The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investiga...The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investigated through cyclic loading-unloading experiments under different strain rates.Based on the experiments,an elastoviscoplastic constitutive model is adopted to describe themechanical behaviors of the uncured rubber.The distinct mechanical properties,including the stress level,hysteresis and residual strain,of the uncured rubber can all be well characterized.The whole tire building process(including component winding,rubber bladder inflation,component stitching and carcass band folding-back)and the shaping process are simulated using this constitutive model.The simulated green tire profile is in good agreement with the actual profile obtained through 3D scanning.The deformation and stress of the rubber components and the cord reinforcements during production can be obtained fromthe FE simulation,which is helpful for judging the rationality of the tire construction design.Finally,the influence of the parameter“drum width”is investigated,and the simulated result is found to be consistent with the experimental observations,which verifies the effectiveness of the simulation.The established simulation strategy provides some guiding significance for the improvement of tire design parameters and the elimination of tire production defects.展开更多
A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching a...A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching and forming process of cartridge cases are established,and the corresponding simulation result model of each intermediate procedure is obtained by continuously performing the forming process simulation. The simulation model cannot annotate size and process information due to poor interface between DEFORM software and CAD software. Thus,a 3D annotation module is developed with secondary development technology of UG NX software. Consequently,the final process model with dimension and process information is obtained. Then,with the current 3D process management system,the 3D punching and forming process design of cartridge cases can be completed further. An example is also provided to illustrate that the relative error between the simulation process model and the physical model is less than 2%,which proves the validity and reliability of the proposed method in this study.展开更多
A computational thermodynamics model for the oxygen bottom-blown copper smelting process(Shuikoushan,SKS process)was established,based on the SKS smelting characteristics and theory of Gibbs free energy minimization.T...A computational thermodynamics model for the oxygen bottom-blown copper smelting process(Shuikoushan,SKS process)was established,based on the SKS smelting characteristics and theory of Gibbs free energy minimization.The calculated results of the model show that,under the given stable production condition,the contents of Cu,Fe and S in matte are71.08%,7.15%and17.51%,and the contents of Fe,SiO2and Cu in slag are42.17%,25.05%and3.16%.The calculated fractional distributions of minor elements among gas,slag and matte phases are As82.69%,11.22%,6.09%,Sb16.57%,70.63%,12.80%,Bi68.93%,11.30%,19.77%,Pb19.70%,24.75%,55.55%and Zn17.94%,64.28%,17.79%,respectively.The calculated results of the multiphase equilibrium model agree well with the actual industrial production data,indicating that the credibility of the model is validated.Therefore,the model could be used to monitor and optimize the industrial operations of SKS process.展开更多
In this paper, a unified internal state variable(ISV) model for predicting microstructure evolution during hot working process of AZ80 magnesium alloy was developed. A novel aspect of the proposed model is that the in...In this paper, a unified internal state variable(ISV) model for predicting microstructure evolution during hot working process of AZ80 magnesium alloy was developed. A novel aspect of the proposed model is that the interactive effects of material hardening, recovery and dynamic recrystallization(DRX) on the characteristic deformation behavior were considered by incorporating the evolution laws of viscoplastic flow, dislocation activities, DRX nucleation and boundary migration in a coupled manner. The model parameters were calibrated based on the experimental data analysis and genetic algorithm(GA) based objective optimization. The predicted flow stress, DRX fraction and average grain size match well with experimental results. The proposed model was embedded in the finite element(FE) software DEFORM-3 D via user defined subroutine to simulate the hot compression and equal channel angular extrusion(ECAE) processes. The heterogeneous microstructure distributions at different deformation zones and the dislocation density evolution with competitive deformation mechanisms were captured.This study can provide a theoretical solution for the hot working problems of magnesium alloy.展开更多
