Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau...Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.展开更多
This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary la...This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity, turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results. This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study.展开更多
Abstract The Nansha ultra-crust layer-block is confined by ultra-crustal boundary faults of distinctive features, bordering the Kangtai-Shuangzi-Xiongnan extensional faulted zone on the north, the Baxian-Baram-Yoca-Cu...Abstract The Nansha ultra-crust layer-block is confined by ultra-crustal boundary faults of distinctive features, bordering the Kangtai-Shuangzi-Xiongnan extensional faulted zone on the north, the Baxian-Baram-Yoca-Cuyo nappe faulted zone on the south, the Wan'an-Natuna strike-slip tensional faulted zone on the west and the Mondoro-Panay strike-slip compressive faulted zone on the east. These faults take the top of the Nansha asthenosphere as their common detachmental surface. The Cenozoic dynamic process of the ultra-crust layer-block can be divided into four stages: K2-E21, during which the northern boundary faults extended, this ultra-crust layer-block was separated from the South China-Indosinian continental margin, the Palaeo-South China Sea subducted southwards and the Sibu accretion wedge was formed; E22-E31, during which the Southwest sub-sea basin extended and orogeny was active due to the collision of the Sibu accretion wedge; E32-N11, during which the central sub-sea basin extended, the Miri accretion wedge was formed and “A-type” subduction of the southern margin of the north Balawan occurred; N12-the present, during which large-scale thrusting and napping of the boundary faults in the south and mountain-building have taken place and the South China Sea stopped its extension.展开更多
To obtain homogenous layered oxide Li(Co1/3Ni1/3Mn1/3)O2 as a lithium insertion positive electrode material, the sol-gel process using citric acid as a chelating agent was applied. The material Li(Co1/3Ni1/3Mn1/3)...To obtain homogenous layered oxide Li(Co1/3Ni1/3Mn1/3)O2 as a lithium insertion positive electrode material, the sol-gel process using citric acid as a chelating agent was applied. The material Li(Co1/3Ni1/3Mn1/3)O2 was synthesized at different calcination temperatures. XRD experiment indicated that the layered Li(Co1/3Ni1/3Mn1/3)O2 material could be synthesized at a lower temperature of 800℃, and the oxidation state of Co, Ni, and Mn in the cathode confirmed by XPS were +3, +2, and +4, respectively. SEM observations showed that the synthesized material could form homogenous particle morphology with the particle size of about 200 nm. In spite of different calcination temperatures, the charge-discharge curves of all the samples for the initial cycle were similar, and the cathode synthesized at 900℃ showed a small irreversible capacity loss of 11.24% and a high discharge capacity of 212.2 mAh·g^-1 in the voltage range of 2.9-4.6 V.展开更多
The MAO (Micro-Arc Oxidation) process is applied to a eutectic Al-Si alloy(Al-12.0 percent Si-l.0 percent Cu-0.9 percent Mg (mass fraction)). The oxide ceramic layer wasfabricated with about 220 mum thickness and 3000...The MAO (Micro-Arc Oxidation) process is applied to a eutectic Al-Si alloy(Al-12.0 percent Si-l.0 percent Cu-0.9 percent Mg (mass fraction)). The oxide ceramic layer wasfabricated with about 220 mum thickness and 3000 Hv micro-hardness. By XRD (X-ray diffractometry)and DSC (differential scanning calorimetry) analyses, the oxide layer consists of amorphous Al_2O_3,which is distinct from the results reported by the other researchers. The SEM photographs of suchlayer show that the layer is fixed tightly on the substrate alloy. So this alloy can he used in thehigh temperature and friction environment alter it is treated with such process.展开更多
The active-layer soils overlying the permafrost are the most thermodynamically active zone of rock or soil and play important roles in the earth-atmosphere energy system. The processes of thawing and freezing and thei...The active-layer soils overlying the permafrost are the most thermodynamically active zone of rock or soil and play important roles in the earth-atmosphere energy system. The processes of thawing and freezing and their associated complex hydrothermal coupling can significantly affect variation in mean annual temperatures and the formation of ground ice in permafrost regions. Using soil-temperature and-moisture data obtained from the active layer between September 2011 and October 2014 in the permafrost region of the Nanweng'he River in the Da Xing'anling Mountains, the freeze-thaw characteristics of the permafrost were studied. Based on analysis of ground-temperature variation and hydrothermal transport characteristics, the thawing and freezing processes of the active layer were divided into three stages:(1) autumn-winter freezing,(2) winter freeze-up, and(3) spring-summer thawing. Variations in the soil temperature and moisture were analyzed during each stage of the freeze-thaw process, and the effects of the soil moisture and ground vegetation on the freeze-thaw are discussed in this paper. The study's results show that thawing in the active layer was unidirectional, while the ground freezing was bidirectional(upward from the bottom of the active layer and downward from the ground surface).During the annual freeze-thaw cycle, the migration of soil moisture had different characteristics at different stages. In general, during a freezing-thawing cycle, the soil-water molecules migrate downward, i.e., soil moisture transports from the entire active layer to the upper limit of the permafrost. In the meantime, freeze-thaw in the active layer can be significantly affected by the soil-moisture content and vegetation.展开更多
