BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional mul...BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional multisession percutaneous transhepatic cholangioscopic lithotripsy(PTCSL).AIM To study one-step PTCSL using the percutaneous transhepatic one-step biliary fistulation(PTOBF)technique guided by three-dimensional(3D)visualization.METHODS This was a retrospective,single-center study analyzing,140 patients who,between October 2016 and October 2023,underwent one-step PTCSL for hepatolithiasis.The patients were divided into two groups:The 3D-PTOBF group and the PTOBF group.Stone clearance on choledochoscopy,complications,and long-term clearance and recurrence rates were assessed.RESULTS Age,total bilirubin,direct bilirubin,Child-Pugh class,and stone location were similar between the 2 groups,but there was a significant difference in bile duct strictures,with biliary strictures more common in the 3D-PTOBF group(P=0.001).The median follow-up time was 55.0(55.0,512.0)days.The immediate stone clearance ratio(88.6%vs 27.1%,P=0.000)and stricture resolution ratio(97.1%vs 78.6%,P=0.001)in the 3D-PTOBF group were significantly greater than those in the PTOBF group.Postoperative complication(8.6%vs 41.4%,P=0.000)and stone recurrence rates(7.1%vs 38.6%,P=0.000)were significantly lower in the 3D-PTOBF group.CONCLUSION Three-dimensional visualization helps make one-step PTCSL a safe,effective,and promising treatment for patients with complicated primary hepatolithiasis.The perioperative and long-term outcomes are satisfactory for patients with complicated primary hepatolithiasis.This minimally invasive method has the potential to be used as a substitute for hepatobiliary surgery.展开更多
BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby provi...BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning.展开更多
BACKGROUND Epidemiological surveys indicate an increasing incidence of type 2 diabetes mellitus(T2DM)among children and adolescents worldwide.Due to rapid disease progression,severe long-term cardiorenal complications...BACKGROUND Epidemiological surveys indicate an increasing incidence of type 2 diabetes mellitus(T2DM)among children and adolescents worldwide.Due to rapid disease progression,severe long-term cardiorenal complications,a lack of effective treatment strategies,and substantial socioeconomic burdens,it has become an urgent public health issue that requires management and resolution.Adolescent T2DM differs from adult T2DM.Despite a significant increase in our understanding of youth-onset T2DM over the past two decades,the related review and evidence-based content remain limited.AIM To visualize the hotspots and trends in pediatric and adolescent T2DM research and to forecast their future research themes.METHODS This study utilized the terms“children”,“adolescents”,and“type 2 diabetes”,retrieving relevant articles published between 1983 and 2023 from three citation databases within the Web of Science Core Collection(SCI,SSCI,ESCI).Utilizing CiteSpace and VoSviewer software,we analyze and visually represent the annual output of literature,countries involved,and participating institutions.This allows us to predict trends in this research field.Our analysis encompasses co-cited authors,journal overlays,citation overlays,time-zone views,keyword analysis,and reference analysis,etc.RESULTS A total of 9210 articles were included,and the annual publication volume in this field showed a steady growth trend.The United States had the highest number of publications and the highest H-index.The United States also had the most research institutions and the strongest research capacity.The global hot journals were primarily diabetes professional journals but also included journals related to nutrition,endocrinology,and metabolism.Keyword analysis showed that research related to endothelial dysfunction,exposure risk,cardiac metabolic risk,changes in gut microbiota,the impact on comorbidities and outcomes,etc.,were emerging keywords.They have maintained their popularity in this field,suggesting that these areas have garnered significant research interest in recent years.CONCLUSION Pediatric and adolescent T2DM is increasingly drawing global attention,with genes,behaviors,environmental factors,and multisystemic interventions potentially emerging as future research hot spots.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
AIM To explore the value of three-dimensional(3 D) visualization technology in the minimally invasive treatment for infected necrotizing pancreatitis(INP). METHODS Clinical data of 18 patients with INP, who were admit...AIM To explore the value of three-dimensional(3 D) visualization technology in the minimally invasive treatment for infected necrotizing pancreatitis(INP). METHODS Clinical data of 18 patients with INP, who were admitted to the PLA General Hospital in 2017, were retrospectively analyzed. Two-dimensional images of computed tomography were converted into 3 D images based on 3 D visualization technology. The size, number, shape and position of lesions and their relationship with major abdominal vasculature were well displayed. Also, percutaneous catheter drainage(PCD) number and puncture paths were designed through virtual surgery(percutaneous nephroscopic necrosectomy) based on the principle of maximum removal of infected necrosis conveniently.RESULTS Abdominal 3 D visualization images of all the patients were well reconstructed, and the optimal PCD puncture paths were well designed. Infected necrosis was conveniently removed in abundance using a nephroscope during the following surgery, and the median operation time was 102(102 ± 20.7) min. Only 1 patient underwent endoscopic necrosectomy because of residual necrosis. CONCLUSION The 3 D visualization technology could optimize the PCD puncture paths, improving the drainage effect in patients with INP. Moreover, it significantly increased the efficiency of necrosectomy through the rigid nephroscope. As a result, it decreased operation times and improved the prognosis.展开更多
