Archaeological excavation involves disintegration, removal, and reassembly of the archaeological record;as such it is considered by many to be an unrepeatable, destructive activity. This perception has contributed to ...Archaeological excavation involves disintegration, removal, and reassembly of the archaeological record;as such it is considered by many to be an unrepeatable, destructive activity. This perception has contributed to an advancement in archaeological practice, namely, the development of computerized recording systems that digitally record archaeological excavations spatially and volumetrically during fieldwork. This paper is concerned with those archaeological sites where digital field recording has not been done. These sites, recorded by traditional methods, should not be excluded from attempts to restructure the spatial, volumetric, and stratigraphic archaeological data. A thorough methodology for the conversion of traditional records into digitized data is presented, including the detailed procedures required for three-dimensional plotting of recorded data—both the excavated material and the drawn site maps and cross-sections. Finally, the use of these methods is demonstrated on a complex Early to Middle Pleistocene site, illustrating the benefits of digitization and three-dimensional reconstruction in resolving stratigraphic and spatial questions.展开更多
The existing terrain models that describe the local lunar surface have limited resolution and accuracy, which can hardly meet the needs of rover navigation,positioning and geological analysis. China launched the lunar...The existing terrain models that describe the local lunar surface have limited resolution and accuracy, which can hardly meet the needs of rover navigation,positioning and geological analysis. China launched the lunar probe Chang'e-3 in December, 2013. Chang'e-3 encompassed a lander and a lunar rover called "Yutu"(Jade Rabbit). A set of panoramic cameras were installed on the rover mast. After acquiring panoramic images of four sites that were explored, the terrain models of the local lunar surface with resolution of 0.02 m were reconstructed. Compared with other data sources, the models derived from Chang'e-3 data were clear and accurate enough that they could be used to plan the route of Yutu.展开更多
To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models...To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models were recons- tructed based on processed tomography images collected from normal people. The airflow fields in nasal cavities were simulated by fluid dynamics with finite element software ANSYS. The results showed that the difference of human nasal cavity structure led to different airflow distribution in the nasal cavities and variation of the main airstream passing through the common nasal meatus. The nasal resistance in the regions of nasal valve and nasal vestibule accounted for more than half of the overall resistance. The characteristic model of nasal cavity was extracted on the basis of characteristic points and dimensions deduced from the original models. It showed that either the geometric structure or the airflow field of the two kinds of models was similar. The characteristic dimensions were the characteristic parameters of nasal cavity that could properly represent the original model in model studies on nasal cavity.展开更多
文摘Archaeological excavation involves disintegration, removal, and reassembly of the archaeological record;as such it is considered by many to be an unrepeatable, destructive activity. This perception has contributed to an advancement in archaeological practice, namely, the development of computerized recording systems that digitally record archaeological excavations spatially and volumetrically during fieldwork. This paper is concerned with those archaeological sites where digital field recording has not been done. These sites, recorded by traditional methods, should not be excluded from attempts to restructure the spatial, volumetric, and stratigraphic archaeological data. A thorough methodology for the conversion of traditional records into digitized data is presented, including the detailed procedures required for three-dimensional plotting of recorded data—both the excavated material and the drawn site maps and cross-sections. Finally, the use of these methods is demonstrated on a complex Early to Middle Pleistocene site, illustrating the benefits of digitization and three-dimensional reconstruction in resolving stratigraphic and spatial questions.
基金Supported by the National Natural Science Foundation of China
文摘The existing terrain models that describe the local lunar surface have limited resolution and accuracy, which can hardly meet the needs of rover navigation,positioning and geological analysis. China launched the lunar probe Chang'e-3 in December, 2013. Chang'e-3 encompassed a lander and a lunar rover called "Yutu"(Jade Rabbit). A set of panoramic cameras were installed on the rover mast. After acquiring panoramic images of four sites that were explored, the terrain models of the local lunar surface with resolution of 0.02 m were reconstructed. Compared with other data sources, the models derived from Chang'e-3 data were clear and accurate enough that they could be used to plan the route of Yutu.
基金the National Natural Science Foundation of China (1047202510672036)the Natural Science Foundation of Liaoning Province,China (20032109)
文摘To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models were recons- tructed based on processed tomography images collected from normal people. The airflow fields in nasal cavities were simulated by fluid dynamics with finite element software ANSYS. The results showed that the difference of human nasal cavity structure led to different airflow distribution in the nasal cavities and variation of the main airstream passing through the common nasal meatus. The nasal resistance in the regions of nasal valve and nasal vestibule accounted for more than half of the overall resistance. The characteristic model of nasal cavity was extracted on the basis of characteristic points and dimensions deduced from the original models. It showed that either the geometric structure or the airflow field of the two kinds of models was similar. The characteristic dimensions were the characteristic parameters of nasal cavity that could properly represent the original model in model studies on nasal cavity.