The Cu?Al composite casts were prepared by the method of pouring molten aluminum. The solidification process and themicrostructure of the transition layer were investigated during the recombination process of the liqu...The Cu?Al composite casts were prepared by the method of pouring molten aluminum. The solidification process and themicrostructure of the transition layer were investigated during the recombination process of the liquid Al and the solid Cu. The results reveal that the microstructure of the transition layer in the Cu?Al composite cast consists of α(Al)+α(Al)?CuAl2 eutectic,α(Al)?CuAl2 eutectic, CuAl2+α(Al)?CuAl2 eutectic and Cu9Al4. Additionally, the pouring temperature, cooling mode of the Cu platesurface and start time of the forced cooling after pouring have no effect on the microstructure species. But the proportion of thevarious microstructures in the transition layer changes with the process parameters. The pure Al at the top of the transition layer startsto solidify first and then the α(Al) phase grows in a dendritic way, while the CuAl2 phase exhibits plane or cellular crystal growth from the two sides of the transition layer towards its interior. The stronger the cooling intensity of the Cu plate outer surface, the more developed the dendrite, and the easier it is for the CuAl2 phase to grow into a plane crystal.展开更多
Heterogeneous catalysts promoting efficient production of reactive species and dynamically stabilized electron transfer mechanisms for peroxomonosulfates(PMS)still lack systematic investigation.Herein,a more stable ma...Heterogeneous catalysts promoting efficient production of reactive species and dynamically stabilized electron transfer mechanisms for peroxomonosulfates(PMS)still lack systematic investigation.Herein,a more stable magnetic layered double oxides(CFLDO/N-C),was designed using self-polymerization and high temperature carbonization of dopamine.The CFLDO/N-C/PMS system effectively activated PMS to remove 99%(k=0.737 min^(-1))of tetracycline(TC)within 10 min.The CFLDO/N-C/PMS system exhibited favorable resistance to inorganic anions and natural organics,as well as satisfactory suitability for multiple pollutants.The magnetic properties of the catalyst facilitated the separation of catalysts from the liquid phase,resulting in excellent reproducibility and effectively reducing the leaching of metal ions.An electronic bridge was constructed between cobalt(the active platform of the catalyst)and PMS,inducing PMS to break the O-O bond to generate the active species.The combination of static analysis and dynamic evolution confirmed the effective adsorption of PMS on the catalyst surface as well as the strong radical-assisted electron transfer process.Eventually,we further identified the sites where the reactive species attacked the TC and evaluated the toxicity of the intermediates.These findings offer innovative insights into the rapid degradation of pollutants achieved by transition metals in SR-AOPs and its mechanistic elaboration.展开更多
AIM:To assess the performance of macular ganglion cell-inner plexiform layer thickness(mGCIPLT)and 10-2 visual field(VF)parameters in detecting early glaucoma and evaluating the severity of advanced glaucoma.METHODS:T...AIM:To assess the performance of macular ganglion cell-inner plexiform layer thickness(mGCIPLT)and 10-2 visual field(VF)parameters in detecting early glaucoma and evaluating the severity of advanced glaucoma.METHODS:Totally 127 eyes from 89 participants(36 eyes of 19 healthy participants,45 eyes of 31 early glaucoma patients and 46 eyes of 39 advanced glaucoma patients)were included.The relationships between the optical coherence tomography(OCT)-derived parameters and VF sensitivity were determined.Patients with early glaucoma were divided into eyes with or without central 10°of the VF damages(CVFDs),and the diagnostic performances of OCT-derived parameters were assessed.RESULTS:In early glaucoma,the mGCIPLT was significantly correlated with 10-2 VF pattern standard deviation(PSD;with average mGCIPLT:β=-0.046,95%CI,-0.067 to-0.024,P<0.001).In advanced glaucoma,the mGCIPLT was related to the 24-2 VF mean deviation(MD;with average mGCIPLT:β=0.397,95%CI,0.199 to 0.595,P<0.001),10-2 VF MD(with average mGCIPLT:β=0.762,95%CI,0.485 to 1.038,P<0.001)and 24-2 VF PSD(with average mGCIPLT:β=0.244,95%CI,0.124 to 0.364,P<0.001).Except for the minimum and superotemporal mGCIPLT,the decrease of mGCIPLT in early glaucomatous eyes with CVFDs was more severe than that of early glaucomatous eyes without CVFDs.The area under the curve(AUC)of the average mGCIPLT(AUC=0.949,95%CI,0.868 to 0.982)was greater than that of the average circumpapillary retinal nerve fiber layer thickness(cpRNFLT;AUC=0.827,95%CI,0.674 to 0.918)and rim area(AUC=0.799,95%CI,0.610 to 0.907)in early glaucomatous eyes with CVFDs versus normal eyes.CONCLUSION:The 10-2 VF and mGCIPLT parameters are complementary to 24-2 VF,cpRNFLT and ONH parameters,especially in detecting early glaucoma with CVFDs and evaluating the severity of advanced glaucoma in group level.展开更多
Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality res...Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality reservoirs of deep and ultra-deep clastic rocks were investigated using thin section,scanning electron microscope,electron probe,stable isotopic composition and fluid inclusion data.The Qingshuihe Formation went through four burial stages of slow shallow burial,tectonic uplift,progressive deep burial and rapid deep burial successively.The stages of slow shallow burial and tectonic uplift not only can alleviate the mechanical compaction of grains,but also can maintain an open diagenetic system in the reservoirs for a long time,which promotes the dissolution of soluble components by meteoric freshwater and inhibits the precipitation of dissolution products in the reservoirs.The late rapid deep burial process contributed to the development of fluid overpressure,which effectively inhibits the destruction of primary pores by compaction and cementation.The fluid overpressure promotes the development of microfractures in the reservoir,which enhances the dissolution effect of organic acids.Based on the quantitative reconstruction of porosity evolution history,it is found that the long-term slow shallow burial and tectonic uplift processes make the greatest contribution to the development of deep-ultra-deep high-quality clastic rock reservoirs,followed by the late rapid deep burial process,and the progressive deep burial process has little contribution.展开更多
The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based...The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based aqueous energy storage devices. To address these challenges, this work proposes a dualfunction zinc anode protective layer, composed of Zn-Al-In layered double oxides(ILDO) by rationally designing Zn-Al layered double hydroxides(Zn-Al LDHs) for the first time. Differing from previous works on the LDHs coatings, firstly, the ILDO layer accelerates zinc-ion desolvation and also captures and anchors SO_(4)^(2-). Secondly, the in-situ formation of the Zn-In alloy phase effectively lowers the nucleation energy barrier, thereby regulating zinc nucleation. Consequently, the zinc anode with the ILDO protective layer demonstrates long-term stability exceeding 1900 h and low voltage hysteresis of 7.5 m V at 0.5 m A cm^(-2) and 0.5 m A h cm^(-2). Additionally, it significantly enhances the rate capability and cycling performance of Zn@ILDO//MnO_(2) full batteries and Zn@ILDO//activated carbon zinc-ion hybrid capacitors.This simple and effective dual-function protective layer strategy offers a promising approach for achieving high-performance zinc-ion batteries.展开更多
The counter-meshing gears (CMG) discriminator is a mechanically coded lock, which is used to prevent the occurrence of High Consequence Events. This paper advanced a new kind of self-assembly metal CMG discriminator...The counter-meshing gears (CMG) discriminator is a mechanically coded lock, which is used to prevent the occurrence of High Consequence Events. This paper advanced a new kind of self-assembly metal CMG discriminator based on multi-exposure LiGA like process and sacrificial layer process. The new CMG discriminator has the following characters except low cost: 1) it has only discrimination teeth sections; 2) the thickness of each gear layer exceeds one hundred micrometers; 3) it is axially driven by a separate dectronic magnetic micromotor directly; 4) its CMG is made of metal and is batch fabricated in the assembled state; 5) it is prevented from rotating in the opposite direction by pawl/ratchet wheel mechanism; 6) it has simpler structure. This device has better strength and reliability in abnormal environment compared to the existing surface micro machining (SMM) discriminator.展开更多
The aluminum alloy parts used in airbag of car were studied with flow control forming(FCF) method, which was a good way to low forming force and better mechanical properties. The key technology of FCF was the design o...The aluminum alloy parts used in airbag of car were studied with flow control forming(FCF) method, which was a good way to low forming force and better mechanical properties. The key technology of FCF was the design of control chamber to divide metal flow. So, the design method of FCF was analyzed and two type of control chamber were put forward. According to divisional principle, calculation model of forming force and approximate formula were given. Then forming process of aluminum alloy multi-layer cylinder parts was simulated. The effect of friction factor, die radius and punch velocity on metal flow and forming force was obtained. Finally, the experiment was preformed under the direction of theory and finite element(FE) simulation results. And the qualified parts were manufactured. The simulation data and experimental results show that the forming sequence of inner wall and outer wall, and then the force step, can be controlled by adjusting the process parameters. And the FCF technology proposed has very important application value in precision forging.展开更多
