A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpi...A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpieees,takes the are pressure as the drivingforce of the pool surface deformation,and determines the surface configuration of weldpool based on the dynamic balance of arc pressure,pool gravity and surface tension atdeformed weld pool surface. The SIMPLER algorithm is used to calculate the fluid flowfield and temperature distribution in TIG weld pools of stainless steel workpieces.TIGwelding experiments are made to verify the validity of the model.It shows the calculatedresults by the model are in good agreement with experimental measurements. professor,Dept of Welding Engineering,Harbin Institute of Technology,Harbin 150006,China展开更多
Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on ...Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on the mixing-plane technology. In the calculation of flow field, the 3D N-S equations are separated by finite-volume method and solved by semi-implicit method for pressure-linked equations(SIMPLE). Based on flow field calculation, the flow field of turbine is simulated. The velocity and pressure in the flow field of turbine are analyzed. The external performance of the torque converter is also calculated. Results of flow simulation show that there are secondary flow, off flow and velocity gradient in turbine passage. The validity of numerical simulation is verified by comparing the results of numerical simulation with experiment data.展开更多
This paper is concerned with the numerical technique based on the method of characteristics for three-dimensional dynamic thermoelastic problems. A numerical example for the three-dimensional stress wave propagation i...This paper is concerned with the numerical technique based on the method of characteristics for three-dimensional dynamic thermoelastic problems. A numerical example for the three-dimensional stress wave propagation in a thermoelastic bar of square cross section subjected to both an impact loading and a thermal shock is presented.展开更多
In this paper, the variable-coefficient diffusion-advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by deter...In this paper, the variable-coefficient diffusion-advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended (Gl/G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions.展开更多
Background: The multiple sequence alignment (MSA) algorithms are the traditional ways to compare and analyze DNA sequences. However, for large DNA sequences, these algorithms require a long time computationally. Objec...Background: The multiple sequence alignment (MSA) algorithms are the traditional ways to compare and analyze DNA sequences. However, for large DNA sequences, these algorithms require a long time computationally. Objective: Here we will propose a new numerical method to characterize and compare DNA sequences quickly. Method: Based on a new 2-dimensional (2D) graphical representation of DNA sequences, we can obtain an 8-dimensional vector using two basic concepts of probability, the mean and the variance. Results: We perform similarity/dissimilarity analyses among two real DNA data sets, the coding sequences of the first exon of beta-globin gene of 11 species and 31 mammalian mitochondrial genomes, respectively. Conclusion: Our results are in agreement with the existing analyses in our literatures. We also compare our approach with other methods and find that ours is more effective.展开更多
Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensi...Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensional(2D)steady model taking into account both char oxidation and pyrolysis was developed on the basis of a calculated propagation velocity according to empirical correlation.The model was validated against the smoldering experiment of biomass rods under natural conditions,and the maximum error was smaller than 31%.Parameter sensitivity analysis found that propagation velocity decreases significantly while oxidation area and pyrolysis zone increase significantly with the increasing diameter of rod fuel.展开更多
The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,...The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,this new heating method presents an opportunity for the development of comprehensive facilities.The parameters for evaluating the effectiveness of such a system are the upper surface layer’s heat flux and temperature.In this paper,thermal resistance analysis calculation based on a simplified model for this unique radiant heating system analysis is presented with the heat transfer mechanism’s evaluation.The results obtained from thermal resistance analysis calculation and numerical simulation indicate that the thermal resistance analysis method is highly accurate with temperature discrepancies ranging from 0.44℃ to−0.44℃ and a heat flux discrepancy of less than 7.54%,which can meet the requirements of practical engineering applications,suggesting a foundation for the prefabricated radiant heating system.展开更多
