This study explores the influence of infill patterns on machine acceleration prediction in the realm of three-dimensional(3D)printing,particularly focusing on extrusion technology.Our primary objective was to develop ...This study explores the influence of infill patterns on machine acceleration prediction in the realm of three-dimensional(3D)printing,particularly focusing on extrusion technology.Our primary objective was to develop a long short-term memory(LSTM)network capable of assessing this impact.We conducted an extensive analysis involving 12 distinct infill patterns,collecting time-series data to examine their effects on the acceleration of the printer’s bed.The LSTM network was trained using acceleration data from the adaptive cubic infill pattern,while the Archimedean chords infill pattern provided data for evaluating the network’s prediction accuracy.This involved utilizing offline time-series acceleration data as the training and testing datasets for the LSTM model.Specifically,the LSTM model was devised to predict the acceleration of a fused deposition modeling(FDM)printer using data from the adaptive cubic infill pattern.Rigorous testing yielded a root mean square error(RMSE)of 0.007144,reflecting the model’s precision.Further refinement and testing of the LSTM model were conducted using acceleration data from the Archimedean chords infill pattern,resulting in an RMSE of 0.007328.Notably,the developed LSTM model demonstrated superior performance compared to an optimized recurrent neural network(RNN)in predicting machine acceleration data.The empirical findings highlight that the adaptive cubic infill pattern considerably influences the dimensional accuracy of parts printed using FDM technology.展开更多
Background: Currently, there is no set standard treatment for long-segment tracheomalacia and stenosis. In this study we set out to explore the potential to create a tissue engineered, biodegradable and three-dimensio...Background: Currently, there is no set standard treatment for long-segment tracheomalacia and stenosis. In this study we set out to explore the potential to create a tissue engineered, biodegradable and three-dimensionally (3D) printed tracheal ring as a first step towards bioengineering a long segment tracheal replacement. Method of Approach: A 3D-Computer aided design (CAD) model was produced with multiple channels to allow for cellular growth while mimicking the native anatomy. The design was optimized to allow for printability, cellular expansion, and integration and 3D printed using a modified commercial 3D printer. Results: The cells grown in the scaffold demonstrated a similar proliferation trend compared to control. Chondrocytes within the 3D printed ring retained their phenotypic properties and did not infer any significant change in flexibility, contour and strength to the scaffold. Conclusion: The combination of living cells and a 3D modeled patient specific graft may address some of the unmet clinical needs in the field of tracheal reconstruction. This proof of concept study represents a first step towards producing a 3D printed and tissue engineered long segment tracheal replacement graft for airway surgery.展开更多
This study presents a visualized approach for tracking joint surface morphology.Three-dimensional laser scanning(3DLS)and 3D printing(3DP)techniques are adopted to record progressive failure during rock joint shearing...This study presents a visualized approach for tracking joint surface morphology.Three-dimensional laser scanning(3DLS)and 3D printing(3DP)techniques are adopted to record progressive failure during rock joint shearing.The 3DP resin is used to create transparent specimens to reproduce the surface morphology of a natural joint precisely.The freezing method is employed to enhance the mechanical properties of the 3DP specimens to reproduce the properties of hard rock more accurately.A video camera containing a charge-coupled device(CCD)camera is utilized to record the evolution of damaged area of joint surface during the direct shear test.The optimal shooting distance and shooting angle are recommended to be 800 mm and 40?,respectively.The images captured by the CCD camera are corrected to quantitatively describe the damaged area on the joint surface.Verification indicates that this method can accurately describe the total sheared areas at different shear stages.These findings may contribute to elucidating the shear behavior of rock joints.展开更多
The primary objective of this article is to explore effects of latest development in the area of three dimensional(3D)printing&to assess its abilities,and further undertake helpful reporting.Here the focus is to a...The primary objective of this article is to explore effects of latest development in the area of three dimensional(3D)printing&to assess its abilities,and further undertake helpful reporting.Here the focus is to assess ad vantages of 3D printing in orthopedics and analyze how 3D printed models help solve complex 3D orthopedics distortions.This study identified that 3D models manufactured by 3D printing models reduce medical parts de velopment cost and surgical planning time.Integrating 3D printing with orthopaedics helps in understanding the conditions of problems and achieving the operation succssfully.This technology can enable doctors/surgeons to design,produce,recreate and plan operations more accurately,carefully,and economicaly.3D models can assist specialists with a visual comprehension of the patient-particular pathology and life structures.Innovation in 3D printing initiated a scaffold for the virtual outline and execution of medical procedures.This research proposes the utilisation of 3D printers as an elective procedure for the fabrication of parts.It empowers surgeons/patients for better raining,education and research.In the future,there is a foreseeable expansion of additive manufacturing in orthopedics.展开更多