Penetration characteristic(size and shape of penetration craters made in high hardness ARMSTAL 30PM steel) of shaped charge jets formed after detonations of modified PG-7VM warheads was analyzed in the article. Modifi...Penetration characteristic(size and shape of penetration craters made in high hardness ARMSTAL 30PM steel) of shaped charge jets formed after detonations of modified PG-7VM warheads was analyzed in the article. Modifications consisted in removing the frontal part of the grenade(fuse, ballistic cap and conductive cone) and introducing of the liner cavity filling made of polyacetal copolymer POM-C. The filings in the form of solid cones with three different heights(33%, 66% and 100% of H-the height of original PG-7VM liner) were placed inside of the hollow cone shaped charge liner. As opposed to the vast majority of previously published works(in which warhead optimization studies were focused on increasing of the depth of penetration in rolled homogeneous armor steel) the main aim of the presented modifications was to maximize the damage ratio(diameters of craters, inlet and outlet holes) of target perforated by shaped charge jet at the cost of the loss of part of the jet penetration capability. According to the best knowledge of the authors such approach to the use of the old PG-7VM warheads has not been analyzed so far. Taking into consideration high stock levels of PG-7VM warheads, and the fact that they are continuously being replaced by more efficient and more sophisticated high-explosive anti-tank warheads, it seems reasonable to look for alternate applications of the warheads withdrawn from the service. Thanks to the introduction of proposed modifications the warheads could be used by special forces or other assault units as directional mines or statically detonated cutting shaped charges as well as by combat engineers as universal charges used in various types of engineering or sapper works. The research included experimental penetration tests and their numerical reproduction in the LS-Dyna software with the simulation methodology defined and validated in previous works of the authors.Small differences(average error = 10-20%) were identified between the experimental and numerical results(dimensions of craters made in steel targets were compared) what confirmed the reliability of the modelling methodology and enabled its use for further optimization of the shapes of fillings. Within the analyzed variants of warheads modifications maximum diameters of penetration craters were obtained for the filling of the height of h = 2/3H. The diameters of holes in individual steel plates were increased by 164%, 70%, 65%(for the first, second and third plate, respectively) in relation to the variant without filling. The results of the study indicated that with the use of different materials of fillings and their various heights it is possible to control the shape of penetration craters pierced in the steel targets.展开更多
Two branches of Tangjiagou rock avalanche were triggered by Lushan earthquake in Sichuan Province,China on April 20th,2013.The rock avalanche has transported about 1500000 m3 of sandstone from the source area.Based on...Two branches of Tangjiagou rock avalanche were triggered by Lushan earthquake in Sichuan Province,China on April 20th,2013.The rock avalanche has transported about 1500000 m3 of sandstone from the source area.Based on discrete element modeling,this study simulates the deformation,failure and movement process of the rock avalanche.Under seismic loading,the mechanism and process of deformation,failure,and runout of the two branches are similar.In detail,the stress concentration occur firstly on the top of the mountain ridge,and accordingly,the tensile deformation appears.With the increase of seismic loading,the strain concentration zone extends in the forward and backward directions along the slipping surface,forming a locking segment.As a result,the slipping surface penetrates and the slide mass begin to slide down with high speed.Finally,the avalanche accumulates in the downstream and forms a small barrier lake.Modeling shows that a number of rocks on the surface exhibit patterns of horizontal throwing and vertical jumping under strong ground shaking.We suggest that the movement of the rock avalanche is a complicated process with multiple stages,including formation of the two branches,high-speed sliding,transformation into debris flows,further movement and collision,accumulation,and the final steady state.Topographic amplification effects are also revealed based on acceleration and velocity of special monitoring points.The horizontal and vertical runout distances of the surface materials are much greater than those of the internal materials.Besides,the sliding duration is also longer than that of the internal rock mass.展开更多
Neotectonic movement refers to the tectonic movement that has happened since the Cenozoic, which is the latest movement. It has the most important influence on the basins in west China, especially on the hydrocarbon a...Neotectonic movement refers to the tectonic movement that has happened since the Cenozoic, which is the latest movement. It has the most important influence on the basins in west China, especially on the hydrocarbon accumulation in the western foreland basins. We determined the time of neotectonic movement in the Kuqa Foreland Basin, which began from the Neogene, and analyzed the patterns of movement, which were continuous and fast subsidence in the vertical direction and intense lateral compression. The structure styles are that the faulting is weakened and the folding is strengthened gradually from north to south. We studied the control of neotectonic movement on the hydrocarbon accumulation process and model in the Kuqa Foreland Basin with basin simulation technique. The largest subsidence rate of the Kuqa Foreland Basin reached 1,200 m/Ma during the neotectonic movement, leading to rapid maturing of source rock within 5 Ma and a large quantity of hydrocarbon being generated and expelled. The thick neotectonic strata can form high quality reservoirs with the proved gas and oil reserves accounting for 5% and 27% of the total reserves, respectively. 86% of the structural traps were formed in the neotectonic movement period. The faults formed during the neotectonic movement serve as important migration pathways and they exist in the region where the hydrocarbon reservoirs are distributed. Abnormally high pressure caused by the intense lateral compression, thick neotectonic strata deposition and rapid hydrocarbon generation provide driving force for hydrocarbon migration. The accumulation elements match each other well over a short period, leading to many large gas fields formed later in the Kuqa Foreland Basin.展开更多