Deep shale reservoirs are characterized by elevated breakdown pressures,diminished fracture complexity,and reduced modified volumes compared to medium and shallow reservoirs.Therefore,it is urgent to investigate parti...Deep shale reservoirs are characterized by elevated breakdown pressures,diminished fracture complexity,and reduced modified volumes compared to medium and shallow reservoirs.Therefore,it is urgent to investigate particular injection strategies that can optimize breakdown pressure and fracturing efficiency to address the increasing demands for deep shale reservoir stimulation.In this study,the efficiency of various stimulation strategies,including multi-cluster simultaneous fracturing,modified alternating fracturing,alternating shut-in fracturing,and cyclic alternating fracturing,was evaluated.Subsequently,the sensitivity of factors such as the cycle index,shut-in time,cluster spacing,and horizontal permeability was investigated.Additionally,the flow distribution effect within the wellbore was discussed.The results indicate that relative to multi-cluster simultaneous fracturing,modified alternating fracturing exhibits reduced susceptibility to the stress shadow effect,which results in earlier breakdown,extended hydraulic fracture lengths,and more consistent propagation despite an increase in breakdown pressure.The alternating shut-in fracturing benefits the increase of fracture length,which is closely related to the shut-in time.Furthermore,cyclic alternating fracturing markedly lowers breakdown pressure and contributes to uniform fracture propagation,in which the cycle count plays an important role.Modified alternating fracturing demonstrates insensitivity to variations in cluster spacing,whereas horizontal permeability is a critical factor affecting fracture length.The wellbore effect restrains the accumulation of pressure and flow near the perforation,delaying the initiation of hydraulic fractures.The simulation results can provide valuable numerical insights for optimizing injection strategies for deep shale hydraulic fracturing.展开更多
According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelti...According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelting process (FMSP) and copper continuous converting process (CCCP). Then, the CFCS thermodynamic model was proposed by establishing the multi-phase equilibrium model of FMSP and the local-equilibrium model of CCCP, respectively, and by combining them through the smelting intermediates. Subsequently, the influences of the furnace structures were investigated using the model on the formation of blister copper, the Fe3O4 behavior, the copper loss in slag and the copper recovery rate. The results show that the type D furnace, with double flues and a slag partition wall, is an ideal CFCS reactor compared with the other three types furnaces. For CFCS, it is effective to design a partition wall in the furnace to make FMSP and CCCP perform in two relatively independent zones, respectively, and to make smelting gas and converting gas discharge from respective flues.展开更多
The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented ...The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.展开更多
A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft...A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft hydraulic system are analyzed by the difference method. A kind of means for the prediction to variational trends of the aircraft hydraulic system temperature is provided during operation. The numerical prediction and simulation under the operational conditions are presented for ground trial running and the decelerated operation in flight. Computational results show that there is a good coincidence between the experimental data and the numerical predictions.展开更多
The cut-off wall in a clay-core rockfill dam built on a thick overburden layer is subjected to a large compressive pressure under the action of the loads such as the dead weight of both the dam and the overburden laye...The cut-off wall in a clay-core rockfill dam built on a thick overburden layer is subjected to a large compressive pressure under the action of the loads such as the dead weight of both the dam and the overburden layer, the frictional force induced by the differential settlement between the cut-off wall and surrounding soils, and the water pressure. Thus, reduction of the stress of the cut-off wall has become one of the main problems for consideration in engineering design. In this paper, numerical analysis of a core rockfill dam built on a thick overburden layer was conducted and some factors influencing the stress-strain behaviors of the cut-off wall were investigated. The factors include the improvement of the overburden layer, the modeling approach for interfacial contact between the cut-off wall and surrounding soils, the modulus of the cut-off wall concrete, and the connected pattern between the cut-off wall and the clay core. The result shows that improving the overburden layer,selecting plastic concrete with a low modulus and high strength, and optimizing the connection between the cut-off wall and the clay core of the dam are effective measures of reducing the deformations and compressive stresses of the cut-off wall. In addition, both the Goodman element and the mud-layer element are suitable for simulating the interfacial contact between the cut-off wall and surrounding soils.展开更多
