摘A mechanics system consisting of three mass points on sphere S 2 is considered. The configuration space of the system is a fibre bundle over S 2 . It is proved that first Chern class of the bundle is -2 c 1(γ) where γ is the canonical line bundle over the complex projective space CP 1=S 2 , which shows the bundle is non trivial. The information about the first Chern class makes the cohomology groups and homotopy groups of the configuration space worked out. In addition the effects of these topolo gical properties of the configuration space on the behavior in large scale of the system, as the number of equilibrium positions, periodic orbits and reduced phase space, are discussed.
文摘In the present work the geodesic equation represents the equations of motion of the particles along the geodesics is derived. The deviation of the curved space-time metric tensor from that of the Minkowski tensor is considered as a perturbation. The quantities is expanded in powers of c-2. The equations of motion of the relativistic three body problem in the PN formalism are obtained.
文摘Under the necessary conditions for a double pyramidal central configuration with a diamond base to exist in the real number space, the existence and uniqueness of such configurations were studied by employing combinedly the algebraic method and numerical calculation. It is found that there exists a planar curl triangle region G in a square Q such that any point in G and given by the ratio of the two diagonal lengths of the diamond base and the ratio of one diagonal length of the base to the height of the double pyramid configuration determines a unique double pyramid central configuration, while all points in Q-G have no referance to any central configuration.
文摘In this paper, combining with the L_p-dual geominimal surface area and the general L_p-centroid bodies, we research the Shephard type problems for general L_p-centroid bodies.
文摘In this paper, the equations of motion for spatial restricted circular three body problem will be established using the cylindrical coordinates. Initial value procedure that can be used to compute both the cylindrical and Cartesian coordinates and velocities is also developed.
基金Supported by the National Natural Science Foundation of China(11561020,11371224)Supported by the Science and Technology Plan of the Gansu Province(145RJZG227)
文摘For p > 0, Lutwak, Yang and Zhang introduced the concept of L_p-polar projection body Γ_(-p)K of a convex body K in Rn. Let p ≥ 1 and K, L ? Rnbe two origin-symmetric convex bodies, we consider the question of whether Γ_(-p) K ? Γ_(-p) L implies ?_p(L) ≤ ?_p(K),where ?_p(K) denotes the L_p-affine surface area of K and K = Voln(K)^(-1/p) K. We prove a necessary and sufficient condition of an analog of the Shephard problem for the L_p-polar projection bodies.
文摘In this paper of the series, the equations of motion for the spatial circular restricted three-body problem in sidereal spherical coordinates system were established. Initial value procedure that can be used to compute both the spherical and Cartesian sidereal coordinates and velocities was also developed. The application of the procedure was illustrated by numerical example and graphical representations of the variations of the two sidereal coordinate systems.
文摘The present manuscript examines the circular restricted gravitational three-body problem (CRGTBP) by the introduction of a new approach through the power series method. In addition, certain computational algorithms with the aid of Mathematica software are specifically designed for the problem. The algorithms or rather mathematical modules are established to determine the velocity and position of the third body’s motion. In fact, the modules led to accurate results and thus proved the new approach to be efficient.
文摘Effect of perturbations in Coriolis and centrifugal forces on the non-linear stability of the libration point L4 in the restricted three body problem is studied when both the primaries are axis symmetric bodies (triaxial rigid bodies) and the bigger primary is a source of radiation. Moser’s conditions are utilized in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff’s normal form with the help of double D’Alembert’s series. It is found that L4 is stable for all mass ratios in the range of linear stability except for the three mass ratios μc1, μc2 and μc3, which depend upon the perturbations ε1 and ε1 in the Coriolis and centrifugal forces respectively and the parameters A1,A2,A3 and A4 which depend upon the semi-axes a1,b1,c1;a2,b2,c2 of the triaxial rigid bodies and p, the radiation parameter.
文摘The Three-Body Problem, written by Liu Cixin, won the 2015 Hugo Award for Best Novel, with over 200,000 copies in English already sold. This gure is hundreds of times the average sales volume of Chinese novels in the USA. Through qualitative and quantitative analyses of overseas readers' comments on The Three-Body Problem posted on the online platforms of Goodreads and Amazon, this paper concludes that the novel's success overseas lies in its catering to the concerns of overseas readers. The ThreeBody Problem is popular among overseas readership thanks to its re ection on the ultimate existence of mankind, science ction vision & imagination, literary familiarity & identi cation, ideological di erence-triggered cultural curiosity, and a good translation. This paper attempts to interpret Liu Cixin's work on the map of world literature from the perspective of overseas readers' preferences to provide references for contemporary Chinese science ction creation and overseas reception.
文摘In this article we analyze the motion of a test particle of a planar, circular, restricted three-body problem in resonance, using the Kustaanheimo-Stiefel formalism. We show that a good qualitative description of the motion can be reduced to three simple equations for semi-major axis, eccentricity and resonance angle. Studying these equations reveals the onset of chaos, and sheds a new light on its weak nature. The 7:4 resonance is used as an example.
文摘This paper deals with generation of halo orbits in the three-dimensional photogravitational restricted three-body problem, where the more massive primary is considered as the source of radiation and the smaller primary is an oblate spheroid with its equatorial plane coincident with the plane of motion. Both the terms due to oblateness of the smaller primary are considered. Numerical as well as analytical solutions are obtained around the Lagrangian point L1, which lies between the primaries, of the Sun-Earth system. A comparison with the real time flight data of SOHO mission is made. Inclusion of oblateness of the smaller primary can improve the accuracy. Due to the effect of radiation pressure and oblateness, the size and the orbital period of the halo orbit around L1 are found to increase.