The simulation techniques of hardware-in-loop simulation(HLS) of homing antitank missile based on the personal computer (PC) are discussed. The PC and MCS-96 chip controller employ A/D and D/A boards (with photoelectr...The simulation techniques of hardware-in-loop simulation(HLS) of homing antitank missile based on the personal computer (PC) are discussed. The PC and MCS-96 chip controller employ A/D and D/A boards (with photoelectricity isolation) to transfer measur ment and control information about homing head, gyro and rudder and utilize the digital hand shaking board to build correct communication communication protocol. In order to satisfy the real-time requirement of HLS, this paper first simplifies the aerodynamic data file reasonably, then builds a PC software with C language. The program of the controller part is made with PL/M language. The simulation of HLS based on PC is done with the same sampling period of 10ms as that of YH-F1 and the experiment results are identical to those of digital simulation of the homing anti-tank guided missile.展开更多
A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated b...A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal effects of worktable. The mathematical models of the controllable chamber flow, servo variable mechanism and controller were built. The pose control model was established, which contained the kinematics positive and negative solution and control strategy of feedforward and hydraulic cylinder position feedback. Hardware-in-loop simulation experiment was carried out on the electro hydraulic servo test bench by means of the non-linear relation of film thickness and hydraulic cylinder displacement. Hardware-in-loop simulation experiment results show that the controllable bearings exhibit high oilfilm rigidity, the rising time is 0.24 s and the maximum overshoot is 2.23%, and can be applied in high precision heavy machine tool.展开更多
This paper described an effective method to implement human & hardware in the loop simulation(HHILS), which is based on MATLAB system and can be used to study human driving actions in the abrupt situation and vehi...This paper described an effective method to implement human & hardware in the loop simulation(HHILS), which is based on MATLAB system and can be used to study human driving actions in the abrupt situation and vehicle stability control(VSC). A hybrid control algorithm, which makes full use of the advantages of robust control and fuzzy logic, was adopted in VSC system. The results of HHILS show that HHILS’ application on the vehicle handling and VSC resarch is feasible. These results also confirm that the handling performance of the vehicle with VSC is improved obviously compared to the vehicle without VSC.展开更多
In order to facilitate the teaching of industrial processes and experiments on the twin-screw extruder control debugging,and be closer to the actual testing,to reduce the debugging costs and the risk of debugging proc...In order to facilitate the teaching of industrial processes and experiments on the twin-screw extruder control debugging,and be closer to the actual testing,to reduce the debugging costs and the risk of debugging process,the paper designs a hardware-in-loop simulation of twin-screw extruder experiment system which is closer to scene,low cost and high safety.The system through the establishment of twin-screw extruder’s mathematical model on computer to simulate the realistic system and there is hardware practicality in the computer simulation loop.The hardware based on C8051F020 can operate in the simulation loop in real time.In computer software design, we desigh man-machine interface that is intuitive and easy to operate,can reflect twin-screw extruder main operation information vividly.Finally,twin-screw extruder’s 3 heater temperature mathematical model and PID incremental control algorithm are presented.展开更多
FSC (Fractionated Spacecraft Cluster) is a kind of loosely distributed space system which is comprised of multiple physically independent spacecrafts orbiting closely and interactively communicating via wireless net...FSC (Fractionated Spacecraft Cluster) is a kind of loosely distributed space system which is comprised of multiple physically independent spacecrafts orbiting closely and interactively communicating via wireless network. Spaceborne ad-hoc network, as the physical infrastructure for information exchanging, is one of the enabling technologies of FSC. The demonstration of FSC flying supported by ad-hoc network is worth for the sake of proving the rationality of FSC and seeking technological improvements. Considering this, a NNP (Network Node Prototype) for spaceborne ad-hoc network is developed in this paper, which transmits the information required by the FSC cooperation. Four NNPs are then built up and collaborated into a hardware-in-loop simulation system, in which a typical loose satellite cluster flying mission was performed. The simulation results showed that the NNPs can support the inter-satellite communication for satellite cluster flying.展开更多
In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwi...In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwidth. By choosing a special nominal plant, the improved method assigns relative magnitude and phase tracking error between system uncertainty and nominal control plant. Relative tracking error induced by system uncertainty is transformed into sensitivity problem and relative tracking error induced by nominal plant forms into a region on Nichols chart. The two constraints further form into a combined bound which is fit for magnitude and phase loop shaping. Because of leaving out pre-filter of classical QFT controller structure, tracking performance is enhanced greatly. Furthermore, a cascaded two-loop control strategy is proposed to heighten control effect. The improved technique's efficacy is validated by simulation and experiment results.展开更多