A dry-gas seal system is a non-contact seal technology that is widely used in different industrial applications.Spiral-groove dry-gas seal utilizes fluid dynamic pressure effects to realize the seal and lubrication pr...A dry-gas seal system is a non-contact seal technology that is widely used in different industrial applications.Spiral-groove dry-gas seal utilizes fluid dynamic pressure effects to realize the seal and lubrication processes,while forming a high pressure gas film between two sealing faces due to the deceleration of the gas pumped in or out.There is little research into the effects and the influence on seal performance,if the grooves and the gas film are at the micro-scale.This paper investigates the micro-scale effects on spiral-groove dry-gas seal performance in a numerical solution of a corrected Reynolds equation.The Reynolds equation is discretized by means of the finite difference method with the second order scheme and solved by the successive-over-relaxation(SOR) iterative method.The Knudsen number of the flow in the sealing gas film is changed from 0.005 to 0.120 with a variation of film depth and sealing pressure.The numerical results show that the average pressure in the gas film and the sealed gas leakage increase due to micro-scale effects.The open force is enlarged,while the gas film stiffness is significantly decreased due to micro-scale effects.The friction torque and power consumption remain constant,even in low sealing pressure and spin speed conditions.In this paper,the seal performance at different rotor face spin speeds is also described.The proposed research clarifies the micro-scale effects in a spiral-groove dry-gas seal and their influence on seal performance,which is expected to be useful for the improvement of the design of dry-gas seal systems operating in the slip flow regime.展开更多
The Westwood Mine aims to reuse the tailings storage facility #1(TSF #1) for solid waste storage, but,downstream of the Northwest dike is considered critical in terms of stability. This paper uses numerical modeling a...The Westwood Mine aims to reuse the tailings storage facility #1(TSF #1) for solid waste storage, but,downstream of the Northwest dike is considered critical in terms of stability. This paper uses numerical modeling along with geophysical monitoring for assessing the Northwest dike stability during the restoration phase. The impact of waste rock deposition in the upstream TSF #1 is considered. The geophysical monitoring is based on electrical resistivity methods and was used to investigate the internal structure of the dike embankment in different deposition stages. The numerical simulations were performed with SLOPE/W code. The results show a factor of safety well above the minimum recommended value of 1.5. Geophysical monitoring revealed a vertical variation in the electrical resistivity across the dike, which indicates a multilayer structure of the embankment. Without any current in situ data, the geophysical monitoring helped estimating the nature of the materials used and the internal structure of the embankment. These interpretations were validated by geological observation of geotechnical log of the embankment. Based on this study, it is recommended that the water polishing pond be partly filled before waste rock is deposited in TSF #1. In addition, to ensure the stability of the dike, the piezometric head monitoring prior to and during waste rock deposition is recommended.展开更多
A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fiel...A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fields. The effects of observation noise and the spatial distribution of wind field analysis error are also investigated.展开更多
This paper extends the original 2D discontinuous deformation analysis(DDA)method proposed by Shi to 3D cases,and presents the formulations of the 3D DDA.The formulations maintain the characteristics of the original 2D...This paper extends the original 2D discontinuous deformation analysis(DDA)method proposed by Shi to 3D cases,and presents the formulations of the 3D DDA.The formulations maintain the characteristics of the original 2D DDA approach.Contacts between the blocks are detected by using Common-Plane (C-P) approach and the non-smooth contact,such as of vertex-to-vertex,vertex- to-edge and edge-to-edge types,can be handled easily based on the C-P method.The matrices of equilibrium equations have been given in detail for programming purposes.The C program codes for the 3D DDA are developed.The ability and accuracy of the formulations and the program are verified by the analytical solutions of several dynamic examples.The robustness and versatility of the algorithms presented in this paper are demonstrated with the aid of an example of scattering of densely packed cubes.Finally,implications and future extensions are discussed.展开更多
Tunnelling related hazards are very common in the Himalayan terrain and a number of such instances have been reported. Several twin tunnels are being planned for transportation purposes which will require good underst...Tunnelling related hazards are very common in the Himalayan terrain and a number of such instances have been reported. Several twin tunnels are being planned for transportation purposes which will require good understanding for prediction of tunnel deformation and surface settlement during the engineering life of the structure. The deformational behaviour, design of sequential excavation and support of any jointed rock mass are challenging during underground construction. We have raised several commonly assumed issues while performing stability analysis of underground opening at shallow depth. For this