The freezing-thawing variation of permafrost active layer increases the complexity of rainfall-runoff processes in alpine river basins,Northwest China.And alpine meadow is the prominent ecosystem in these basins.This ...The freezing-thawing variation of permafrost active layer increases the complexity of rainfall-runoff processes in alpine river basins,Northwest China.And alpine meadow is the prominent ecosystem in these basins.This study selected a small alpine meadow watershed in the upper reaches of the Shule River Basin,China.We investigated alpine rainfall-runoff processes,as well as impacts of summer thaw depth of active layer,soil temperature and moisture variation on streamflow based on in-situ observations from July 2015 to December 2020.Some hydrologic parameters or indices were calculated using statistical methods,and impacts of permafrost change on river runoff were assessed using the variable infiltration capacity model(VIC).In the alpine meadow,surface soil(0–10 cm depth)of the active layer starts to freeze in mid-October each year,and begins to thaw in early April.Also,the deeper soil(70–80 cm depth)of the active layer starts to freeze in late October,and begins to thaw in late June.Moisture content in shallow soils fluctuates regularly,whereas deeper soils are more stable,and their response to rainstorms is negligible.During active layer thawing,the moisture content increases with soil depth.In the alpine meadow,vertical infiltration only occurred in soils up to 40 cm deep,and lateral flow occurred in0–20 and 60–80 cm deep soils at current rainfall intensity.Summer runoff ratios were 0.06–0.31,and runoff floods show lags of 9.5–23.0 h following the rainfall event in the study area.The freeze–thaw process also significantly impacts runoff regression coefficients,which were 0.0088–0.0654 per hour.Recession coefficient decrease negatively correlates with active layer thawing depth in summer and autumn.Alpine river basin permafrost can effectively increase peak discharge and reduce low flow.These findings are highly significant for rainfall–runoff conversion research in alpine areas of inland rivers.展开更多
In this paper the Expendable Pattern Casting with dry sand Vacuum(EPC-V) process is used to manufacture iron matrix composites with tungsten carbide particle.Microstructures of the composites layers were analyzed.The ...In this paper the Expendable Pattern Casting with dry sand Vacuum(EPC-V) process is used to manufacture iron matrix composites with tungsten carbide particle.Microstructures of the composites layers were analyzed.The abrasive wear resistance of the composites layers were tested and compared with that of high chromium cast iron.The results show that the iron matrix composites with tungsten carbide particle have high hardness.The abrasive wear resistance of composites with tungsten carbide particle is higher than that of high chromium cast iron.The properties of the matrix materials have been improved remarkably.展开更多
Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM ...Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM process often leads to quality fluctuation of the formed component,which hinders the further development and application of SLM.In situ quality control during SLM process is an effective solution to the quality fluctuation of formed components.However,the basic premise of feedback control during SLM process is the rapid and accurate diagnosis of the quality.Therefore,an in situ monitoring method of SLM process,which provides quality diagnosis information for feedback control,became one of the research hotspots in this field in recent years.In this paper,the research progress of in situ monitoring during SLM process based on images is reviewed.Firstly,the significance of in situ monitoring during SLM process is analyzed.Then,the image information source of SLM process,the image acquisition systems for different detection objects(the molten pool region,the scanned layer and the powder spread layer)and the methods of the image information analysis,detection and recognition are reviewed and analyzed.Through review and analysis,it is found that the existing image analysis and detection methods during SLM process are mainly based on traditional image processing methods combined with traditional machine learning models.Finally,the main development direction of in situ monitoring during SLM process is proposed by combining with the frontier technology of image-based computer vision.展开更多
Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Labor...Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beiiing University of Chemical Technology, the orinciole for the design of controlled intercalation processes in the light of tuture production processing requirements has been developed. Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions.展开更多
Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-syst...Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R2) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0-20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water ex- changes between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thaw- ing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeoer and permafrost degradation.展开更多
Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy...Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched.展开更多
基金support from the Free Exploration Project of Frontier Technology for Laoshan Laboratory(No.16-02)the National Natural Science Foundation of China(Nos.22072015 and 21927811)。
文摘Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.
基金supported by the National Natural Science Foundation of China (Grant No.40275004)the State Key Laboratory of Atmosphere Physics and Chemistry,and the City University of Hong Kong(Grant No.8780046)the City University of Hong Kong Strategic Research(Grant No.7001038)
文摘This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity, turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results. This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study.