The past decade has witnessed the substantial growth in research interests and progress on the subject of coupled hydro-mechanical processes in rocks and soils,driven mainly by the surge of research in unconventional ...The past decade has witnessed the substantial growth in research interests and progress on the subject of coupled hydro-mechanical processes in rocks and soils,driven mainly by the surge of research in unconventional hydrocarbon reservoirs and associated hazards.Many coupling techniques have been developed to include the effects of fluid flow in the discrete element method(DEM),and the techniques have been applied to a variety of geomechanical problems.Although these coupling methods have been successfully applied in various engineering fields,no single fluid/DEM coupling method is universal due to the complexity of engineering problems and the limitations of the numerical methods.For researchers and engineers,the key to solve a specific problem is to select the most appropriate fluid/DEM coupling method among these modeling technologies.The purpose of this paper is to give a comprehensive review of fluid flow/DEM coupling methods and relevant research.Given their importance,the availability or unavailability of best practice guidelines is outlined.The theoretical background and current status of DEM are introduced first,and the principles,applications,and advantages and disadvantages of different fluid flow/DEM coupling methods are discussed.Finally,a summary with speculation on future development trends is given.展开更多
A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate...A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge.展开更多
The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical ...The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties. Therefore, a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application. Up to now, the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments. To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly. In this paper, a novel method, based on the combination model of digital image processing and the finite element method, is proposed to rapidly model the optical properties of the actual photonic crystal fibre. Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled. It is confirmed from numerical results that the proposed method is simple, rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment.展开更多
The stretch forming and the deep-drawing processes were carried out at 300 and 673 K to determine the safe forming and fracture limits of IN625 alloy.The experimentally obtained strain-based fracture forming limit dia...The stretch forming and the deep-drawing processes were carried out at 300 and 673 K to determine the safe forming and fracture limits of IN625 alloy.The experimentally obtained strain-based fracture forming limit diagram(FFLD)was transformed into a stress-based(σ-FFLD)and effective plastic strain(EPS)vs triaxiality(η)plot to remove the excess dependency of fracture limits over the strains.For the prediction of fracture limits,seven different damage models were calibrated.The Oh model displayed the best ability to predict the fracture locus with the least absolute error.Though the experimentally obtained fracture limits have only been used for the numerical analysis,none of the considered damage models predicted the fracture strains over the entire considered range of stress triaxiality(0.33<η<0.66).The deep drawing process window helped to determine wrinkling,safe and fracture zones while drawing the cylindrical cups under different temperature and lubricating conditions.Further,the highest drawing ratio of 2 was achieved at 673 K under the lubricating condition.All the numerically predicted results of both stretch forming and deep drawing processes using the Hill 1948 anisotropic yielding function were found to be good within the acceptable range of error.展开更多
Advanced fiber reinforced polymer composites have been increasingly applied to various structural components. One of the important processes to fabricate high performance laminated composites is an autoclave assisted ...Advanced fiber reinforced polymer composites have been increasingly applied to various structural components. One of the important processes to fabricate high performance laminated composites is an autoclave assisted prepreg lay-up. Since the quality of laminated composites is largely affected by the cure cycle, selection of an appropriate cure cycle for each application is important and must be optimized. Thus, some fundamental model of the consolidation and cure processes is necessary for selecting suitable parameters for a specific application. This article is concerned with the "flow-compaction" model during the autoclave processing of composite materials. By using a weighted residual method, two-dimensional finite element formulation for the consolidation process of thick thermosetting composites is presented and the corresponding finite element code is developed. Numerical examples, including comparison of the present numerical results with one-dimensional and twodimensional analytical solutions, are given to illustrate the accuracy and effectiveness of the proposed finite element formulation. In addition, a consolidation simulation of AS4/3501-6 graphite/epoxy laminate is carded out and compared with the experimental results available in the literature.展开更多