Meta-lens are a new type of planar optical element that can flexibly manipulate the phase, polarization and amplitude of the beam, and are currently receiving a great deal of attention as they are easier to process an...Meta-lens are a new type of planar optical element that can flexibly manipulate the phase, polarization and amplitude of the beam, and are currently receiving a great deal of attention as they are easier to process and manufacture. Off-axis meta-lens are a special type of meta-lens with a certain degree of dispersion that can be used as a beam-splitting element, providing a unique and feasible way to realize micro-miniature instruments. We analyze the effects of different numerical apertures and off-axis angles on the spectral resolution, focusing efficiency and simulation results of off-axis meta-lens to provide ideas for subsequent research and application of off-axis meta-lens. A number of off-axis meta-lens with parameters NA = 0.408 α = 13°, NA = 0.18 α = 13°<sup></sup> and NA = 0.408 α = 20° were simulated through Lumerical software. The results show that the off-axis angle is related to the resolution;the larger the angle, the better the spectral resolution but the lower the focusing efficiency;when the numerical aperture is smaller, the smaller the coverage of the phase distribution, which will lead to a larger deviation between simulation and theory. The designer needs to balance the numerical aperture, off-axis angle and other parameters reasonably according to the requirements in order to achieve the desired effect. The findings of this study have important reference values for the theoretical analysis of off-axis meta-lens and the design of parameters in practical applications. .展开更多
Ultrafine grain size is often achieved by severe plastic deformation. A few techniques have been devel- oped to achieve severe plastic deformation,such as equal channel angular (ECA ) processing, torsion, and accumu...Ultrafine grain size is often achieved by severe plastic deformation. A few techniques have been devel- oped to achieve severe plastic deformation,such as equal channel angular (ECA ) processing, torsion, and accumulative roll bonding (ARB) techmpues. This paper will introduce a moftiaxis deformation technique which can achieve essentially unlimited strain with constant deformation volume. The mul- tiaxis deformation can be fully restrained or unrestrained.The bulk volume of a multiaxis restraint compression specimen can be easily machined into mechanical testing specimens for mechanical property measurement and other studies.展开更多
The wide deployment of wind turbines in locations with high seismic hazard has led engineers to take into account a more comprehensive seismic design of such structures. Turbine specific guidelines usually use simplif...The wide deployment of wind turbines in locations with high seismic hazard has led engineers to take into account a more comprehensive seismic design of such structures. Turbine specific guidelines usually use simplified methods and consider many assumptions to combine seismic demand with the other operational loads effecting the design of these structures. As the turbines increase in size and capacity, the interaction between seismic loads and aerodynamic loads becomes even more important. In response to the need for a computational tool that can perform coupled simulations of wind and seismic loads, a seismic module is developed for the FAST code and described in this research. This platform allows engineers working in this industry to directly consider interaction between seismic and other environmental loads for turbines. This paper details the practical application and theory of this platform and provides examples for the use of different capabilities. The platform is then used to show the suitable earthquake and operational load combination with the implicit consideration of aerodynamic damping by estimating appropriate load factors.展开更多
Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerical...Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.展开更多
Based on blade element momentum theory and generator characteristic test,a dynamic simulation model of 150 kW horizontal-axis tidal current turbine was established.The matching of the dynamic characteristics between t...Based on blade element momentum theory and generator characteristic test,a dynamic simulation model of 150 kW horizontal-axis tidal current turbine was established.The matching of the dynamic characteristics between the turbine and generator under various current velocities is studied,and the influence of the pitch angle on the matching is analyzed.For the problem of maximum power output in case of low current speed and limiting power in high current speed,the relation between optimal pitch angle and output power is analyzed.On the basis of dynamic characteristic analysis,the variable pitch control strategy is developed.The performance of the turbine under various tidal conditions is simulated.The research results show that the designed controller enables the turbine to operate efficiently under the condition of low current speed,and achieve the goal of limited power at high current speed.展开更多
Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the p...Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF(User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.展开更多
Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct...Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.展开更多
The structure and measurement theory of a single-axis integrated inertia measurement device are discussed in this paper.The acceleration and angle velocity can be detected by the proposed sensor at the same time.The k...The structure and measurement theory of a single-axis integrated inertia measurement device are discussed in this paper.The acceleration and angle velocity can be detected by the proposed sensor at the same time.The ki- netic model of the device is also established.In addition,the signal generation of the single-axis integrated inertia measurement device is analyzed and simulated.The results of the model are consistent with simulation result.展开更多
<p align="justify"> <span style="font-family:Verdana;">There are multiple approaches of design for Vertical Axis Wind Turbines (VAWT) that have been studied by engineers and leaps have ...<p align="justify"> <span style="font-family:Verdana;">There are multiple approaches of design for Vertical Axis Wind Turbines (VAWT) that have been studied by engineers and leaps have been made in high performing innovations. By harnessing the energy from these wind turbines, the problem of roadside lights shortage can be solved. This can help </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">to </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">prevent the accidents while providing clean energy. The importance of coastal areas like Australian beaches regarding wind turbines cannot be neglected as a higher number of people like to live near coastal vicinity. Also, most of the freeways in Australia expand across the sea. In this paper, one such design has been analyzed to implement across the highways. But still with many advancements in technology, an immense gap is present in the research of implementation of VAWTs. The design discussed in the current study is a VAWT which can be installed on the side of the highway roads to provide clean and cheap energy for illuminating the roads. Computational Fluid Dynamics (CFD) was conducted on the blades of the turbine to analyze its performance under operating conditions. Furthermore, the paper elaborates the generation of drag and lift on the blades of the turbine. A wind speed of 60 km/h just produced 6.1 N force on the turbine blades as a result of drag. The cost analysis showed the cheap production of such mechanism that can provide longer service when installed.</span></span></span> </p>展开更多
The numerical simulation of jet flow field in Laval tube was carried out first by commercial software CFX4.4, and it is used to determine inlet pressure condition out of nozzle in order to its numerical simulation. Th...The numerical simulation of jet flow field in Laval tube was carried out first by commercial software CFX4.4, and it is used to determine inlet pressure condition out of nozzle in order to its numerical simulation. The decay rule of jet middle line velocity of axial symmetry turbulence jet and cross section's expand situation out of the tube in different stagnation pressure and surrounding temperature were analyzed systematically. The result showed that K-e model is suitable for numerical simulation. The conclusion will have important guide and referent function to research of two important craft parameters, impact depth and the impact area which are related to steel-making production practice.展开更多
The three-axis servo system with the core of gyro stabilization is the foundation to realize its function, and a key technology of the seeker devolopment. In order to reduce the costs, improve the efficiency of resear...The three-axis servo system with the core of gyro stabilization is the foundation to realize its function, and a key technology of the seeker devolopment. In order to reduce the costs, improve the efficiency of research and devolopment, a new method that instead of physical prototype by virtual prototype was proposed. Adams and MATLAB/simulink are used to establish the mechanical dynamics model and controller model of the three-axis servo system. The simulation data which was processed and analyzed is compared with test data, to determine the control parameters of the virtual prototype and improve the accuracy of the model, and test the multiple condition simulation,which can provide a reference for practical production.The simulation results verify the feasibility of the models.展开更多
文摘The simulation techniques of hardware-in-loop simulation(HLS) of homing antitank missile based on the personal computer (PC) are discussed. The PC and MCS-96 chip controller employ A/D and D/A boards (with photoelectricity isolation) to transfer measur ment and control information about homing head, gyro and rudder and utilize the digital hand shaking board to build correct communication communication protocol. In order to satisfy the real-time requirement of HLS, this paper first simplifies the aerodynamic data file reasonably, then builds a PC software with C language. The program of the controller part is made with PL/M language. The simulation of HLS based on PC is done with the same sampling period of 10ms as that of YH-F1 and the experiment results are identical to those of digital simulation of the homing anti-tank guided missile.