文摘Abstract The Nansha ultra-crust layer-block is confined by ultra-crustal boundary faults of distinctive features, bordering the Kangtai-Shuangzi-Xiongnan extensional faulted zone on the north, the Baxian-Baram-Yoca-Cuyo nappe faulted zone on the south, the Wan'an-Natuna strike-slip tensional faulted zone on the west and the Mondoro-Panay strike-slip compressive faulted zone on the east. These faults take the top of the Nansha asthenosphere as their common detachmental surface. The Cenozoic dynamic process of the ultra-crust layer-block can be divided into four stages: K2-E21, during which the northern boundary faults extended, this ultra-crust layer-block was separated from the South China-Indosinian continental margin, the Palaeo-South China Sea subducted southwards and the Sibu accretion wedge was formed; E22-E31, during which the Southwest sub-sea basin extended and orogeny was active due to the collision of the Sibu accretion wedge; E32-N11, during which the central sub-sea basin extended, the Miri accretion wedge was formed and “A-type” subduction of the southern margin of the north Balawan occurred; N12-the present, during which large-scale thrusting and napping of the boundary faults in the south and mountain-building have taken place and the South China Sea stopped its extension.
基金The authors would like to thank the financial support of the Major State Basic Research Development Program of China (No.2002CB613303)the National Natural Science Foundation of China (No.20371038)the Foundation for Innovative Research Team of Hubei Province of China(No.2005ABC004).
文摘To obtain homogenous layered oxide Li(Co1/3Ni1/3Mn1/3)O2 as a lithium insertion positive electrode material, the sol-gel process using citric acid as a chelating agent was applied. The material Li(Co1/3Ni1/3Mn1/3)O2 was synthesized at different calcination temperatures. XRD experiment indicated that the layered Li(Co1/3Ni1/3Mn1/3)O2 material could be synthesized at a lower temperature of 800℃, and the oxidation state of Co, Ni, and Mn in the cathode confirmed by XPS were +3, +2, and +4, respectively. SEM observations showed that the synthesized material could form homogenous particle morphology with the particle size of about 200 nm. In spite of different calcination temperatures, the charge-discharge curves of all the samples for the initial cycle were similar, and the cathode synthesized at 900℃ showed a small irreversible capacity loss of 11.24% and a high discharge capacity of 212.2 mAh·g^-1 in the voltage range of 2.9-4.6 V.
基金This project is financially supported by the National Natural Science Foundation of China (No. 50071028) the Natural Science Foundation of Shandong Province (No. L2000F01)
文摘The MAO (Micro-Arc Oxidation) process is applied to a eutectic Al-Si alloy(Al-12.0 percent Si-l.0 percent Cu-0.9 percent Mg (mass fraction)). The oxide ceramic layer wasfabricated with about 220 mum thickness and 3000 Hv micro-hardness. By XRD (X-ray diffractometry)and DSC (differential scanning calorimetry) analyses, the oxide layer consists of amorphous Al_2O_3,which is distinct from the results reported by the other researchers. The SEM photographs of suchlayer show that the layer is fixed tightly on the substrate alloy. So this alloy can he used in thehigh temperature and friction environment alter it is treated with such process.
基金supported by the National Natural Science Foundation of China(Grant No.41401081)the State Key Laboratory of Frozen Soils Engineering(Grant Nos.SKLFSE-ZT-41,SKLFSE-ZT-20and SKLFSE-ZT-12)
文摘The active-layer soils overlying the permafrost are the most thermodynamically active zone of rock or soil and play important roles in the earth-atmosphere energy system. The processes of thawing and freezing and their associated complex hydrothermal coupling can significantly affect variation in mean annual temperatures and the formation of ground ice in permafrost regions. Using soil-temperature and-moisture data obtained from the active layer between September 2011 and October 2014 in the permafrost region of the Nanweng'he River in the Da Xing'anling Mountains, the freeze-thaw characteristics of the permafrost were studied. Based on analysis of ground-temperature variation and hydrothermal transport characteristics, the thawing and freezing processes of the active layer were divided into three stages:(1) autumn-winter freezing,(2) winter freeze-up, and(3) spring-summer thawing. Variations in the soil temperature and moisture were analyzed during each stage of the freeze-thaw process, and the effects of the soil moisture and ground vegetation on the freeze-thaw are discussed in this paper. The study's results show that thawing in the active layer was unidirectional, while the ground freezing was bidirectional(upward from the bottom of the active layer and downward from the ground surface).During the annual freeze-thaw cycle, the migration of soil moisture had different characteristics at different stages. In general, during a freezing-thawing cycle, the soil-water molecules migrate downward, i.e., soil moisture transports from the entire active layer to the upper limit of the permafrost. In the meantime, freeze-thaw in the active layer can be significantly affected by the soil-moisture content and vegetation.