The geometric and spatial characteristics of pore structures determine the permeability and water retention of soils, which have important effects on soil functional diversity and ecological restoration. Until recentl...The geometric and spatial characteristics of pore structures determine the permeability and water retention of soils, which have important effects on soil functional diversity and ecological restoration. Until recently, there have not been tools and methods to visually and quantitatively describe the characteristics of soil pores. To solve this problem, this research reconstructs the geometry and spatial distribution of soil pores by the marching cubes method, texture mapping method and the ray casting method widely used in literature. The objectives were to explore an optimal method for three-dimensional visualization of soil pore structure by comparing the robustness of the three methods on soil CT images with single pore structure and porosity ranging from low (2–5%) to high (12–18%), and to evaluate the reconstruction performance of the three methods with different geometric features. The results demonstrate that there are aliases (jagged edges) and deficiency at the boundaries of the model reconstructed by the marching cubes method and pore volumes are smaller than the ground truth, whereas the results of the texture mapping method lack the details of pore structures. For all the soil images, the ray casting method is preferable since it better preserves the pore characteristics of the ground truth. Furthermore, the ray casting method produced the best soil pore model with higher rendering speed and lower memory consumption. Therefore, the ray casting method provides a more advanced method for visualization of pore structures and provides an optional technique for the study of the transport of moisture and the exchange of air in soil.展开更多
With the continuous development of digital medicine,minimally invasive precision and safety have become the primary development trends in hepatobiliary surgery.Due to the specificity and complexity of hepatobiliary su...With the continuous development of digital medicine,minimally invasive precision and safety have become the primary development trends in hepatobiliary surgery.Due to the specificity and complexity of hepatobiliary surgery,traditional preoperative imaging techniques such as computed tomography and magnetic resonance imaging cannot meet the need for identification of fine anatomical regions.Imaging-based three-dimensional(3D)reconstruction,virtual simulation of surgery and 3D printing optimize the surgical plan through preoperative assessment,improving the controllability and safety of intraoperative operations,and in difficult-to-reach areas of the posterior and superior liver,assistive robots reproduce the surgeon’s natural movements with stable cameras,reducing natural vibrations.Electromagnetic navigation in abdominal surgery solves the problem of conventional surgery still relying on direct visual observation or preoperative image assessment.We summarize and compare these recent trends in digital medical solutions for the future development and refinement of digital medicine in hepatobiliary surgery.展开更多
In the field of weapon system of systems (WSOS) simulation, various indicators are widely used to describe the capability of WSOS, but it is always difficult to describe the comprehensive capability of WSOS quickly an...In the field of weapon system of systems (WSOS) simulation, various indicators are widely used to describe the capability of WSOS, but it is always difficult to describe the comprehensive capability of WSOS quickly and intuitively by visualization of multi-dimensional indicators. A method of machine learning and visualization is proposed, which can display and analyze the capabilities of different WSOS in a two-dimensional plane. The analysis and comparison of the comprehensive capability of different components of WSOS is realized by the method, which consists of six parts: multiple simulations, key indicators mining, three spatial distance calculation, fusion project calculation, calculation of individual capability density, and calculation of multiple capability ranges overlay. Binding a simulation experiment, the collaborative analysis of six indicators and 100 possible kinds of red WSOS are achieved. The experimental results show that this method can effectively improve the quality and speed of capabilities analysis, reveal a large number of potential information, and provide a visual support for the qualitative and quantitative analysis model.展开更多
With the development of virtual reality application in the medical field, two-dimensional medical image of the three-dimensional visualization technology made possible. Surgery gets into minimally invasive operation m...With the development of virtual reality application in the medical field, two-dimensional medical image of the three-dimensional visualization technology made possible. Surgery gets into minimally invasive operation microscopy Era, and gradually becomes a new research hotspot. This paper studies the realization of two-dimensional medical im-age 3D reconstruction visualization system method, and the overall process and management module. Using the main technology of VTK (The Visualization Toolkit) to achieve a two-dimensional medical image three-dimensional visua-lization system, which can help the physician to obtain help clinical diagnosis Information and play an important role in treatment, accurate positioning in diseased tissue and tumor early diagnosis.展开更多