purpose, Kainchi-mod Nerchowck twin tunnels(Himachal Pradesh, India) are taken for in-depth analysis of the stability of two asymmetric tunnels to address the influence of topography, twin tunnel dimension and geometry. The host rock encountered during excavation is composed mainly of moderately to highly jointed grey sandstone, maroon sandstone and siltstones. In contrast to equidimensional tunnels where the maximum subsidence is observed vertically above the centreline of the tunnel, the result from the present study shows shifting of the maximum subsidence away from the tunnel centreline. The maximum subsidence of 0.99 mm is observed at 4.54 m left to the escape tunnel centreline whereas the maximum subsidence of 3.14 mm is observed at 8.89 m right to the main tunnel centreline. This shifting clearly indicates the influence of undulating topography and inequidimensional noncircular tunnel.展开更多
The significant point is the bidirectional interaction technique in FSI analysis while investigating subsea corrosion effect. By this way, pipe environment is accurately modelled and fluid effects are also considered....The significant point is the bidirectional interaction technique in FSI analysis while investigating subsea corrosion effect. By this way, pipe environment is accurately modelled and fluid effects are also considered. The effect of external corrosion defects on structural behaviour of a pipeline is studied by creating a nonlinear numerical model based on the finite element method according to ABAQUS analysis program. Corrosion losses of sections are obtained from experimental results and applied to the model. Numerical model is formed by a span of sub-sea pipeline that is subjected to environmental loads. Seismic and wind-generated irregular wave loads are considered as environmental loads. Irregular wave is represented with equivalent eight regular waves via FFT. The pipe is modelled according to two different types which are non-corroded(intact) and corroded(deteriorated) to demonstrate corrosion effects on it. The visible type of corrosion in marine environment is named ‘pitting' corrosion, in which the material loss is locally interpenetrated over the surface. By considering this situation, the corroded and non-corroded pipes are modelled as 3D solid elements. The main point is revealing how the subsea corrosion affects the structural behaviour of pipelines on the basis of implementation of experimental results to a model structure due to changes of stresses and displacement.展开更多
Two and three-dimensional finite element analysis programs for pile-soil interaction are compiled. Duncan-Chang's Model is used. The construction sequence of the pier is modeled. The pile-soil interface element is...Two and three-dimensional finite element analysis programs for pile-soil interaction are compiled. Duncan-Chang's Model is used. The construction sequence of the pier is modeled. The pile-soil interface element is used. The influence of the combination type of piles on the deformation of bank slope and pile behaviour is analyzed. Different designs of a pile-supported pier are compared thoroughly. Calculation results show that the stresses and displacements of the pile are directly related to the distance from the bank slope and the direction of inclination. An inclined prop pile set in the rear platform would remarkably reduce the stresses of piles and the displacement of the pier.展开更多
Based on the Tropical Cyclone(TC briefly thereafter)Yearbook 1980-2009,this paper first analyzes the number and intensity change of the TCs which passed directly over or by the side of Poyang Lake(the distance of TC c...Based on the Tropical Cyclone(TC briefly thereafter)Yearbook 1980-2009,this paper first analyzes the number and intensity change of the TCs which passed directly over or by the side of Poyang Lake(the distance of TC center is less than 1°longitude or 1°latitude from the Lake)among all the landfalling TCs in China during the past 30 years.Two cases are examined in detail in this paper.One is severe typhoon Rananim with a speed of 3.26 m/s and a change of 1 hPa in intensity when it was passing the Lake.The other is super typhoon Saomai with a faster moving speed of 6.50 m/s and a larger change in intensity of 6 hPa.Through numerical simulation experiments,this paper analyzes how the change of underlying surface from water to land contributes to the differences in intensity,speed and mesoscale convection of the two TCs when they passed the Lake.Results show that the moisture and dynamic condition above the Lake were favorable for the maintenance of the intensity when Rananim was passing through Poyang Lake,despite the moisture supply from the ocean was cut off.As a result,there was strong convection around the lake which led to a rainfall spinning counter-clockwise as it was affected by the TC movement.However,little impact was seen in the Saomai case.These results indicate that for the TCs coming ashore on Poyang Lake with a slow speed,the large water body is conducive to the sustaining of the intensity and strengthening of the convection around the TC center and the subsequent heavy rainfall.On the contrary,a fast-moving TC is less likely to be influenced by the underlying surface in terms of intensity and speed.展开更多
基金The research work was surpported by the National Natural Science Foundation of China.