基金Project(LJQ2014062)supported by the Outstanding Young Scholars in Colleges and Universities of Liaoning Province,China
文摘The Cu?Al composite casts were prepared by the method of pouring molten aluminum. The solidification process and themicrostructure of the transition layer were investigated during the recombination process of the liquid Al and the solid Cu. The results reveal that the microstructure of the transition layer in the Cu?Al composite cast consists of α(Al)+α(Al)?CuAl2 eutectic,α(Al)?CuAl2 eutectic, CuAl2+α(Al)?CuAl2 eutectic and Cu9Al4. Additionally, the pouring temperature, cooling mode of the Cu platesurface and start time of the forced cooling after pouring have no effect on the microstructure species. But the proportion of thevarious microstructures in the transition layer changes with the process parameters. The pure Al at the top of the transition layer startsto solidify first and then the α(Al) phase grows in a dendritic way, while the CuAl2 phase exhibits plane or cellular crystal growth from the two sides of the transition layer towards its interior. The stronger the cooling intensity of the Cu plate outer surface, the more developed the dendrite, and the easier it is for the CuAl2 phase to grow into a plane crystal.
基金supported by the Natural Science Foundation of China(62105292)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant no.22JSY015)+3 种基金the Young Talent Fund of Xi’an Association for Science and Technology(959202313020)the National Natural Science Foundation of Shaanxi Province(No.2021GXLH-Z-0 and 2020JZ-02)the project of Innovative Team of Shaanxi Province(2020TD001)the China Fundamental Research Funds for the Central Universities
文摘Heterogeneous catalysts promoting efficient production of reactive species and dynamically stabilized electron transfer mechanisms for peroxomonosulfates(PMS)still lack systematic investigation.Herein,a more stable magnetic layered double oxides(CFLDO/N-C),was designed using self-polymerization and high temperature carbonization of dopamine.The CFLDO/N-C/PMS system effectively activated PMS to remove 99%(k=0.737 min^(-1))of tetracycline(TC)within 10 min.The CFLDO/N-C/PMS system exhibited favorable resistance to inorganic anions and natural organics,as well as satisfactory suitability for multiple pollutants.The magnetic properties of the catalyst facilitated the separation of catalysts from the liquid phase,resulting in excellent reproducibility and effectively reducing the leaching of metal ions.An electronic bridge was constructed between cobalt(the active platform of the catalyst)and PMS,inducing PMS to break the O-O bond to generate the active species.The combination of static analysis and dynamic evolution confirmed the effective adsorption of PMS on the catalyst surface as well as the strong radical-assisted electron transfer process.Eventually,we further identified the sites where the reactive species attacked the TC and evaluated the toxicity of the intermediates.These findings offer innovative insights into the rapid degradation of pollutants achieved by transition metals in SR-AOPs and its mechanistic elaboration.
基金National Natural Science Foundation of China(No.81860170).
文摘AIM:To assess the performance of macular ganglion cell-inner plexiform layer thickness(mGCIPLT)and 10-2 visual field(VF)parameters in detecting early glaucoma and evaluating the severity of advanced glaucoma.METHODS:Totally 127 eyes from 89 participants(36 eyes of 19 healthy participants,45 eyes of 31 early glaucoma patients and 46 eyes of 39 advanced glaucoma patients)were included.The relationships between the optical coherence tomography(OCT)-derived parameters and VF sensitivity were determined.Patients with early glaucoma were divided into eyes with or without central 10°of the VF damages(CVFDs),and the diagnostic performances of OCT-derived parameters were assessed.RESULTS:In early glaucoma,the mGCIPLT was significantly correlated with 10-2 VF pattern standard deviation(PSD;with average mGCIPLT:β=-0.046,95%CI,-0.067 to-0.024,P<0.001).In advanced glaucoma,the mGCIPLT was related to the 24-2 VF mean deviation(MD;with average mGCIPLT:β=0.397,95%CI,0.199 to 0.595,P<0.001),10-2 VF MD(with average mGCIPLT:β=0.762,95%CI,0.485 to 1.038,P<0.001)and 24-2 VF PSD(with average mGCIPLT:β=0.244,95%CI,0.124 to 0.364,P<0.001).Except for the minimum and superotemporal mGCIPLT,the decrease of mGCIPLT in early glaucomatous eyes with CVFDs was more severe than that of early glaucomatous eyes without CVFDs.The area under the curve(AUC)of the average mGCIPLT(AUC=0.949,95%CI,0.868 to 0.982)was greater than that of the average circumpapillary retinal nerve fiber layer thickness(cpRNFLT;AUC=0.827,95%CI,0.674 to 0.918)and rim area(AUC=0.799,95%CI,0.610 to 0.907)in early glaucomatous eyes with CVFDs versus normal eyes.CONCLUSION:The 10-2 VF and mGCIPLT parameters are complementary to 24-2 VF,cpRNFLT and ONH parameters,especially in detecting early glaucoma with CVFDs and evaluating the severity of advanced glaucoma in group level.