To improve the human-physical-virtual coordination and integration of the digital twin workshop,3D visual monitoring and human-computer interaction of the digital twin workshop was studied.First,a novel 6D model of th...To improve the human-physical-virtual coordination and integration of the digital twin workshop,3D visual monitoring and human-computer interaction of the digital twin workshop was studied.First,a novel 6D model of the 3D visualization interactive system for digital twin workshops is proposed.As the traditional 5D digital twin model ignores the importance of human-computer interaction,a new dimension of the user terminal was added.A hierarchical real-time data-driven mapping model for the workshop production process is then proposed.Moreover,a real-time data acquisition method for the industrial Internet of things is proposed based on OPC UA(object linking and embedding for process control unified architecture).Based on the 6D model of the system,the process of creating a 3D visualization virtual environment based on virtual reality is introduced,in addition to a data-driven process based on the data management cloud platform.Finally,the 6D model of the system was confirmed using the blade rotor test workshop as the object,and a 3D visualization interactive system is developed.The results show that the system is more transparent,real-time,data-driven and more efficient,as well as promotes the coordination and integration of human-physical-virtual,which has practical significance for developing digital twin workshops.展开更多
A method of using laser induced fluorescence(LIF)technique was applied to two-dimensional measurement of the liquid concentration distribution in the 250 Y structured packing sheet. The experimental structured packing...A method of using laser induced fluorescence(LIF)technique was applied to two-dimensional measurement of the liquid concentration distribution in the 250 Y structured packing sheet. The experimental structured packing sheet was made of perspex so that the laser could pass through it. The visualization of the distribution of the liquid concentration in the structured packing sheet was realized. The calibration of the thickness and liquid concentration was carried out firstly and the regression formula I=kcd was acquired, in which concentration c and the liquid film thickness d were both considered. Then the liquid feed of uniform tracer(rhodamine)concentration entered the perspex structured packing from the top under different spraying densities. The corresponding thickness of liquid film on the packing was calculated. Finally, tracer(rhodamine)with a high concentration was injected only at one fixed point of the structured packing under different spraying densities of the liquid. With the known liquid film thickness, the concentration distribution of the tracer can be calculated inside the structured packing sheet.展开更多
The divergence three-dimensional millet-seed body model and the continuous distributing layer-imitating model were introduced, which were used to express geologic body, and the procedure of generating these two models...The divergence three-dimensional millet-seed body model and the continuous distributing layer-imitating model were introduced, which were used to express geologic body, and the procedure of generating these two models and their merits and demerits were synthesized. Three methods of geologic body’s three-dimensional expression were separately introduced, and the merits of the continuous distributing layer imitating model were proposed as comparing with the divergence three-dimensional millet-seed body model. The three-dimensional cubes were observed from any direction and any tangle with the application of dealing methods such as peeling, hollowing out, transparent or half-transparent.展开更多
Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the inter...Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the interaction between project management and technical personnel and engineering construction achievement, and provides intuitive, flexible and strong realistic experience for project management. It can effectively improve the level of project communication, and assist the needs of project construction planning management, training, exhibition, etc. As a tool to help improve project management skills, it has good application effect and prospects.展开更多
An improved three-dimensional (3-D) experimental visualization methodology is presented tor evaluating the fracture mechanisms of ferritic stainless steels by in-situ tensile testing with an environmental scanning e...An improved three-dimensional (3-D) experimental visualization methodology is presented tor evaluating the fracture mechanisms of ferritic stainless steels by in-situ tensile testing with an environmental scanning electron microscope (ESEM). The samples were machined with a radial notched shape and a sloped surface. Both planar surface deformation and sloping surface deformation-induced microvoids were observed during dynamic tension experiments, where a greater amount of information could be obtained from the sloping surface. The results showed that microvoids formed at the grain boundaries of highly elongated large grains. The microvoids nucleated in the severely deformed regions grew nearly parallel to the tensile axis, predominantly along the grain boundaries. The microvoids nucleated at the interface of particles and the matrix did not propagate due to the high plasticity of the matrix. The large microvoids propagated and showed a zigzag shape along the grain boundaries,seemingly a consequence of the fracture of the slip bands caused by dislocation pile-ups. The final failure took place due to the reduction of the load-beating area.展开更多
WormGUIDES is an open-source dynamic embryonic system designed to facilitate global understanding of cellular decisions in the developing nervous system of the nematode C. elegans. WormGUIDES was designed to allow inv...WormGUIDES is an open-source dynamic embryonic system designed to facilitate global understanding of cellular decisions in the developing nervous system of the nematode C. elegans. WormGUIDES was designed to allow investigation and exploration of the observational results of the C. elegans life cycle from laboratory experiments. In the process of a mechanistic C. elegans model development, some functionalities of WormGUIDES needed to be enhanced to support model validation and verification. In this study, a new way to visualize 3-dimentional vectors within WormGUIDES was investigated and presented. Then, the practical values of this method were demonstrated by visualizing two biologically significant directions (i.e., division orientation and cell polarity) of individual embryonic cells in C. elegans. Lastly, a mathematic approach was designed to illustrate the differences between these two sets of vectors and provide easy indications of the location of these individual cells that have large data discrepancies within the C. elegans embryonic system.展开更多
In order to realize visualization of three-dimensional data field (TDDF) in instrument, two methods of visualization of TDDF and the usual manner of quick graphic and image processing are analyzed. And how to use Op...In order to realize visualization of three-dimensional data field (TDDF) in instrument, two methods of visualization of TDDF and the usual manner of quick graphic and image processing are analyzed. And how to use OpenGL technique and the characteristic of analyzed data to construct a TDDF, the ways of reality processing and interactive processing are described. Then the medium geometric element and a related realistic model are constructed by means of the first algorithm. Models obtained for attaching the third dimension in three-dimensional data field are presented. An example for TDDF realization of machine measuring is provided. The analysis of resultant graphic indicates that the three-dimensional graphics built by the method developed is featured by good reality, fast processing and strong interaction展开更多
The classification of the stability of surrounding rock is an uncertain system with multiple indices.The Multidimensional Cloud Model provides an advanced solution through the use of an improved model of One-dimension...The classification of the stability of surrounding rock is an uncertain system with multiple indices.The Multidimensional Cloud Model provides an advanced solution through the use of an improved model of One-dimensional Cloud Model.Setting each index as a one-dimensional attribute,the Multi-dimensional Cloud Model can set the digital characteristics of each index according to the cloud theory.The Multi-dimensional cloud generator can calculate the certainty of each grade,and then determine the stability levels of the surrounding rock according to the principle of maximum certainty.Using this model to 5 coal mine roadway surrounding rock examples and comparing the results with those of One-dimensional and Two-dimensional Cloud Models,we find that the Multi-dimensional Cloud Model can provide a more accurate solution.Since the classification results of the Multidimensional Cloud Model are difficult to be presented intuitively and visually,we reduce the Multi-dimensional Cloud Model to One-dimensional and Two-dimensional Cloud Models in order to visualize the results achieved by the Multi-dimensional Cloud Model.This approach provides a more accurate and intuitive method for the classification of the surrounding rock stability,and it can also be applied to other types of classification problems.展开更多
By developing on the base of VC++ platform, combing with OpenGL graphic library and the characteristic of cable-stayed bridge, and adopting parameterized modeling method, this paper explores to realize the 3D visual...By developing on the base of VC++ platform, combing with OpenGL graphic library and the characteristic of cable-stayed bridge, and adopting parameterized modeling method, this paper explores to realize the 3D visualization of cable-stayed bridge. This method, which provides a new approach for the scheme comparison of bridge design, has many advantages, such as fast modeling, clear classification of parameters, convenient operating system.展开更多
3D visualization was established for noninvasive evaluation of neurovascular compression syndromes. MR-CISS (constructive interference in the steady state) is the most potent image source to depict neurovascular detai...3D visualization was established for noninvasive evaluation of neurovascular compression syndromes. MR-CISS (constructive interference in the steady state) is the most potent image source to depict neurovascular details. The purpose of this article is the conceptual view over the established technique of 3D visualization in the topography of aneurysms in the posterior circulation in relation to surrounding cranial nerves and the brainstem.展开更多
Three-dimensional medical image visualization becomes an essential part for medical field, including computer aided diagnosis, surgery planning and simulation, artificial limb surgery, radiotherapy planning, and teach...Three-dimensional medical image visualization becomes an essential part for medical field, including computer aided diagnosis, surgery planning and simulation, artificial limb surgery, radiotherapy planning, and teaching etc. In this paper, marching cubes algorithm is adopted to reconstruct the 3-D images for the CT image sequence in DICOM format under theVC++6.0 and the visual package VTK platform. The relatively simple interactive operations such as rotation and transfer can be realized on the platform. Moreover, the normal vector and interior point are calculated to form the virtual clipping plane, which is then used to incise the 3-D object. Information of the virtual slice can be obtained, in the mean while the virtual slice images are displayed on the screen. The technique can realize the real time interaction extraction of virtual slice on 3-D CT image. The cuboids structured can be zoomed, moved and eircumrotated by operating mouse to incise the 3-D reconstruction object. Real time interaction can be realized by clipping the reconstruction object. The coordinates can be acquired by the mouse clicking in the 3D space, to realize the point mouse pick-up as well angle and distance interactive measurement. We can get quantitative information about 3-D images through measurement.展开更多
基金Supported by The Key Medical Specialty Nurturing Program of Foshan During The 14th Five-Year Plan Period,No.FSPY145205The Medical Research Project of Foshan Health Bureau,No.20230814A010024+1 种基金The Guangzhou Science and Technology Plan Project,No.202102010251the Guangdong Science and Technology Program,No.2017ZC0222.
文摘BACKGROUND Biliary stone disease is a highly prevalent condition and a leading cause of hospitalization worldwide.Hepatolithiasis with associated strictures has high residual and recurrence rates after traditional multisession percutaneous transhepatic cholangioscopic lithotripsy(PTCSL).AIM To study one-step PTCSL using the percutaneous transhepatic one-step biliary fistulation(PTOBF)technique guided by three-dimensional(3D)visualization.METHODS This was a retrospective,single-center study analyzing,140 patients who,between October 2016 and October 2023,underwent one-step PTCSL for hepatolithiasis.The patients were divided into two groups:The 3D-PTOBF group and the PTOBF group.Stone clearance on choledochoscopy,complications,and long-term clearance and recurrence rates were assessed.RESULTS Age,total bilirubin,direct bilirubin,Child-Pugh class,and stone location were similar between the 2 groups,but there was a significant difference in bile duct strictures,with biliary strictures more common in the 3D-PTOBF group(P=0.001).The median follow-up time was 55.0(55.0,512.0)days.The immediate stone clearance ratio(88.6%vs 27.1%,P=0.000)and stricture resolution ratio(97.1%vs 78.6%,P=0.001)in the 3D-PTOBF group were significantly greater than those in the PTOBF group.Postoperative complication(8.6%vs 41.4%,P=0.000)and stone recurrence rates(7.1%vs 38.6%,P=0.000)were significantly lower in the 3D-PTOBF group.CONCLUSION Three-dimensional visualization helps make one-step PTCSL a safe,effective,and promising treatment for patients with complicated primary hepatolithiasis.The perioperative and long-term outcomes are satisfactory for patients with complicated primary hepatolithiasis.This minimally invasive method has the potential to be used as a substitute for hepatobiliary surgery.
文摘BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning.
基金Supported by the National Natural Science Foundation of China,No.82105018 and No.81903950.
文摘BACKGROUND Epidemiological surveys indicate an increasing incidence of type 2 diabetes mellitus(T2DM)among children and adolescents worldwide.Due to rapid disease progression,severe long-term cardiorenal complications,a lack of effective treatment strategies,and substantial socioeconomic burdens,it has become an urgent public health issue that requires management and resolution.Adolescent T2DM differs from adult T2DM.Despite a significant increase in our understanding of youth-onset T2DM over the past two decades,the related review and evidence-based content remain limited.AIM To visualize the hotspots and trends in pediatric and adolescent T2DM research and to forecast their future research themes.METHODS This study utilized the terms“children”,“adolescents”,and“type 2 diabetes”,retrieving relevant articles published between 1983 and 2023 from three citation databases within the Web of Science Core Collection(SCI,SSCI,ESCI).Utilizing CiteSpace and VoSviewer software,we analyze and visually represent the annual output of literature,countries involved,and participating institutions.This allows us to predict trends in this research field.Our analysis encompasses co-cited authors,journal overlays,citation overlays,time-zone views,keyword analysis,and reference analysis,etc.RESULTS A total of 9210 articles were included,and the annual publication volume in this field showed a steady growth trend.The United States had the highest number of publications and the highest H-index.The United States also had the most research institutions and the strongest research capacity.The global hot journals were primarily diabetes professional journals but also included journals related to nutrition,endocrinology,and metabolism.Keyword analysis showed that research related to endothelial dysfunction,exposure risk,cardiac metabolic risk,changes in gut microbiota,the impact on comorbidities and outcomes,etc.,were emerging keywords.They have maintained their popularity in this field,suggesting that these areas have garnered significant research interest in recent years.CONCLUSION Pediatric and adolescent T2DM is increasingly drawing global attention,with genes,behaviors,environmental factors,and multisystemic interventions potentially emerging as future research hot spots.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
基金Supported by Beijing Natural Science foundation,No.7172201
文摘AIM To explore the value of three-dimensional(3 D) visualization technology in the minimally invasive treatment for infected necrotizing pancreatitis(INP). METHODS Clinical data of 18 patients with INP, who were admitted to the PLA General Hospital in 2017, were retrospectively analyzed. Two-dimensional images of computed tomography were converted into 3 D images based on 3 D visualization technology. The size, number, shape and position of lesions and their relationship with major abdominal vasculature were well displayed. Also, percutaneous catheter drainage(PCD) number and puncture paths were designed through virtual surgery(percutaneous nephroscopic necrosectomy) based on the principle of maximum removal of infected necrosis conveniently.RESULTS Abdominal 3 D visualization images of all the patients were well reconstructed, and the optimal PCD puncture paths were well designed. Infected necrosis was conveniently removed in abundance using a nephroscope during the following surgery, and the median operation time was 102(102 ± 20.7) min. Only 1 patient underwent endoscopic necrosectomy because of residual necrosis. CONCLUSION The 3 D visualization technology could optimize the PCD puncture paths, improving the drainage effect in patients with INP. Moreover, it significantly increased the efficiency of necrosectomy through the rigid nephroscope. As a result, it decreased operation times and improved the prognosis.
基金supported by the National Natural Science Foundation Project(41501283)Beijing Science and Technology Plan Project(Z161100000916012)+2 种基金the National Key Research and Development Program(2017YFD0600901)Special Fund for Beijing Common Construction Projectthe Fundamental Research Funds for the Central Universities(2015ZCQ-GX-04)
文摘The geometric and spatial characteristics of pore structures determine the permeability and water retention of soils, which have important effects on soil functional diversity and ecological restoration. Until recently, there have not been tools and methods to visually and quantitatively describe the characteristics of soil pores. To solve this problem, this research reconstructs the geometry and spatial distribution of soil pores by the marching cubes method, texture mapping method and the ray casting method widely used in literature. The objectives were to explore an optimal method for three-dimensional visualization of soil pore structure by comparing the robustness of the three methods on soil CT images with single pore structure and porosity ranging from low (2–5%) to high (12–18%), and to evaluate the reconstruction performance of the three methods with different geometric features. The results demonstrate that there are aliases (jagged edges) and deficiency at the boundaries of the model reconstructed by the marching cubes method and pore volumes are smaller than the ground truth, whereas the results of the texture mapping method lack the details of pore structures. For all the soil images, the ray casting method is preferable since it better preserves the pore characteristics of the ground truth. Furthermore, the ray casting method produced the best soil pore model with higher rendering speed and lower memory consumption. Therefore, the ray casting method provides a more advanced method for visualization of pore structures and provides an optional technique for the study of the transport of moisture and the exchange of air in soil.
基金Supported by National Natural Science Foundation of China,No.82070638 and No.81770621and JSPS KAKENHI,No.JP18H02866.
文摘With the continuous development of digital medicine,minimally invasive precision and safety have become the primary development trends in hepatobiliary surgery.Due to the specificity and complexity of hepatobiliary surgery,traditional preoperative imaging techniques such as computed tomography and magnetic resonance imaging cannot meet the need for identification of fine anatomical regions.Imaging-based three-dimensional(3D)reconstruction,virtual simulation of surgery and 3D printing optimize the surgical plan through preoperative assessment,improving the controllability and safety of intraoperative operations,and in difficult-to-reach areas of the posterior and superior liver,assistive robots reproduce the surgeon’s natural movements with stable cameras,reducing natural vibrations.Electromagnetic navigation in abdominal surgery solves the problem of conventional surgery still relying on direct visual observation or preoperative image assessment.We summarize and compare these recent trends in digital medical solutions for the future development and refinement of digital medicine in hepatobiliary surgery.
基金supported by the National Natural Science Foundation of China(U14352186140340161273189)
文摘In the field of weapon system of systems (WSOS) simulation, various indicators are widely used to describe the capability of WSOS, but it is always difficult to describe the comprehensive capability of WSOS quickly and intuitively by visualization of multi-dimensional indicators. A method of machine learning and visualization is proposed, which can display and analyze the capabilities of different WSOS in a two-dimensional plane. The analysis and comparison of the comprehensive capability of different components of WSOS is realized by the method, which consists of six parts: multiple simulations, key indicators mining, three spatial distance calculation, fusion project calculation, calculation of individual capability density, and calculation of multiple capability ranges overlay. Binding a simulation experiment, the collaborative analysis of six indicators and 100 possible kinds of red WSOS are achieved. The experimental results show that this method can effectively improve the quality and speed of capabilities analysis, reveal a large number of potential information, and provide a visual support for the qualitative and quantitative analysis model.
文摘With the development of virtual reality application in the medical field, two-dimensional medical image of the three-dimensional visualization technology made possible. Surgery gets into minimally invasive operation microscopy Era, and gradually becomes a new research hotspot. This paper studies the realization of two-dimensional medical im-age 3D reconstruction visualization system method, and the overall process and management module. Using the main technology of VTK (The Visualization Toolkit) to achieve a two-dimensional medical image three-dimensional visua-lization system, which can help the physician to obtain help clinical diagnosis Information and play an important role in treatment, accurate positioning in diseased tissue and tumor early diagnosis.
基金The National Natural Science Foundation of China(No.51875332)the Capacity Building Projects of Some Local Universities of Shanghai Science and Technology Commission(No.18040501600).
文摘To improve the human-physical-virtual coordination and integration of the digital twin workshop,3D visual monitoring and human-computer interaction of the digital twin workshop was studied.First,a novel 6D model of the 3D visualization interactive system for digital twin workshops is proposed.As the traditional 5D digital twin model ignores the importance of human-computer interaction,a new dimension of the user terminal was added.A hierarchical real-time data-driven mapping model for the workshop production process is then proposed.Moreover,a real-time data acquisition method for the industrial Internet of things is proposed based on OPC UA(object linking and embedding for process control unified architecture).Based on the 6D model of the system,the process of creating a 3D visualization virtual environment based on virtual reality is introduced,in addition to a data-driven process based on the data management cloud platform.Finally,the 6D model of the system was confirmed using the blade rotor test workshop as the object,and a 3D visualization interactive system is developed.The results show that the system is more transparent,real-time,data-driven and more efficient,as well as promotes the coordination and integration of human-physical-virtual,which has practical significance for developing digital twin workshops.
基金Supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2015BAC04B01)National Natural Science Foundation of China(No.21176171)
文摘A method of using laser induced fluorescence(LIF)technique was applied to two-dimensional measurement of the liquid concentration distribution in the 250 Y structured packing sheet. The experimental structured packing sheet was made of perspex so that the laser could pass through it. The visualization of the distribution of the liquid concentration in the structured packing sheet was realized. The calibration of the thickness and liquid concentration was carried out firstly and the regression formula I=kcd was acquired, in which concentration c and the liquid film thickness d were both considered. Then the liquid feed of uniform tracer(rhodamine)concentration entered the perspex structured packing from the top under different spraying densities. The corresponding thickness of liquid film on the packing was calculated. Finally, tracer(rhodamine)with a high concentration was injected only at one fixed point of the structured packing under different spraying densities of the liquid. With the known liquid film thickness, the concentration distribution of the tracer can be calculated inside the structured packing sheet.
基金Project supported by the Opening Foundation of the Key Lab of Resource , Environment and GISin Beijing
文摘The divergence three-dimensional millet-seed body model and the continuous distributing layer-imitating model were introduced, which were used to express geologic body, and the procedure of generating these two models and their merits and demerits were synthesized. Three methods of geologic body’s three-dimensional expression were separately introduced, and the merits of the continuous distributing layer imitating model were proposed as comparing with the divergence three-dimensional millet-seed body model. The three-dimensional cubes were observed from any direction and any tangle with the application of dealing methods such as peeling, hollowing out, transparent or half-transparent.
文摘Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the interaction between project management and technical personnel and engineering construction achievement, and provides intuitive, flexible and strong realistic experience for project management. It can effectively improve the level of project communication, and assist the needs of project construction planning management, training, exhibition, etc. As a tool to help improve project management skills, it has good application effect and prospects.
文摘An improved three-dimensional (3-D) experimental visualization methodology is presented tor evaluating the fracture mechanisms of ferritic stainless steels by in-situ tensile testing with an environmental scanning electron microscope (ESEM). The samples were machined with a radial notched shape and a sloped surface. Both planar surface deformation and sloping surface deformation-induced microvoids were observed during dynamic tension experiments, where a greater amount of information could be obtained from the sloping surface. The results showed that microvoids formed at the grain boundaries of highly elongated large grains. The microvoids nucleated in the severely deformed regions grew nearly parallel to the tensile axis, predominantly along the grain boundaries. The microvoids nucleated at the interface of particles and the matrix did not propagate due to the high plasticity of the matrix. The large microvoids propagated and showed a zigzag shape along the grain boundaries,seemingly a consequence of the fracture of the slip bands caused by dislocation pile-ups. The final failure took place due to the reduction of the load-beating area.
文摘WormGUIDES is an open-source dynamic embryonic system designed to facilitate global understanding of cellular decisions in the developing nervous system of the nematode C. elegans. WormGUIDES was designed to allow investigation and exploration of the observational results of the C. elegans life cycle from laboratory experiments. In the process of a mechanistic C. elegans model development, some functionalities of WormGUIDES needed to be enhanced to support model validation and verification. In this study, a new way to visualize 3-dimentional vectors within WormGUIDES was investigated and presented. Then, the practical values of this method were demonstrated by visualizing two biologically significant directions (i.e., division orientation and cell polarity) of individual embryonic cells in C. elegans. Lastly, a mathematic approach was designed to illustrate the differences between these two sets of vectors and provide easy indications of the location of these individual cells that have large data discrepancies within the C. elegans embryonic system.
基金This project is supported by National Natural Science Foundation of China (No.50405009)
文摘In order to realize visualization of three-dimensional data field (TDDF) in instrument, two methods of visualization of TDDF and the usual manner of quick graphic and image processing are analyzed. And how to use OpenGL technique and the characteristic of analyzed data to construct a TDDF, the ways of reality processing and interactive processing are described. Then the medium geometric element and a related realistic model are constructed by means of the first algorithm. Models obtained for attaching the third dimension in three-dimensional data field are presented. An example for TDDF realization of machine measuring is provided. The analysis of resultant graphic indicates that the three-dimensional graphics built by the method developed is featured by good reality, fast processing and strong interaction
基金supported by the National Natural Science Foundation of China(No.52074296).
文摘The classification of the stability of surrounding rock is an uncertain system with multiple indices.The Multidimensional Cloud Model provides an advanced solution through the use of an improved model of One-dimensional Cloud Model.Setting each index as a one-dimensional attribute,the Multi-dimensional Cloud Model can set the digital characteristics of each index according to the cloud theory.The Multi-dimensional cloud generator can calculate the certainty of each grade,and then determine the stability levels of the surrounding rock according to the principle of maximum certainty.Using this model to 5 coal mine roadway surrounding rock examples and comparing the results with those of One-dimensional and Two-dimensional Cloud Models,we find that the Multi-dimensional Cloud Model can provide a more accurate solution.Since the classification results of the Multidimensional Cloud Model are difficult to be presented intuitively and visually,we reduce the Multi-dimensional Cloud Model to One-dimensional and Two-dimensional Cloud Models in order to visualize the results achieved by the Multi-dimensional Cloud Model.This approach provides a more accurate and intuitive method for the classification of the surrounding rock stability,and it can also be applied to other types of classification problems.
文摘By developing on the base of VC++ platform, combing with OpenGL graphic library and the characteristic of cable-stayed bridge, and adopting parameterized modeling method, this paper explores to realize the 3D visualization of cable-stayed bridge. This method, which provides a new approach for the scheme comparison of bridge design, has many advantages, such as fast modeling, clear classification of parameters, convenient operating system.
文摘3D visualization was established for noninvasive evaluation of neurovascular compression syndromes. MR-CISS (constructive interference in the steady state) is the most potent image source to depict neurovascular details. The purpose of this article is the conceptual view over the established technique of 3D visualization in the topography of aneurysms in the posterior circulation in relation to surrounding cranial nerves and the brainstem.
基金National 973 Basic Research Program of Chinagrant number:2010CB732600+4 种基金Major Research Equipment Fund of the Chinese Academy of Sciences and Knowledge Innovation Project of the Chinese Academy of Sciences,2008 Shenzhen Controversial Technology Innovation Research Projectsgrant number:FG200805230224AConcentration plan of innovation sources of Shenzhen-R&D projects of international cooperation on science and technologygrant number:ZYA200903260065ANatural Science Foundation of Guangdong Province,China 8478922035-X0007007
文摘Three-dimensional medical image visualization becomes an essential part for medical field, including computer aided diagnosis, surgery planning and simulation, artificial limb surgery, radiotherapy planning, and teaching etc. In this paper, marching cubes algorithm is adopted to reconstruct the 3-D images for the CT image sequence in DICOM format under theVC++6.0 and the visual package VTK platform. The relatively simple interactive operations such as rotation and transfer can be realized on the platform. Moreover, the normal vector and interior point are calculated to form the virtual clipping plane, which is then used to incise the 3-D object. Information of the virtual slice can be obtained, in the mean while the virtual slice images are displayed on the screen. The technique can realize the real time interaction extraction of virtual slice on 3-D CT image. The cuboids structured can be zoomed, moved and eircumrotated by operating mouse to incise the 3-D reconstruction object. Real time interaction can be realized by clipping the reconstruction object. The coordinates can be acquired by the mouse clicking in the 3D space, to realize the point mouse pick-up as well angle and distance interactive measurement. We can get quantitative information about 3-D images through measurement.