基金Project(20050214001) supported by Doctor Foundation of Education Ministry of ChinaProject(GC05A512) and supported by the Program of Heilongjiang Province Science and Technology, ChinaProject(zjg0702-01) supported by the Natural Science Foundation of Heilongjiang Province, China
文摘A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal effects of worktable. The mathematical models of the controllable chamber flow, servo variable mechanism and controller were built. The pose control model was established, which contained the kinematics positive and negative solution and control strategy of feedforward and hydraulic cylinder position feedback. Hardware-in-loop simulation experiment was carried out on the electro hydraulic servo test bench by means of the non-linear relation of film thickness and hydraulic cylinder displacement. Hardware-in-loop simulation experiment results show that the controllable bearings exhibit high oilfilm rigidity, the rising time is 0.24 s and the maximum overshoot is 2.23%, and can be applied in high precision heavy machine tool.
文摘This paper described an effective method to implement human & hardware in the loop simulation(HHILS), which is based on MATLAB system and can be used to study human driving actions in the abrupt situation and vehicle stability control(VSC). A hybrid control algorithm, which makes full use of the advantages of robust control and fuzzy logic, was adopted in VSC system. The results of HHILS show that HHILS’ application on the vehicle handling and VSC resarch is feasible. These results also confirm that the handling performance of the vehicle with VSC is improved obviously compared to the vehicle without VSC.
文摘In order to facilitate the teaching of industrial processes and experiments on the twin-screw extruder control debugging,and be closer to the actual testing,to reduce the debugging costs and the risk of debugging process,the paper designs a hardware-in-loop simulation of twin-screw extruder experiment system which is closer to scene,low cost and high safety.The system through the establishment of twin-screw extruder’s mathematical model on computer to simulate the realistic system and there is hardware practicality in the computer simulation loop.The hardware based on C8051F020 can operate in the simulation loop in real time.In computer software design, we desigh man-machine interface that is intuitive and easy to operate,can reflect twin-screw extruder main operation information vividly.Finally,twin-screw extruder’s 3 heater temperature mathematical model and PID incremental control algorithm are presented.
文摘FSC (Fractionated Spacecraft Cluster) is a kind of loosely distributed space system which is comprised of multiple physically independent spacecrafts orbiting closely and interactively communicating via wireless network. Spaceborne ad-hoc network, as the physical infrastructure for information exchanging, is one of the enabling technologies of FSC. The demonstration of FSC flying supported by ad-hoc network is worth for the sake of proving the rationality of FSC and seeking technological improvements. Considering this, a NNP (Network Node Prototype) for spaceborne ad-hoc network is developed in this paper, which transmits the information required by the FSC cooperation. Four NNPs are then built up and collaborated into a hardware-in-loop simulation system, in which a typical loose satellite cluster flying mission was performed. The simulation results showed that the NNPs can support the inter-satellite communication for satellite cluster flying.
文摘In order to meet tracking performance index of three-axis hydraulic simulator, based on classical quantitative feedback theory (QFT), an improved QFT technique is used to synthesize controller of low gain and bandwidth. By choosing a special nominal plant, the improved method assigns relative magnitude and phase tracking error between system uncertainty and nominal control plant. Relative tracking error induced by system uncertainty is transformed into sensitivity problem and relative tracking error induced by nominal plant forms into a region on Nichols chart. The two constraints further form into a combined bound which is fit for magnitude and phase loop shaping. Because of leaving out pre-filter of classical QFT controller structure, tracking performance is enhanced greatly. Furthermore, a cascaded two-loop control strategy is proposed to heighten control effect. The improved technique's efficacy is validated by simulation and experiment results.