文摘A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpieees,takes the are pressure as the drivingforce of the pool surface deformation,and determines the surface configuration of weldpool based on the dynamic balance of arc pressure,pool gravity and surface tension atdeformed weld pool surface. The SIMPLER algorithm is used to calculate the fluid flowfield and temperature distribution in TIG weld pools of stainless steel workpieces.TIGwelding experiments are made to verify the validity of the model.It shows the calculatedresults by the model are in good agreement with experimental measurements. professor,Dept of Welding Engineering,Harbin Institute of Technology,Harbin 150006,China
基金This project is supported by National Natural Science Foundation of China (No. 50175042).
文摘Three-dimensional flow field of turbine in torque converter is simulated by numerical calculation in order to improve the performance of torque converter. Calculation model of a torque converter is presented based on the mixing-plane technology. In the calculation of flow field, the 3D N-S equations are separated by finite-volume method and solved by semi-implicit method for pressure-linked equations(SIMPLE). Based on flow field calculation, the flow field of turbine is simulated. The velocity and pressure in the flow field of turbine are analyzed. The external performance of the torque converter is also calculated. Results of flow simulation show that there are secondary flow, off flow and velocity gradient in turbine passage. The validity of numerical simulation is verified by comparing the results of numerical simulation with experiment data.
基金Supported by National Natural Science Foundation of China
文摘This paper is concerned with the numerical technique based on the method of characteristics for three-dimensional dynamic thermoelastic problems. A numerical example for the three-dimensional stress wave propagation in a thermoelastic bar of square cross section subjected to both an impact loading and a thermal shock is presented.
文摘In this paper, the variable-coefficient diffusion-advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended (Gl/G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions.
文摘Background: The multiple sequence alignment (MSA) algorithms are the traditional ways to compare and analyze DNA sequences. However, for large DNA sequences, these algorithms require a long time computationally. Objective: Here we will propose a new numerical method to characterize and compare DNA sequences quickly. Method: Based on a new 2-dimensional (2D) graphical representation of DNA sequences, we can obtain an 8-dimensional vector using two basic concepts of probability, the mean and the variance. Results: We perform similarity/dissimilarity analyses among two real DNA data sets, the coding sequences of the first exon of beta-globin gene of 11 species and 31 mammalian mitochondrial genomes, respectively. Conclusion: Our results are in agreement with the existing analyses in our literatures. We also compare our approach with other methods and find that ours is more effective.
文摘Understanding the steady mechanism of biomass smoldering plays a great role in the utilization of smoldering technology.In this study numerical analysis of steady smoldering of biomass rods was performed.A two-dimensional(2D)steady model taking into account both char oxidation and pyrolysis was developed on the basis of a calculated propagation velocity according to empirical correlation.The model was validated against the smoldering experiment of biomass rods under natural conditions,and the maximum error was smaller than 31%.Parameter sensitivity analysis found that propagation velocity decreases significantly while oxidation area and pyrolysis zone increase significantly with the increasing diameter of rod fuel.
基金Project(NB-2020-JG-07)supported by the Research and Engineering Application of Key Technologies for New Building Industrialization Project of China Northwest Architectural Design and Research Institute Co.,Ltd.Project(2023-CXTD-29)supported by the Key Scientific and Technological Innovation Team of Shaanxi Province,ChinaProject supported by the K.C.Wong Education Foundation。
文摘The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,this new heating method presents an opportunity for the development of comprehensive facilities.The parameters for evaluating the effectiveness of such a system are the upper surface layer’s heat flux and temperature.In this paper,thermal resistance analysis calculation based on a simplified model for this unique radiant heating system analysis is presented with the heat transfer mechanism’s evaluation.The results obtained from thermal resistance analysis calculation and numerical simulation indicate that the thermal resistance analysis method is highly accurate with temperature discrepancies ranging from 0.44℃ to−0.44℃ and a heat flux discrepancy of less than 7.54%,which can meet the requirements of practical engineering applications,suggesting a foundation for the prefabricated radiant heating system.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.42377156,42077251 and 42202305).
文摘Deep shale reservoirs are characterized by elevated breakdown pressures,diminished fracture complexity,and reduced modified volumes compared to medium and shallow reservoirs.Therefore,it is urgent to investigate particular injection strategies that can optimize breakdown pressure and fracturing efficiency to address the increasing demands for deep shale reservoir stimulation.In this study,the efficiency of various stimulation strategies,including multi-cluster simultaneous fracturing,modified alternating fracturing,alternating shut-in fracturing,and cyclic alternating fracturing,was evaluated.Subsequently,the sensitivity of factors such as the cycle index,shut-in time,cluster spacing,and horizontal permeability was investigated.Additionally,the flow distribution effect within the wellbore was discussed.The results indicate that relative to multi-cluster simultaneous fracturing,modified alternating fracturing exhibits reduced susceptibility to the stress shadow effect,which results in earlier breakdown,extended hydraulic fracture lengths,and more consistent propagation despite an increase in breakdown pressure.The alternating shut-in fracturing benefits the increase of fracture length,which is closely related to the shut-in time.Furthermore,cyclic alternating fracturing markedly lowers breakdown pressure and contributes to uniform fracture propagation,in which the cycle count plays an important role.Modified alternating fracturing demonstrates insensitivity to variations in cluster spacing,whereas horizontal permeability is a critical factor affecting fracture length.The wellbore effect restrains the accumulation of pressure and flow near the perforation,delaying the initiation of hydraulic fractures.The simulation results can provide valuable numerical insights for optimizing injection strategies for deep shale hydraulic fracturing.
基金Project (50904027) supported by the National Natural Science Foundation of ChinaProject (2013BAB03B05) supported by the National Key Technology R&D Program of China+1 种基金Project (20133BCB23018) supported by the Foundation for Young Scientist(Jinggang Star)of Jiangxi Province,ChinaProject (2012ZBAB206002) supported by the Natural Science Foundation of Jiangxi Province,China
文摘According to the innate characteristic of four types of furnace, the copper flash continuous smelting (CFCS) furnace can be considered a synthetic reactor of two relatively independent processes: flash matte smelting process (FMSP) and copper continuous converting process (CCCP). Then, the CFCS thermodynamic model was proposed by establishing the multi-phase equilibrium model of FMSP and the local-equilibrium model of CCCP, respectively, and by combining them through the smelting intermediates. Subsequently, the influences of the furnace structures were investigated using the model on the formation of blister copper, the Fe3O4 behavior, the copper loss in slag and the copper recovery rate. The results show that the type D furnace, with double flues and a slag partition wall, is an ideal CFCS reactor compared with the other three types furnaces. For CFCS, it is effective to design a partition wall in the furnace to make FMSP and CCCP perform in two relatively independent zones, respectively, and to make smelting gas and converting gas discharge from respective flues.
文摘The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.
文摘A mathematical model of principal elements of the aircraft hydraulic system is presented based on the heat transfer theory. The dynamic heat transfer process of the hydraulic oil and the pump shells within an aircraft hydraulic system are analyzed by the difference method. A kind of means for the prediction to variational trends of the aircraft hydraulic system temperature is provided during operation. The numerical prediction and simulation under the operational conditions are presented for ground trial running and the decelerated operation in flight. Computational results show that there is a good coincidence between the experimental data and the numerical predictions.
基金the National Natural Science Foundation of China (Grant No.51379066)the Fundamental Research Funds for the Central Universities (Grant No.2016B03514)+1 种基金the National Key Technology Support Program (Grant No.2015BAB07B05)the Key Laboratory of Earth-Rock Dam Failure Mechanism and Safety Control Techniques (Grant No.YK913007).
文摘The cut-off wall in a clay-core rockfill dam built on a thick overburden layer is subjected to a large compressive pressure under the action of the loads such as the dead weight of both the dam and the overburden layer, the frictional force induced by the differential settlement between the cut-off wall and surrounding soils, and the water pressure. Thus, reduction of the stress of the cut-off wall has become one of the main problems for consideration in engineering design. In this paper, numerical analysis of a core rockfill dam built on a thick overburden layer was conducted and some factors influencing the stress-strain behaviors of the cut-off wall were investigated. The factors include the improvement of the overburden layer, the modeling approach for interfacial contact between the cut-off wall and surrounding soils, the modulus of the cut-off wall concrete, and the connected pattern between the cut-off wall and the clay core. The result shows that improving the overburden layer,selecting plastic concrete with a low modulus and high strength, and optimizing the connection between the cut-off wall and the clay core of the dam are effective measures of reducing the deformations and compressive stresses of the cut-off wall. In addition, both the Goodman element and the mud-layer element are suitable for simulating the interfacial contact between the cut-off wall and surrounding soils.
基金supported by Scientific Research Foundation for Returned Scholars of Ministry of Education of China
文摘A dry-gas seal system is a non-contact seal technology that is widely used in different industrial applications.Spiral-groove dry-gas seal utilizes fluid dynamic pressure effects to realize the seal and lubrication processes,while forming a high pressure gas film between two sealing faces due to the deceleration of the gas pumped in or out.There is little research into the effects and the influence on seal performance,if the grooves and the gas film are at the micro-scale.This paper investigates the micro-scale effects on spiral-groove dry-gas seal performance in a numerical solution of a corrected Reynolds equation.The Reynolds equation is discretized by means of the finite difference method with the second order scheme and solved by the successive-over-relaxation(SOR) iterative method.The Knudsen number of the flow in the sealing gas film is changed from 0.005 to 0.120 with a variation of film depth and sealing pressure.The numerical results show that the average pressure in the gas film and the sealed gas leakage increase due to micro-scale effects.The open force is enlarged,while the gas film stiffness is significantly decreased due to micro-scale effects.The friction torque and power consumption remain constant,even in low sealing pressure and spin speed conditions.In this paper,the seal performance at different rotor face spin speeds is also described.The proposed research clarifies the micro-scale effects in a spiral-groove dry-gas seal and their influence on seal performance,which is expected to be useful for the improvement of the design of dry-gas seal systems operating in the slip flow regime.
基金financially supported by NSERC (Natural Sciences and Engineering Research Council of Canada) Engage grants
文摘The Westwood Mine aims to reuse the tailings storage facility #1(TSF #1) for solid waste storage, but,downstream of the Northwest dike is considered critical in terms of stability. This paper uses numerical modeling along with geophysical monitoring for assessing the Northwest dike stability during the restoration phase. The impact of waste rock deposition in the upstream TSF #1 is considered. The geophysical monitoring is based on electrical resistivity methods and was used to investigate the internal structure of the dike embankment in different deposition stages. The numerical simulations were performed with SLOPE/W code. The results show a factor of safety well above the minimum recommended value of 1.5. Geophysical monitoring revealed a vertical variation in the electrical resistivity across the dike, which indicates a multilayer structure of the embankment. Without any current in situ data, the geophysical monitoring helped estimating the nature of the materials used and the internal structure of the embankment. These interpretations were validated by geological observation of geotechnical log of the embankment. Based on this study, it is recommended that the water polishing pond be partly filled before waste rock is deposited in TSF #1. In addition, to ensure the stability of the dike, the piezometric head monitoring prior to and during waste rock deposition is recommended.
文摘A three-dimensional wind field analysis sollware based on the Beigng-Gucheng dual-Doppler weather radar system has been built, and evaluated by using the numerical cloud model producing storm flow and hydrometeor fields. The effects of observation noise and the spatial distribution of wind field analysis error are also investigated.
基金The project supported by the National Natural Science Foundation of China (50139010)
文摘This paper extends the original 2D discontinuous deformation analysis(DDA)method proposed by Shi to 3D cases,and presents the formulations of the 3D DDA.The formulations maintain the characteristics of the original 2D DDA approach.Contacts between the blocks are detected by using Common-Plane (C-P) approach and the non-smooth contact,such as of vertex-to-vertex,vertex- to-edge and edge-to-edge types,can be handled easily based on the C-P method.The matrices of equilibrium equations have been given in detail for programming purposes.The C program codes for the 3D DDA are developed.The ability and accuracy of the formulations and the program are verified by the analytical solutions of several dynamic examples.The robustness and versatility of the algorithms presented in this paper are demonstrated with the aid of an example of scattering of densely packed cubes.Finally,implications and future extensions are discussed.