基金Supported by the National Natural Science Foundation of China(41872113,42172109,42172108)CNPC-China University of Petroleum(Beijing)Strategic Cooperation Project(ZLZX2020-02)+1 种基金National Key R&D Program Project(2018YFA0702405)China University of Petroleum(Beijing)Research Project(2462020BJRC002,2462020YXZZ020)。
文摘Taking the Lower Cretaceous Qingshuihe Formation in the southern margin of Junggar Basin as an example,the influences of the burial process in a foreland basin on the diagenesis and the development of high-quality reservoirs of deep and ultra-deep clastic rocks were investigated using thin section,scanning electron microscope,electron probe,stable isotopic composition and fluid inclusion data.The Qingshuihe Formation went through four burial stages of slow shallow burial,tectonic uplift,progressive deep burial and rapid deep burial successively.The stages of slow shallow burial and tectonic uplift not only can alleviate the mechanical compaction of grains,but also can maintain an open diagenetic system in the reservoirs for a long time,which promotes the dissolution of soluble components by meteoric freshwater and inhibits the precipitation of dissolution products in the reservoirs.The late rapid deep burial process contributed to the development of fluid overpressure,which effectively inhibits the destruction of primary pores by compaction and cementation.The fluid overpressure promotes the development of microfractures in the reservoir,which enhances the dissolution effect of organic acids.Based on the quantitative reconstruction of porosity evolution history,it is found that the long-term slow shallow burial and tectonic uplift processes make the greatest contribution to the development of deep-ultra-deep high-quality clastic rock reservoirs,followed by the late rapid deep burial process,and the progressive deep burial process has little contribution.
基金Natural Science Foundation of Hunan Province (No.2020JJ4734)High Performance Computing Center of Central South University。
文摘The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based aqueous energy storage devices. To address these challenges, this work proposes a dualfunction zinc anode protective layer, composed of Zn-Al-In layered double oxides(ILDO) by rationally designing Zn-Al layered double hydroxides(Zn-Al LDHs) for the first time. Differing from previous works on the LDHs coatings, firstly, the ILDO layer accelerates zinc-ion desolvation and also captures and anchors SO_(4)^(2-). Secondly, the in-situ formation of the Zn-In alloy phase effectively lowers the nucleation energy barrier, thereby regulating zinc nucleation. Consequently, the zinc anode with the ILDO protective layer demonstrates long-term stability exceeding 1900 h and low voltage hysteresis of 7.5 m V at 0.5 m A cm^(-2) and 0.5 m A h cm^(-2). Additionally, it significantly enhances the rate capability and cycling performance of Zn@ILDO//MnO_(2) full batteries and Zn@ILDO//activated carbon zinc-ion hybrid capacitors.This simple and effective dual-function protective layer strategy offers a promising approach for achieving high-performance zinc-ion batteries.
文摘The counter-meshing gears (CMG) discriminator is a mechanically coded lock, which is used to prevent the occurrence of High Consequence Events. This paper advanced a new kind of self-assembly metal CMG discriminator based on multi-exposure LiGA like process and sacrificial layer process. The new CMG discriminator has the following characters except low cost: 1) it has only discrimination teeth sections; 2) the thickness of each gear layer exceeds one hundred micrometers; 3) it is axially driven by a separate dectronic magnetic micromotor directly; 4) its CMG is made of metal and is batch fabricated in the assembled state; 5) it is prevented from rotating in the opposite direction by pawl/ratchet wheel mechanism; 6) it has simpler structure. This device has better strength and reliability in abnormal environment compared to the existing surface micro machining (SMM) discriminator.
文摘The aluminum alloy parts used in airbag of car were studied with flow control forming(FCF) method, which was a good way to low forming force and better mechanical properties. The key technology of FCF was the design of control chamber to divide metal flow. So, the design method of FCF was analyzed and two type of control chamber were put forward. According to divisional principle, calculation model of forming force and approximate formula were given. Then forming process of aluminum alloy multi-layer cylinder parts was simulated. The effect of friction factor, die radius and punch velocity on metal flow and forming force was obtained. Finally, the experiment was preformed under the direction of theory and finite element(FE) simulation results. And the qualified parts were manufactured. The simulation data and experimental results show that the forming sequence of inner wall and outer wall, and then the force step, can be controlled by adjusting the process parameters. And the FCF technology proposed has very important application value in precision forging.