Linear friction welding (LFW) is a solid state process for joining metals together. While this process was developed originaUy for titanium alloys (e. g. blisks ) , over the past decade a number of materials were ...Linear friction welding (LFW) is a solid state process for joining metals together. While this process was developed originaUy for titanium alloys (e. g. blisks ) , over the past decade a number of materials were found to be weldable with LFW. In this review, the current status of understanding and development of LFW are presented. Particular emphasis has been given to the modeling of the LFW process. Finally, opportunities for further research and development of LFW are identified.展开更多
The shape and size optimization of brackets in hull structures was conducted to achieve the simultaneous reduction of mass and high stress,where the parametric finite element model was built based on Patran Command La...The shape and size optimization of brackets in hull structures was conducted to achieve the simultaneous reduction of mass and high stress,where the parametric finite element model was built based on Patran Command Language codes.The optimization procedure was executed on Isight platform,on which the linear dimensionless method was introduced to establish the weighted multi-objective function.The extreme processing method was applied and proved effective to normalize the objectives.The bracket was optimized under the typical single loads and design waves,accompanied by the different proportions of weights in the objective function,in which the safety factor function was further established,including yielding,buckling,and fatigue strength,and the weight minimization and safety maximization of the bracket were obtained.The findings of this study illustrate that the dimensionless objectives share equal contributions to the multi-objective function,which enhances the role of weights in the optimization.展开更多
Among the technological tests, the Erichsen drawing test gives a more appropriate material behavior, near the limit of the real manufactured process. In this paper an inverse finite element analysis of the Erichsen te...Among the technological tests, the Erichsen drawing test gives a more appropriate material behavior, near the limit of the real manufactured process. In this paper an inverse finite element analysis of the Erichsen test is proposed. The new idea is to use a numerical simulation of the experimental test for the rheological identification of the constitutive equations available for sheet metals alloys. The inverse analysis is based on a robust optimization algorithm and uses simultaneously the experimental test data and the corresponding numerical one. A numerical inverse analysis software named OPTPAR was developed and improved for an automatically coupling with a commercial finite element code charged to simulate the experimental test. Results obtained for a virtual steel alloy will be analyzed numerically in order to validate the finite element model and the identification method. An application to an AA5182 aluminum alloy and a DC03 steel alloy will be presented.展开更多
The occlusal design plays a decisive role in the fabrication of dental restorations.Dentists and dental technicians depend on mechanical simulations of mandibular movement that are as accurate as possible,in particula...The occlusal design plays a decisive role in the fabrication of dental restorations.Dentists and dental technicians depend on mechanical simulations of mandibular movement that are as accurate as possible,in particular,to produce interference-free yet chewing-efficient dental restorations.For this,kinetic data must be available,i.e.,movements and deformations under the influence of forces and stresses.In the present study,so-called functional data were collected from healthy volunteers to provide consistent information for proper kinetics.For the latter purpose,biting and chewing forces,electrical muscle activity and jaw movements were registered synchronously,and individual magnetic resonance tomograms(MRI)were prepared.The acquired data were then added to a large complex finite element model of the complete masticatory system using the functional information obtained and individual anatomical geometries so that the kinetics of the chewing process and teeth grinding could be realistically simulated.This allows developing algorithms that optimize computer-aided manufacturing of dental prostheses close to occlusion.In this way,a failure-free function of the dental prosthesis can be guaranteed and its damage during usage can be reduced or prevented even including endosseous implants.展开更多
This paper analyzed the relationship between entrepreneurial orientation and new product development perlormance based on the perspective of knowledge creation process. Through a questionnaire survey, we found that en...This paper analyzed the relationship between entrepreneurial orientation and new product development perlormance based on the perspective of knowledge creation process. Through a questionnaire survey, we found that entrepreneurial orientation is positively related to new product performance, and knowledge creation process plays a mediating role in this relationship. This article examines the role of entrepreneurial orientation on new product innovation performance in Chinese situations, and it is the first time to check the intermediary functions on each dimension of knowledge test between entrepreneurial orientation and new product development performance.展开更多
基金funded by the NationalNatural Science Foundation of China (Nos.11902229,11502181)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDB22040502,XDC06030200).
文摘The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investigated through cyclic loading-unloading experiments under different strain rates.Based on the experiments,an elastoviscoplastic constitutive model is adopted to describe themechanical behaviors of the uncured rubber.The distinct mechanical properties,including the stress level,hysteresis and residual strain,of the uncured rubber can all be well characterized.The whole tire building process(including component winding,rubber bladder inflation,component stitching and carcass band folding-back)and the shaping process are simulated using this constitutive model.The simulated green tire profile is in good agreement with the actual profile obtained through 3D scanning.The deformation and stress of the rubber components and the cord reinforcements during production can be obtained fromthe FE simulation,which is helpful for judging the rationality of the tire construction design.Finally,the influence of the parameter“drum width”is investigated,and the simulated result is found to be consistent with the experimental observations,which verifies the effectiveness of the simulation.The established simulation strategy provides some guiding significance for the improvement of tire design parameters and the elimination of tire production defects.
基金Supported by the National Defense Basic Scientific Research Project(A1020131011)
文摘A method of constructing three-dimensional process model for the punching cartridge cases is presented based on DEFORM simulation analysis. Using DEFORM software,the finite element simulation models for the punching and forming process of cartridge cases are established,and the corresponding simulation result model of each intermediate procedure is obtained by continuously performing the forming process simulation. The simulation model cannot annotate size and process information due to poor interface between DEFORM software and CAD software. Thus,a 3D annotation module is developed with secondary development technology of UG NX software. Consequently,the final process model with dimension and process information is obtained. Then,with the current 3D process management system,the 3D punching and forming process design of cartridge cases can be completed further. An example is also provided to illustrate that the relative error between the simulation process model and the physical model is less than 2%,which proves the validity and reliability of the proposed method in this study.
基金Project(51620105013)supported by the National Natural Science Foundation of China
文摘A computational thermodynamics model for the oxygen bottom-blown copper smelting process(Shuikoushan,SKS process)was established,based on the SKS smelting characteristics and theory of Gibbs free energy minimization.The calculated results of the model show that,under the given stable production condition,the contents of Cu,Fe and S in matte are71.08%,7.15%and17.51%,and the contents of Fe,SiO2and Cu in slag are42.17%,25.05%and3.16%.The calculated fractional distributions of minor elements among gas,slag and matte phases are As82.69%,11.22%,6.09%,Sb16.57%,70.63%,12.80%,Bi68.93%,11.30%,19.77%,Pb19.70%,24.75%,55.55%and Zn17.94%,64.28%,17.79%,respectively.The calculated results of the multiphase equilibrium model agree well with the actual industrial production data,indicating that the credibility of the model is validated.Therefore,the model could be used to monitor and optimize the industrial operations of SKS process.
基金funding supported by National Natural Science Foundation of China(No.52175285)Beijing Municipal Natural Science Foundation(No.3182025)+1 种基金National Defense Science and Technology Rapid support Project(No.61409230113)Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB and Fundamental Research Funds for the Central Universities(No.FRFBD-20-08A,FRF-TP-20-009A2)。
文摘In this paper, a unified internal state variable(ISV) model for predicting microstructure evolution during hot working process of AZ80 magnesium alloy was developed. A novel aspect of the proposed model is that the interactive effects of material hardening, recovery and dynamic recrystallization(DRX) on the characteristic deformation behavior were considered by incorporating the evolution laws of viscoplastic flow, dislocation activities, DRX nucleation and boundary migration in a coupled manner. The model parameters were calibrated based on the experimental data analysis and genetic algorithm(GA) based objective optimization. The predicted flow stress, DRX fraction and average grain size match well with experimental results. The proposed model was embedded in the finite element(FE) software DEFORM-3 D via user defined subroutine to simulate the hot compression and equal channel angular extrusion(ECAE) processes. The heterogeneous microstructure distributions at different deformation zones and the dislocation density evolution with competitive deformation mechanisms were captured.This study can provide a theoretical solution for the hot working problems of magnesium alloy.
文摘Penetration characteristic(size and shape of penetration craters made in high hardness ARMSTAL 30PM steel) of shaped charge jets formed after detonations of modified PG-7VM warheads was analyzed in the article. Modifications consisted in removing the frontal part of the grenade(fuse, ballistic cap and conductive cone) and introducing of the liner cavity filling made of polyacetal copolymer POM-C. The filings in the form of solid cones with three different heights(33%, 66% and 100% of H-the height of original PG-7VM liner) were placed inside of the hollow cone shaped charge liner. As opposed to the vast majority of previously published works(in which warhead optimization studies were focused on increasing of the depth of penetration in rolled homogeneous armor steel) the main aim of the presented modifications was to maximize the damage ratio(diameters of craters, inlet and outlet holes) of target perforated by shaped charge jet at the cost of the loss of part of the jet penetration capability. According to the best knowledge of the authors such approach to the use of the old PG-7VM warheads has not been analyzed so far. Taking into consideration high stock levels of PG-7VM warheads, and the fact that they are continuously being replaced by more efficient and more sophisticated high-explosive anti-tank warheads, it seems reasonable to look for alternate applications of the warheads withdrawn from the service. Thanks to the introduction of proposed modifications the warheads could be used by special forces or other assault units as directional mines or statically detonated cutting shaped charges as well as by combat engineers as universal charges used in various types of engineering or sapper works. The research included experimental penetration tests and their numerical reproduction in the LS-Dyna software with the simulation methodology defined and validated in previous works of the authors.Small differences(average error = 10-20%) were identified between the experimental and numerical results(dimensions of craters made in steel targets were compared) what confirmed the reliability of the modelling methodology and enabled its use for further optimization of the shapes of fillings. Within the analyzed variants of warheads modifications maximum diameters of penetration craters were obtained for the filling of the height of h = 2/3H. The diameters of holes in individual steel plates were increased by 164%, 70%, 65%(for the first, second and third plate, respectively) in relation to the variant without filling. The results of the study indicated that with the use of different materials of fillings and their various heights it is possible to control the shape of penetration craters pierced in the steel targets.
基金supported by the NationalNatural Science Foundation of China(41402254)Department of Science and Technology of Shaanxi Province(2019ZDLSF07-0701)。
文摘Two branches of Tangjiagou rock avalanche were triggered by Lushan earthquake in Sichuan Province,China on April 20th,2013.The rock avalanche has transported about 1500000 m3 of sandstone from the source area.Based on discrete element modeling,this study simulates the deformation,failure and movement process of the rock avalanche.Under seismic loading,the mechanism and process of deformation,failure,and runout of the two branches are similar.In detail,the stress concentration occur firstly on the top of the mountain ridge,and accordingly,the tensile deformation appears.With the increase of seismic loading,the strain concentration zone extends in the forward and backward directions along the slipping surface,forming a locking segment.As a result,the slipping surface penetrates and the slide mass begin to slide down with high speed.Finally,the avalanche accumulates in the downstream and forms a small barrier lake.Modeling shows that a number of rocks on the surface exhibit patterns of horizontal throwing and vertical jumping under strong ground shaking.We suggest that the movement of the rock avalanche is a complicated process with multiple stages,including formation of the two branches,high-speed sliding,transformation into debris flows,further movement and collision,accumulation,and the final steady state.Topographic amplification effects are also revealed based on acceleration and velocity of special monitoring points.The horizontal and vertical runout distances of the surface materials are much greater than those of the internal materials.Besides,the sliding duration is also longer than that of the internal rock mass.
基金supported by the Foundation Project of State Key Laboratory of Petroleum Resources and Prospecting (PRPDX2008-05)the "973" National Key Basic Research Program (2006CB202308)
文摘Neotectonic movement refers to the tectonic movement that has happened since the Cenozoic, which is the latest movement. It has the most important influence on the basins in west China, especially on the hydrocarbon accumulation in the western foreland basins. We determined the time of neotectonic movement in the Kuqa Foreland Basin, which began from the Neogene, and analyzed the patterns of movement, which were continuous and fast subsidence in the vertical direction and intense lateral compression. The structure styles are that the faulting is weakened and the folding is strengthened gradually from north to south. We studied the control of neotectonic movement on the hydrocarbon accumulation process and model in the Kuqa Foreland Basin with basin simulation technique. The largest subsidence rate of the Kuqa Foreland Basin reached 1,200 m/Ma during the neotectonic movement, leading to rapid maturing of source rock within 5 Ma and a large quantity of hydrocarbon being generated and expelled. The thick neotectonic strata can form high quality reservoirs with the proved gas and oil reserves accounting for 5% and 27% of the total reserves, respectively. 86% of the structural traps were formed in the neotectonic movement period. The faults formed during the neotectonic movement serve as important migration pathways and they exist in the region where the hydrocarbon reservoirs are distributed. Abnormally high pressure caused by the intense lateral compression, thick neotectonic strata deposition and rapid hydrocarbon generation provide driving force for hydrocarbon migration. The accumulation elements match each other well over a short period, leading to many large gas fields formed later in the Kuqa Foreland Basin.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41772286 and 42077247)the Fundamental Research Funds for the Central Universities, China
文摘The past decade has witnessed the substantial growth in research interests and progress on the subject of coupled hydro-mechanical processes in rocks and soils,driven mainly by the surge of research in unconventional hydrocarbon reservoirs and associated hazards.Many coupling techniques have been developed to include the effects of fluid flow in the discrete element method(DEM),and the techniques have been applied to a variety of geomechanical problems.Although these coupling methods have been successfully applied in various engineering fields,no single fluid/DEM coupling method is universal due to the complexity of engineering problems and the limitations of the numerical methods.For researchers and engineers,the key to solve a specific problem is to select the most appropriate fluid/DEM coupling method among these modeling technologies.The purpose of this paper is to give a comprehensive review of fluid flow/DEM coupling methods and relevant research.Given their importance,the availability or unavailability of best practice guidelines is outlined.The theoretical background and current status of DEM are introduced first,and the principles,applications,and advantages and disadvantages of different fluid flow/DEM coupling methods are discussed.Finally,a summary with speculation on future development trends is given.
文摘A convenient approach is proposed for analyzing the ultimate load carrying capacity of concrete filled steel tubular (CFST) arch bridge with stiffening girders. A fiber model beam element is specially used to simulate the stiffening girder and CFST arch rib. The geometric nonlinearity, material nonlinearity, influence of the construction process and the contribution of prestressing reinforcement are all taken into consideration. The accuracy of this method is validated by comparing its results with experimental results. Finally, the ultimate strength of an abnormal CFST arch bridge with stiffening girders is investigated and the effect of construction method is discussed. It is concluded that the construction process has little effect on the ultimate strength of the bridge.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB328206)the National Natural Science Foundation of China(Grant No.60977033)the Science and Technology Innovation Foundation for Excellent Doctors of Beijing Jiaotong University,China(Grant Nos.141055522 and 141060522)
文摘The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties. Therefore, a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application. Up to now, the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments. To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly. In this paper, a novel method, based on the combination model of digital image processing and the finite element method, is proposed to rapidly model the optical properties of the actual photonic crystal fibre. Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled. It is confirmed from numerical results that the proposed method is simple, rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment.
基金Science and Engineering Research Board,Government of India(ECR/2016/001402)BITS-Pilani,Hyderabad Campus。
文摘The stretch forming and the deep-drawing processes were carried out at 300 and 673 K to determine the safe forming and fracture limits of IN625 alloy.The experimentally obtained strain-based fracture forming limit diagram(FFLD)was transformed into a stress-based(σ-FFLD)and effective plastic strain(EPS)vs triaxiality(η)plot to remove the excess dependency of fracture limits over the strains.For the prediction of fracture limits,seven different damage models were calibrated.The Oh model displayed the best ability to predict the fracture locus with the least absolute error.Though the experimentally obtained fracture limits have only been used for the numerical analysis,none of the considered damage models predicted the fracture strains over the entire considered range of stress triaxiality(0.33<η<0.66).The deep drawing process window helped to determine wrinkling,safe and fracture zones while drawing the cylindrical cups under different temperature and lubricating conditions.Further,the highest drawing ratio of 2 was achieved at 673 K under the lubricating condition.All the numerically predicted results of both stretch forming and deep drawing processes using the Hill 1948 anisotropic yielding function were found to be good within the acceptable range of error.
基金The project supported by the National Natural Science Foundation of China (10272037)The English text was polished by Yunming Chen.
文摘Advanced fiber reinforced polymer composites have been increasingly applied to various structural components. One of the important processes to fabricate high performance laminated composites is an autoclave assisted prepreg lay-up. Since the quality of laminated composites is largely affected by the cure cycle, selection of an appropriate cure cycle for each application is important and must be optimized. Thus, some fundamental model of the consolidation and cure processes is necessary for selecting suitable parameters for a specific application. This article is concerned with the "flow-compaction" model during the autoclave processing of composite materials. By using a weighted residual method, two-dimensional finite element formulation for the consolidation process of thick thermosetting composites is presented and the corresponding finite element code is developed. Numerical examples, including comparison of the present numerical results with one-dimensional and twodimensional analytical solutions, are given to illustrate the accuracy and effectiveness of the proposed finite element formulation. In addition, a consolidation simulation of AS4/3501-6 graphite/epoxy laminate is carded out and compared with the experimental results available in the literature.
基金The work is supported by the National Natural Science Foundation of China (51005180), the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China ( 131052 ) , the Fundamental Research Funds for the Central Universities (3102014JC02010404), the Fundamental Research Fund of NPU (JC201233), and the 111 Project of China (B08040).
文摘Linear friction welding (LFW) is a solid state process for joining metals together. While this process was developed originaUy for titanium alloys (e. g. blisks ) , over the past decade a number of materials were found to be weldable with LFW. In this review, the current status of understanding and development of LFW are presented. Particular emphasis has been given to the modeling of the LFW process. Finally, opportunities for further research and development of LFW are identified.
基金This work was financially supported by the Key Research and Development Project of Shandong Province(Grant No.2020CXGC010702).
文摘The shape and size optimization of brackets in hull structures was conducted to achieve the simultaneous reduction of mass and high stress,where the parametric finite element model was built based on Patran Command Language codes.The optimization procedure was executed on Isight platform,on which the linear dimensionless method was introduced to establish the weighted multi-objective function.The extreme processing method was applied and proved effective to normalize the objectives.The bracket was optimized under the typical single loads and design waves,accompanied by the different proportions of weights in the objective function,in which the safety factor function was further established,including yielding,buckling,and fatigue strength,and the weight minimization and safety maximization of the bracket were obtained.The findings of this study illustrate that the dimensionless objectives share equal contributions to the multi-objective function,which enhances the role of weights in the optimization.
文摘Among the technological tests, the Erichsen drawing test gives a more appropriate material behavior, near the limit of the real manufactured process. In this paper an inverse finite element analysis of the Erichsen test is proposed. The new idea is to use a numerical simulation of the experimental test for the rheological identification of the constitutive equations available for sheet metals alloys. The inverse analysis is based on a robust optimization algorithm and uses simultaneously the experimental test data and the corresponding numerical one. A numerical inverse analysis software named OPTPAR was developed and improved for an automatically coupling with a commercial finite element code charged to simulate the experimental test. Results obtained for a virtual steel alloy will be analyzed numerically in order to validate the finite element model and the identification method. An application to an AA5182 aluminum alloy and a DC03 steel alloy will be presented.
基金We acknowledge the support of the German Research Foundation Grant Nos.SCHM 2456/5-1 and SCHW 307/30-1together with funding for the project initial phase from the German Federal Ministry for Economy and Technology Grant No.KF 2875101WM.(Bundesministerium für Wirtschaft und Technologie)according to a decision of the German Bundestag.
文摘The occlusal design plays a decisive role in the fabrication of dental restorations.Dentists and dental technicians depend on mechanical simulations of mandibular movement that are as accurate as possible,in particular,to produce interference-free yet chewing-efficient dental restorations.For this,kinetic data must be available,i.e.,movements and deformations under the influence of forces and stresses.In the present study,so-called functional data were collected from healthy volunteers to provide consistent information for proper kinetics.For the latter purpose,biting and chewing forces,electrical muscle activity and jaw movements were registered synchronously,and individual magnetic resonance tomograms(MRI)were prepared.The acquired data were then added to a large complex finite element model of the complete masticatory system using the functional information obtained and individual anatomical geometries so that the kinetics of the chewing process and teeth grinding could be realistically simulated.This allows developing algorithms that optimize computer-aided manufacturing of dental prostheses close to occlusion.In this way,a failure-free function of the dental prosthesis can be guaranteed and its damage during usage can be reduced or prevented even including endosseous implants.
文摘This paper analyzed the relationship between entrepreneurial orientation and new product development perlormance based on the perspective of knowledge creation process. Through a questionnaire survey, we found that entrepreneurial orientation is positively related to new product performance, and knowledge creation process plays a mediating role in this relationship. This article examines the role of entrepreneurial orientation on new product innovation performance in Chinese situations, and it is the first time to check the intermediary functions on each dimension of knowledge test between entrepreneurial orientation and new product development performance.