This review aims to discuss the application and development of three-dimensional printing(3DP) technology in the field of rock mechanics and the mechanical behaviors of 3D-printed specimens on the basis of various ava...This review aims to discuss the application and development of three-dimensional printing(3DP) technology in the field of rock mechanics and the mechanical behaviors of 3D-printed specimens on the basis of various available printing materials.This review begins with a brief description of the concepts and principles associated with 3DP, and then systematically elaborates the five major applications of 3DP technology in the field of rock mechanics, namely, the preparation of rock(including pre-flawed rock) specimens, preparation of joints, preparation of geophysical models, reconstruction of complex rock structures, and performance of bridging experimental testing and numerical simulation.Meanwhile, the mechanical performance of 3D-printed specimens created using six different printing materials, such as polymers, resin,gypsum, sand, ceramics, and rock-like geological materials, is reviewed in detail.Subsequently, some improvements that can make these 3D-printed specimens close to natural rocks and some limitations of 3DP technology in the application of rock mechanics are discussed.Some prospects that are required to be investigated in the future are also proposed.Finally, a brief summary is presented.This review suggests that 3DP technology, especially when integrated with other advanced technologies, such as computed tomography scanning and 3D scanning, has great potential in rock mechanics field.展开更多
Two important factors affecting the performance of sand mold/core generated by 3D printing(3DP)are strength and dimensional accuracy,which are not only closely related to the reactivity of furan resin and the phase tr...Two important factors affecting the performance of sand mold/core generated by 3D printing(3DP)are strength and dimensional accuracy,which are not only closely related to the reactivity of furan resin and the phase transition of silica sand,but also the curing agent system of furan resin.This paper studies the influence of gel time on the strength and dimensional accuracy of a 3DP sand mold/core,taking the furan resin system as an example and using a sand specimen generated by a 3DP inkjet molding machine.The experiment demonstrates that the gel time of 3 to 6 min for the sand mixture suits 3DP core-making most under the experimental condition.However,it should be noted that under the same resin condition,the strength of a no-bake sand mold/core is higher than that of a 3DP sand mold/core.The dimensional accuracy of the sand mold/core does not change significantly when the gel time is less than 15 min.Improving the activity of binder and developing ultra-strong acid with low corrosion shall be an effective way to improve the quality of the mold/core by 3D printing.展开更多
文摘This study explores the influence of infill patterns on machine acceleration prediction in the realm of three-dimensional(3D)printing,particularly focusing on extrusion technology.Our primary objective was to develop a long short-term memory(LSTM)network capable of assessing this impact.We conducted an extensive analysis involving 12 distinct infill patterns,collecting time-series data to examine their effects on the acceleration of the printer’s bed.The LSTM network was trained using acceleration data from the adaptive cubic infill pattern,while the Archimedean chords infill pattern provided data for evaluating the network’s prediction accuracy.This involved utilizing offline time-series acceleration data as the training and testing datasets for the LSTM model.Specifically,the LSTM model was devised to predict the acceleration of a fused deposition modeling(FDM)printer using data from the adaptive cubic infill pattern.Rigorous testing yielded a root mean square error(RMSE)of 0.007144,reflecting the model’s precision.Further refinement and testing of the LSTM model were conducted using acceleration data from the Archimedean chords infill pattern,resulting in an RMSE of 0.007328.Notably,the developed LSTM model demonstrated superior performance compared to an optimized recurrent neural network(RNN)in predicting machine acceleration data.The empirical findings highlight that the adaptive cubic infill pattern considerably influences the dimensional accuracy of parts printed using FDM technology.
文摘Background: Currently, there is no set standard treatment for long-segment tracheomalacia and stenosis. In this study we set out to explore the potential to create a tissue engineered, biodegradable and three-dimensionally (3D) printed tracheal ring as a first step towards bioengineering a long segment tracheal replacement. Method of Approach: A 3D-Computer aided design (CAD) model was produced with multiple channels to allow for cellular growth while mimicking the native anatomy. The design was optimized to allow for printability, cellular expansion, and integration and 3D printed using a modified commercial 3D printer. Results: The cells grown in the scaffold demonstrated a similar proliferation trend compared to control. Chondrocytes within the 3D printed ring retained their phenotypic properties and did not infer any significant change in flexibility, contour and strength to the scaffold. Conclusion: The combination of living cells and a 3D modeled patient specific graft may address some of the unmet clinical needs in the field of tracheal reconstruction. This proof of concept study represents a first step towards producing a 3D printed and tissue engineered long segment tracheal replacement graft for airway surgery.