文摘Meta-lens are a new type of planar optical element that can flexibly manipulate the phase, polarization and amplitude of the beam, and are currently receiving a great deal of attention as they are easier to process and manufacture. Off-axis meta-lens are a special type of meta-lens with a certain degree of dispersion that can be used as a beam-splitting element, providing a unique and feasible way to realize micro-miniature instruments. We analyze the effects of different numerical apertures and off-axis angles on the spectral resolution, focusing efficiency and simulation results of off-axis meta-lens to provide ideas for subsequent research and application of off-axis meta-lens. A number of off-axis meta-lens with parameters NA = 0.408 α = 13°, NA = 0.18 α = 13°<sup></sup> and NA = 0.408 α = 20° were simulated through Lumerical software. The results show that the off-axis angle is related to the resolution;the larger the angle, the better the spectral resolution but the lower the focusing efficiency;when the numerical aperture is smaller, the smaller the coverage of the phase distribution, which will lead to a larger deviation between simulation and theory. The designer needs to balance the numerical aperture, off-axis angle and other parameters reasonably according to the requirements in order to achieve the desired effect. The findings of this study have important reference values for the theoretical analysis of off-axis meta-lens and the design of parameters in practical applications. .
文摘Ultrafine grain size is often achieved by severe plastic deformation. A few techniques have been devel- oped to achieve severe plastic deformation,such as equal channel angular (ECA ) processing, torsion, and accumulative roll bonding (ARB) techmpues. This paper will introduce a moftiaxis deformation technique which can achieve essentially unlimited strain with constant deformation volume. The mul- tiaxis deformation can be fully restrained or unrestrained.The bulk volume of a multiaxis restraint compression specimen can be easily machined into mechanical testing specimens for mechanical property measurement and other studies.
基金National Renewable Energy Laboratory(NREL)under Grant No.DE-AC36-08GO28308
文摘The wide deployment of wind turbines in locations with high seismic hazard has led engineers to take into account a more comprehensive seismic design of such structures. Turbine specific guidelines usually use simplified methods and consider many assumptions to combine seismic demand with the other operational loads effecting the design of these structures. As the turbines increase in size and capacity, the interaction between seismic loads and aerodynamic loads becomes even more important. In response to the need for a computational tool that can perform coupled simulations of wind and seismic loads, a seismic module is developed for the FAST code and described in this research. This platform allows engineers working in this industry to directly consider interaction between seismic and other environmental loads for turbines. This paper details the practical application and theory of this platform and provides examples for the use of different capabilities. The platform is then used to show the suitable earthquake and operational load combination with the implicit consideration of aerodynamic damping by estimating appropriate load factors.
基金funded by by the National Science Fund for Distinguished Young Scholars(Grant No.51425901)the National Natural Science Foundation of China(Grant Nos.51479053 and 51137002)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK2011026)the 111 Project(Grant No.B2012032)the Specialized Research Funding for the Doctoral Program of Higher Education(Grant No.20130094110014)the Marine Renewable Energy Research Project of State Oceanic Administration(Grant No.GHME2013GC03)the Fundamental Research Funds for the Central University(Hohai University,Grant Nos.2013B31614 and 2014B04114)
文摘Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.
基金the Special Funds for Scientific Research in Marine Public Welfare Industry(Grant No.201205019-3).
文摘Based on blade element momentum theory and generator characteristic test,a dynamic simulation model of 150 kW horizontal-axis tidal current turbine was established.The matching of the dynamic characteristics between the turbine and generator under various current velocities is studied,and the influence of the pitch angle on the matching is analyzed.For the problem of maximum power output in case of low current speed and limiting power in high current speed,the relation between optimal pitch angle and output power is analyzed.On the basis of dynamic characteristic analysis,the variable pitch control strategy is developed.The performance of the turbine under various tidal conditions is simulated.The research results show that the designed controller enables the turbine to operate efficiently under the condition of low current speed,and achieve the goal of limited power at high current speed.
基金financially supported by the State Oceanic Administration of China(Grant No.GHME2011CL01)the Program of State Key Laboratory of Coastal and Offshore Engineering(Grant No.LP1102)
文摘Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF(User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.
基金Project(HEUCF110707)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(E201216)supported by Heilongjiang Natural Science Fund,China
文摘Wind energy is one of the most promising renewable energy sources, straight-bladed vertical axis wind turbine(S-VAWT) appears to be particularly promising for the shortage of fossil fuel reserves owing to its distinct advantages, but suffers from poor self-starting and low power coefficient. Variable-pitch method was recognized as an attractive solution to performance improvement, thus majority efforts had been devoted into blade pitch angle effect on aerodynamic performance. Taken into account the local flow field of S-VAWT, mathematical model was built to analyze the relationship between power outputs and pitch angle. Numerical simulations on static and dynamic performances of blade were carried out and optimized pitch angle along the rotor were presented. Comparative analyses of fixed pitch and variable-pitch S-VAWT were conducted, and a considerable improvement of the performance was obtained by the optimized blade pitch angle, in particular, a relative increase of the power coefficient by more than 19.3%. It is further demonstrated that the self-starting is greatly improved with the optimized blade pitch angle.
基金Supported by Shanxi Province Young Leaders on Science and by Program for New Century Excellent Talents in University(NCET)
文摘The structure and measurement theory of a single-axis integrated inertia measurement device are discussed in this paper.The acceleration and angle velocity can be detected by the proposed sensor at the same time.The ki- netic model of the device is also established.In addition,the signal generation of the single-axis integrated inertia measurement device is analyzed and simulated.The results of the model are consistent with simulation result.
文摘<p align="justify"> <span style="font-family:Verdana;">There are multiple approaches of design for Vertical Axis Wind Turbines (VAWT) that have been studied by engineers and leaps have been made in high performing innovations. By harnessing the energy from these wind turbines, the problem of roadside lights shortage can be solved. This can help </span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">to </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">prevent the accidents while providing clean energy. The importance of coastal areas like Australian beaches regarding wind turbines cannot be neglected as a higher number of people like to live near coastal vicinity. Also, most of the freeways in Australia expand across the sea. In this paper, one such design has been analyzed to implement across the highways. But still with many advancements in technology, an immense gap is present in the research of implementation of VAWTs. The design discussed in the current study is a VAWT which can be installed on the side of the highway roads to provide clean and cheap energy for illuminating the roads. Computational Fluid Dynamics (CFD) was conducted on the blades of the turbine to analyze its performance under operating conditions. Furthermore, the paper elaborates the generation of drag and lift on the blades of the turbine. A wind speed of 60 km/h just produced 6.1 N force on the turbine blades as a result of drag. The cost analysis showed the cheap production of such mechanism that can provide longer service when installed.</span></span></span> </p>
文摘The numerical simulation of jet flow field in Laval tube was carried out first by commercial software CFX4.4, and it is used to determine inlet pressure condition out of nozzle in order to its numerical simulation. The decay rule of jet middle line velocity of axial symmetry turbulence jet and cross section's expand situation out of the tube in different stagnation pressure and surrounding temperature were analyzed systematically. The result showed that K-e model is suitable for numerical simulation. The conclusion will have important guide and referent function to research of two important craft parameters, impact depth and the impact area which are related to steel-making production practice.
文摘The three-axis servo system with the core of gyro stabilization is the foundation to realize its function, and a key technology of the seeker devolopment. In order to reduce the costs, improve the efficiency of research and devolopment, a new method that instead of physical prototype by virtual prototype was proposed. Adams and MATLAB/simulink are used to establish the mechanical dynamics model and controller model of the three-axis servo system. The simulation data which was processed and analyzed is compared with test data, to determine the control parameters of the virtual prototype and improve the accuracy of the model, and test the multiple condition simulation,which can provide a reference for practical production.The simulation results verify the feasibility of the models.