基金financial support from Indian Institute of Technology Bombay, India
文摘Tunnelling related hazards are very common in the Himalayan terrain and a number of such instances have been reported. Several twin tunnels are being planned for transportation purposes which will require good understanding for prediction of tunnel deformation and surface settlement during the engineering life of the structure. The deformational behaviour, design of sequential excavation and support of any jointed rock mass are challenging during underground construction. We have raised several commonly assumed issues while performing stability analysis of underground opening at shallow depth. For this purpose, Kainchi-mod Nerchowck twin tunnels(Himachal Pradesh, India) are taken for in-depth analysis of the stability of two asymmetric tunnels to address the influence of topography, twin tunnel dimension and geometry. The host rock encountered during excavation is composed mainly of moderately to highly jointed grey sandstone, maroon sandstone and siltstones. In contrast to equidimensional tunnels where the maximum subsidence is observed vertically above the centreline of the tunnel, the result from the present study shows shifting of the maximum subsidence away from the tunnel centreline. The maximum subsidence of 0.99 mm is observed at 4.54 m left to the escape tunnel centreline whereas the maximum subsidence of 3.14 mm is observed at 8.89 m right to the main tunnel centreline. This shifting clearly indicates the influence of undulating topography and inequidimensional noncircular tunnel.
文摘The significant point is the bidirectional interaction technique in FSI analysis while investigating subsea corrosion effect. By this way, pipe environment is accurately modelled and fluid effects are also considered. The effect of external corrosion defects on structural behaviour of a pipeline is studied by creating a nonlinear numerical model based on the finite element method according to ABAQUS analysis program. Corrosion losses of sections are obtained from experimental results and applied to the model. Numerical model is formed by a span of sub-sea pipeline that is subjected to environmental loads. Seismic and wind-generated irregular wave loads are considered as environmental loads. Irregular wave is represented with equivalent eight regular waves via FFT. The pipe is modelled according to two different types which are non-corroded(intact) and corroded(deteriorated) to demonstrate corrosion effects on it. The visible type of corrosion in marine environment is named ‘pitting' corrosion, in which the material loss is locally interpenetrated over the surface. By considering this situation, the corroded and non-corroded pipes are modelled as 3D solid elements. The main point is revealing how the subsea corrosion affects the structural behaviour of pipelines on the basis of implementation of experimental results to a model structure due to changes of stresses and displacement.
基金This work was financially supported by the National Natural Science Foundation of China
文摘Two and three-dimensional finite element analysis programs for pile-soil interaction are compiled. Duncan-Chang's Model is used. The construction sequence of the pier is modeled. The pile-soil interface element is used. The influence of the combination type of piles on the deformation of bank slope and pile behaviour is analyzed. Different designs of a pile-supported pier are compared thoroughly. Calculation results show that the stresses and displacements of the pile are directly related to the distance from the bank slope and the direction of inclination. An inclined prop pile set in the rear platform would remarkably reduce the stresses of piles and the displacement of the pier.
基金China National Science Foundation(40730948,41075037,41175063)Special Project of Chinese Academy of Meteorological Sciences(2007Y006)
文摘Based on the Tropical Cyclone(TC briefly thereafter)Yearbook 1980-2009,this paper first analyzes the number and intensity change of the TCs which passed directly over or by the side of Poyang Lake(the distance of TC center is less than 1°longitude or 1°latitude from the Lake)among all the landfalling TCs in China during the past 30 years.Two cases are examined in detail in this paper.One is severe typhoon Rananim with a speed of 3.26 m/s and a change of 1 hPa in intensity when it was passing the Lake.The other is super typhoon Saomai with a faster moving speed of 6.50 m/s and a larger change in intensity of 6 hPa.Through numerical simulation experiments,this paper analyzes how the change of underlying surface from water to land contributes to the differences in intensity,speed and mesoscale convection of the two TCs when they passed the Lake.Results show that the moisture and dynamic condition above the Lake were favorable for the maintenance of the intensity when Rananim was passing through Poyang Lake,despite the moisture supply from the ocean was cut off.As a result,there was strong convection around the lake which led to a rainfall spinning counter-clockwise as it was affected by the TC movement.However,little impact was seen in the Saomai case.These results indicate that for the TCs coming ashore on Poyang Lake with a slow speed,the large water body is conducive to the sustaining of the intensity and strengthening of the convection around the TC center and the subsequent heavy rainfall.On the contrary,a fast-moving TC is less likely to be influenced by the underlying surface in terms of intensity and speed.