基金This experimental study was partially funded by the National Natural Science Foundation of China(Grant Nos.41572299and 41831290)the 3D-printed modeling work was supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY18D020003),which is gratefully acknowledged.
文摘This study presents a visualized approach for tracking joint surface morphology.Three-dimensional laser scanning(3DLS)and 3D printing(3DP)techniques are adopted to record progressive failure during rock joint shearing.The 3DP resin is used to create transparent specimens to reproduce the surface morphology of a natural joint precisely.The freezing method is employed to enhance the mechanical properties of the 3DP specimens to reproduce the properties of hard rock more accurately.A video camera containing a charge-coupled device(CCD)camera is utilized to record the evolution of damaged area of joint surface during the direct shear test.The optimal shooting distance and shooting angle are recommended to be 800 mm and 40?,respectively.The images captured by the CCD camera are corrected to quantitatively describe the damaged area on the joint surface.Verification indicates that this method can accurately describe the total sheared areas at different shear stages.These findings may contribute to elucidating the shear behavior of rock joints.
文摘The primary objective of this article is to explore effects of latest development in the area of three dimensional(3D)printing&to assess its abilities,and further undertake helpful reporting.Here the focus is to assess ad vantages of 3D printing in orthopedics and analyze how 3D printed models help solve complex 3D orthopedics distortions.This study identified that 3D models manufactured by 3D printing models reduce medical parts de velopment cost and surgical planning time.Integrating 3D printing with orthopaedics helps in understanding the conditions of problems and achieving the operation succssfully.This technology can enable doctors/surgeons to design,produce,recreate and plan operations more accurately,carefully,and economicaly.3D models can assist specialists with a visual comprehension of the patient-particular pathology and life structures.Innovation in 3D printing initiated a scaffold for the virtual outline and execution of medical procedures.This research proposes the utilisation of 3D printers as an elective procedure for the fabrication of parts.It empowers surgeons/patients for better raining,education and research.In the future,there is a foreseeable expansion of additive manufacturing in orthopedics.
基金financially supported by the Fundamental Research Funds for the Central Universities (No.FRF-TP18-016A3)the National Natural Science Foundation of China (No.51504016)。
文摘This review aims to discuss the application and development of three-dimensional printing(3DP) technology in the field of rock mechanics and the mechanical behaviors of 3D-printed specimens on the basis of various available printing materials.This review begins with a brief description of the concepts and principles associated with 3DP, and then systematically elaborates the five major applications of 3DP technology in the field of rock mechanics, namely, the preparation of rock(including pre-flawed rock) specimens, preparation of joints, preparation of geophysical models, reconstruction of complex rock structures, and performance of bridging experimental testing and numerical simulation.Meanwhile, the mechanical performance of 3D-printed specimens created using six different printing materials, such as polymers, resin,gypsum, sand, ceramics, and rock-like geological materials, is reviewed in detail.Subsequently, some improvements that can make these 3D-printed specimens close to natural rocks and some limitations of 3DP technology in the application of rock mechanics are discussed.Some prospects that are required to be investigated in the future are also proposed.Finally, a brief summary is presented.This review suggests that 3DP technology, especially when integrated with other advanced technologies, such as computed tomography scanning and 3D scanning, has great potential in rock mechanics field.
基金financially supported by the Liaoning Science and Technology Plan Program(2019-ZD-0998)the National Natural Science Foundation of China(Grant No.U1808216)。
文摘Two important factors affecting the performance of sand mold/core generated by 3D printing(3DP)are strength and dimensional accuracy,which are not only closely related to the reactivity of furan resin and the phase transition of silica sand,but also the curing agent system of furan resin.This paper studies the influence of gel time on the strength and dimensional accuracy of a 3DP sand mold/core,taking the furan resin system as an example and using a sand specimen generated by a 3DP inkjet molding machine.The experiment demonstrates that the gel time of 3 to 6 min for the sand mixture suits 3DP core-making most under the experimental condition.However,it should be noted that under the same resin condition,the strength of a no-bake sand mold/core is higher than that of a 3DP sand mold/core.The dimensional accuracy of the sand mold/core does not change significantly when the gel time is less than 15 min.Improving the activity of binder and developing ultra-strong acid with low corrosion shall be an effective way to improve the quality of the mold/core by 3D printing.