基金supported by the National Key R&D Program of China(2021YFC3201102-02)the National Natural Science Foundation of China(Grant No.42171028,41877156,and 41730751)+1 种基金the State Key Laboratory of Frozen Soil Engineering Foundation(SKLFSE202110)the Science and Technology Program of Gansu Province,China(20JR5RA545)。
文摘The freezing-thawing variation of permafrost active layer increases the complexity of rainfall-runoff processes in alpine river basins,Northwest China.And alpine meadow is the prominent ecosystem in these basins.This study selected a small alpine meadow watershed in the upper reaches of the Shule River Basin,China.We investigated alpine rainfall-runoff processes,as well as impacts of summer thaw depth of active layer,soil temperature and moisture variation on streamflow based on in-situ observations from July 2015 to December 2020.Some hydrologic parameters or indices were calculated using statistical methods,and impacts of permafrost change on river runoff were assessed using the variable infiltration capacity model(VIC).In the alpine meadow,surface soil(0–10 cm depth)of the active layer starts to freeze in mid-October each year,and begins to thaw in early April.Also,the deeper soil(70–80 cm depth)of the active layer starts to freeze in late October,and begins to thaw in late June.Moisture content in shallow soils fluctuates regularly,whereas deeper soils are more stable,and their response to rainstorms is negligible.During active layer thawing,the moisture content increases with soil depth.In the alpine meadow,vertical infiltration only occurred in soils up to 40 cm deep,and lateral flow occurred in0–20 and 60–80 cm deep soils at current rainfall intensity.Summer runoff ratios were 0.06–0.31,and runoff floods show lags of 9.5–23.0 h following the rainfall event in the study area.The freeze–thaw process also significantly impacts runoff regression coefficients,which were 0.0088–0.0654 per hour.Recession coefficient decrease negatively correlates with active layer thawing depth in summer and autumn.Alpine river basin permafrost can effectively increase peak discharge and reduce low flow.These findings are highly significant for rainfall–runoff conversion research in alpine areas of inland rivers.
文摘In this paper the Expendable Pattern Casting with dry sand Vacuum(EPC-V) process is used to manufacture iron matrix composites with tungsten carbide particle.Microstructures of the composites layers were analyzed.The abrasive wear resistance of the composites layers were tested and compared with that of high chromium cast iron.The results show that the iron matrix composites with tungsten carbide particle have high hardness.The abrasive wear resistance of composites with tungsten carbide particle is higher than that of high chromium cast iron.The properties of the matrix materials have been improved remarkably.
基金financially supported by the KGW Program(Grant No.2019XXX.XX4007Tm)the National Natural Science Foundation of China(Grant Nos.51905188,52090042 and 51775205)。
文摘Selective laser melting(SLM)has been widely used in the fields of aviation,aerospace and die manufacturing due to its ability to produce metal components with arbitrarily complex shapes.However,the instability of SLM process often leads to quality fluctuation of the formed component,which hinders the further development and application of SLM.In situ quality control during SLM process is an effective solution to the quality fluctuation of formed components.However,the basic premise of feedback control during SLM process is the rapid and accurate diagnosis of the quality.Therefore,an in situ monitoring method of SLM process,which provides quality diagnosis information for feedback control,became one of the research hotspots in this field in recent years.In this paper,the research progress of in situ monitoring during SLM process based on images is reviewed.Firstly,the significance of in situ monitoring during SLM process is analyzed.Then,the image information source of SLM process,the image acquisition systems for different detection objects(the molten pool region,the scanned layer and the powder spread layer)and the methods of the image information analysis,detection and recognition are reviewed and analyzed.Through review and analysis,it is found that the existing image analysis and detection methods during SLM process are mainly based on traditional image processing methods combined with traditional machine learning models.Finally,the main development direction of in situ monitoring during SLM process is proposed by combining with the frontier technology of image-based computer vision.
基金Supported by the National Key Technologies R&D Program (2011BAE28B01) and the National Natural Science Foundation of China (21276016).
文摘Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beiiing University of Chemical Technology, the orinciole for the design of controlled intercalation processes in the light of tuture production processing requirements has been developed. Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions.
基金National Major Scientific Project of China(No.2013CBA01803)Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.41121001)+1 种基金National Natural Science Foundation of China(No.41271081)Foundation of One Hundred Person Project of Chinese Academy of Sciences(No.51Y251571)
文摘Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R2) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0-20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water ex- changes between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thaw- ing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeoer and permafrost degradation.
文摘Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched.