期刊文献+
共找到14,665篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Simulation of Surrounding Rock Deformation and Grouting Reinforcement of Cross-Fault Tunnel under Different Excavation Methods
1
作者 Duan Zhu Zhende Zhu +2 位作者 Cong Zhang LunDai Baotian Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2445-2470,共26页
Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability a... Tunnel construction is susceptible to accidents such as loosening, deformation, collapse, and water inrush, especiallyunder complex geological conditions like dense fault areas. These accidents can cause instability and damageto the tunnel. As a result, it is essential to conduct research on tunnel construction and grouting reinforcementtechnology in fault fracture zones to address these issues and ensure the safety of tunnel excavation projects. Thisstudy utilized the Xianglushan cross-fault tunnel to conduct a comprehensive analysis on the construction, support,and reinforcement of a tunnel crossing a fault fracture zone using the three-dimensional finite element numericalmethod. The study yielded the following research conclusions: The excavation conditions of the cross-fault tunnelarray were analyzed to determine the optimal construction method for excavation while controlling deformationand stress in the surrounding rock. The middle partition method (CD method) was found to be the most suitable.Additionally, the effects of advanced reinforcement grouting on the cross-fault fracture zone tunnel were studied,and the optimal combination of grouting reinforcement range (140°) and grouting thickness (1m) was determined.The stress and deformation data obtained fromon-site monitoring of the surrounding rock was slightly lower thanthe numerical simulation results. However, the change trend of both sets of data was found to be consistent. Theseresearch findings provide technical analysis and data support for the construction and design of cross-fault tunnels. 展开更多
关键词 Cross-fault tunnel finite element analysis excavation methods surrounding rock deformation grouting reinforcement
下载PDF
Support design method for deep soft-rock tunnels in non-hydrostatic high in-situ stress field
2
作者 ZHENG Ke-yue SHI Cheng-hua +3 位作者 ZHAO Qian-jin LEI Ming-feng JIA Chao-jun PENG Zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2431-2445,共15页
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne... Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly. 展开更多
关键词 non-hydrostatic stress field high in-situ stress deep soft-rock tunnel squeezing pressure loosening pressure support design method
下载PDF
Transfer matrix method for free and forced vibrations of multi-level functionally graded material stepped beams with different boundary conditions
3
作者 Xiaoyang SU Tong HU +3 位作者 Wei ZHANG Houjun KANG Yunyue CONG Quan YUAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期983-1000,共18页
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th... Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM. 展开更多
关键词 transfer matrix method(TMM) free vibration forced vibration functionally graded material(FGM) stepped beam
下载PDF
Research on the design method for uniform wear of shield cutters in sand-pebble strata
4
作者 Jinxun Zhang Bo Li +4 位作者 Guihe Wang Yusheng Jiang Hua Jiang Minglun Yin Zhengyang Sun 《Deep Underground Science and Engineering》 2024年第2期216-230,共15页
During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have ... During shield tunneling in highly abrasive formations such as sand–pebble strata,nonuniform wear of shield cutters is inevitable due to the different cutting distances.Frequent downtimes and cutter replacements have become major obstacles to long-distance shield driving in sand–pebble strata.Based on the cutter wear characteristics in sand–pebble strata in Beijing,a design methodology for the cutterhead and cutters was established in this study to achieve uniform wear of all cutters by the principle of frictional wear.The applicability of the design method was verified through three-dimensional simulations using the engineering discrete element method.The results show that uniform wear of all cutters on the cutterhead could be achieved by installing different numbers of cutters on each trajectory radius and designing a curved spoke with a certain arch height according to the shield diameter.Under the uniform wear scheme,the cutter wear coefficient is greatly reduced,and the largest shield driving distance is increased by approximately 47%over the engineering scheme.The research results indicate that the problem of nonuniform cutter wear in shield excavation could be overcome,thereby providing guiding significance for theoretical innovation and construction of long-distance shield excavation in highly abrasive strata. 展开更多
关键词 cutter wear EDEM model long-distance shield driving sand-pebble stratum shield tunnel uniform wear design method
下载PDF
Mechanical properties and influence mechanism of confined concrete arches in high-stress tunnels 被引量:8
5
作者 Bei Jiang Zhongxin Xin +4 位作者 Xiufeng Zhang Yusong Deng Mingzi Wang Shidong Li Wentao Ren 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第7期829-841,共13页
Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,whic... Deep underground projects(e.g., coal mines), are often faced with complex conditions such as high stress and extremely soft rock. The strength and rigidity of the traditional support system are often insufficient,which makes it difficult to meet the requirements of ground control under complex conditions. As a new support form with high strength and rigidity, the confined concrete arch plays an important role in controlling the rock deformation under complex conditions. The section shape of the tunnel has an important impact on the mechanical properties and design of the support system. However, studies on the mechanical properties and influence mechanism of the new confined concrete arch are rarely reported. To this end, the mechanical properties of traditional U-shaped steel and new confined concrete arches are compared and comparative tests on arches of circular and straight-leg semicircular shapes in deep tunnels are conducted. A large mechanical testing system for underground engineering support structure is developed. The mechanical properties and influence mechanism of confined concrete arches with different section shapes under different loading modes and cross-section parameters are systematically studied. Test results show that the bearing capacity of the confined concrete arch is 2.10 times that of the U-shaped steel arch, and the bearing capacity of the circular confined concrete arch is 2.27 times that of the straight-leg semicircular arch. Among the various influencing factors and their engineering parameters,the lateral stress coefficient has the greatest impact on the bearing capacity of the confined concrete arch,followed by the steel pipe wall thickness, steel strength, and core concrete strength. Subsequently, the economic index of bearing capacity and cost is established, and the optimization design method for the confined concrete arch is proposed. Finally, this design method is applied to a high-stress tunnel under complex conditions, and the deformation of the surrounding rock is effectively controlled. 展开更多
关键词 High-stress tunnel Confined concrete arch Section shape Mechanical properties Design method
下载PDF
Performance of the suspension method in large cross-section shallow-buried tunnels
6
作者 Guoqing Cai Xinxiang Zou +3 位作者 Qiang Zhang Rui Yang Tianchi Wu Jiguang Li 《High-Speed Railway》 2023年第4期224-232,共9页
Large cross-section tunnel construction induces ground surface settlements, potentially endangering both subterranean projects and nearby above-ground structures. A novel tunnel construction method, known as the suspe... Large cross-section tunnel construction induces ground surface settlements, potentially endangering both subterranean projects and nearby above-ground structures. A novel tunnel construction method, known as the suspension method,is introduced in this paper to mitigate surface settlement. The suspension method employs vertical tie rods to establish a structural connection between the initial tunnel support system and the surface steel beam, thereby exerting effective control settlements. To analyze the performance of the proposed method, systematic numerical simulations were conducted based on the practical engineering of Harbin Subway Line 3. The surface settlement and vault settlement characteristics during construction are investigated. The results show a gradual increment in both surface and vault settlement throughout the construction process, culminating in a stabilized state upon the completion of construction.In addition, compared to the double-side drift method and the Cross Diaphragm Method(CRD) method, the suspension method can obviously reduce the surface settlement and vault settlement. Moreover, the surface settlements and the axial force of tie rods were continuously monitored during the construction process at the trial tunnel block.These specific monitoring measurements are illustrated in comparison to numerical analysis results. The monitored results show great agreement with the numerical predictions, confirming the success of the project. This research can serve as a valuable practical reference for similar projects, offering insights and guidance for addressing ground surface settlements and enhancing construction safety in the domain of large cross-section tunneling. 展开更多
关键词 Subway tunnel construction Suspension method Settlement control Numerical analysis On-site monitoring
下载PDF
Inverse reliability analysis and design for tunnel face stability considering soil spatial variability
7
作者 Zheming Zhang Jian Ji +1 位作者 Xiangfeng Guo Siang Huat Goh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1552-1564,共13页
The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of ran... The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata. 展开更多
关键词 Limit analysis Tunnel face stability Spatial variability HLRF algorithm Inverse reliability method
下载PDF
Numerical analysis of moving train induced vibrations on tunnel,surrounding ground and structure
8
作者 Swati Srivastav Sowmiya Chawla Swapnil Mishra 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期179-192,共14页
This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and ... This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures. 展开更多
关键词 moving train load tunnels vibration effect finite element method(FEM) wave propagation
下载PDF
Weak and Strong Convergence of Self Adaptive Inertial Subgradient Extragradient Algorithms for Solving Variational Inequality Problems
9
作者 Yao Li Hongwei Liu Jiamin Lv 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期38-49,共12页
Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in th... Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in this paper.The problem we study is defined in a real Hilbert space and has L-Lipschitz and pseudomonotone condition.Two new algorithms adopt inertial technology and non-monotonic step size rule,and their convergence can still be proved when the value of L is not given in advance.Finally,some numerical results are designed to demonstrate the computational efficiency of our two new algorithms. 展开更多
关键词 variational inequality inertial method non-monotonic step size rule Lipschitz continuity pseudomonotone mapping
下载PDF
三步接骨法治疗Sanders Ⅱ型跟骨骨折的有限元研究
10
作者 李笑予 张磊 +2 位作者 付磊 李东波 汪国友 《中国临床解剖学杂志》 CSCD 北大核心 2024年第1期65-70,共6页
目的量化评估三步接骨法治疗Sanders Ⅱ型跟骨骨折效能指标,阐明其科学机制。方法利用健康成年男性踝关节CT数据,构建正常足踝模型与Sanders Ⅱ型跟骨骨折模型,在骨折模型上进行三步接骨法的力学加载,模拟拔伸牵引、提按顶复、端挤捏骨... 目的量化评估三步接骨法治疗Sanders Ⅱ型跟骨骨折效能指标,阐明其科学机制。方法利用健康成年男性踝关节CT数据,构建正常足踝模型与Sanders Ⅱ型跟骨骨折模型,在骨折模型上进行三步接骨法的力学加载,模拟拔伸牵引、提按顶复、端挤捏骨等手法,评估跟骨复位情况并求解不同手法作用下力学的变化。结果建立正常足部模型与Sanders Ⅱ A/B/C型跟骨骨折模型;三步接骨法加载复位后跟骨长、高、宽、Gissane’s角及Bohler’s角得到明显纠正;求解不同手法的力学趋势,发现拔伸牵引法能有效纠正重叠位移,提按顶复法侧重纠正前后侧移位,端挤捏骨法致力纠正内外侧移位。结论三步接骨法通过依次纠正骨折位移,能恢复跟骨解剖结构,有效治疗跟骨SandersⅡ型损伤,具有有效性及科学性。 展开更多
关键词 跟骨骨折 SandersⅡ型 三步接骨法 有限元分析 生物力学
下载PDF
基于修正UBCSAND模型的隧道地层液化判别分析
11
作者 万旺 《低温建筑技术》 2024年第1期137-140,共4页
针对依托工程项目地质勘察报告揭示的可能发生液化地层,为分析地层是否会发生液化,以及评估地震作用下地层液化的特征,采用非线性时程分析方法,建立基于修正UBCSAND本构模型的有限元计算模型。分析基本地震和罕遇地震两种工况下,隧道所... 针对依托工程项目地质勘察报告揭示的可能发生液化地层,为分析地层是否会发生液化,以及评估地震作用下地层液化的特征,采用非线性时程分析方法,建立基于修正UBCSAND本构模型的有限元计算模型。分析基本地震和罕遇地震两种工况下,隧道所处地层的孔隙压力比时程曲线及孔隙压力比峰值、地层竖向位移时程曲线及对应峰值,根据液化判据,可确定隧道典型断面所处地层不会发生液化。最后给出隧道工程可能发生地震液化的相应工程预备措施,为类似工程建设提供参考。 展开更多
关键词 隧道工程 本构模型 地震液化 判别方法
下载PDF
Research progress and development trends of highway tunnels in China 被引量:68
12
作者 Chuan He Bo Wang 《Journal of Modern Transportation》 2013年第4期209-223,共15页
The highway tunnel system in China has in recent years surpassed Europe, the United States, and other developed countries in terms of mileage, scale, complexity, and technical achievement. Much scientific research has... The highway tunnel system in China has in recent years surpassed Europe, the United States, and other developed countries in terms of mileage, scale, complexity, and technical achievement. Much scientific research has been conducted, and the results have greatly facilitated the rapid development of China's highway tunnel building capacity. This article presents the historical development of highway tunneling in China, according to specific charac- teristics based on construction and operation. It provides a systematic analysis of the major achievements and chal- lenges with respect to construction techniques, operation, monitoring, repair, and maintenance. Together with future trends of highway tunneling in China, suggestions have been made for further research, and development prospects have been identified with the for a Chinese-style highway aim of laying the foundation tunnel construction method and technical architecture. 展开更多
关键词 Highway tunnels Mining methods - Shieldtunneling Immersed tube tunnel Operation - MonitoringMaintenance PROGRESS
下载PDF
Seismic response of underground utility tunnels: shaking table testing and FEM analysis 被引量:36
13
作者 Jiang Luzhen Chen Jun Li Jie 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第4期555-567,共13页
Underground utility tunnels are widely used in urban areas throughout the world for lifeline networks due to their easy maintenance and environmental protection capabilities. However, knowledge about their seismic per... Underground utility tunnels are widely used in urban areas throughout the world for lifeline networks due to their easy maintenance and environmental protection capabilities. However, knowledge about their seismic performance is still quite limited and seismic design procedures are not included in current design codes. This paper describes a series of shaking table tests the authors performed on a scaled utility tunnel model to explore its performance under earthquake excitation. Details of the experimental setup are first presented focusing on aspects such as the design of the soil container, scaled structural model, sensor array arrangement and test procedure. The main observations from the test program, including structural response, soil response, soil-structure interaction and earth pressure, are summarized and discussed. Further, a finite element model (FEM) of the test utility tunnel is established where the nonlinear soil properties are modeled by the Drucker- Prager constitutive model; the master-slave surface mechanism is employed to simulate the soil-structure dynamic interaction; and the confining effect of the laminar shear box to soil is considered by proper boundary modeling. The results from the numerical model are compared with experiment measurements in terms of displacement, acceleration and amplification factor of the structural model and the soil. The comparison shows that the numerical results match the experimental measurements quite well. The validated numerical model can be adopted for further analysis. 展开更多
关键词 lifeline system utility tunnel shaking table test finite element method soil-structure interaction
下载PDF
Assessing fracturing mechanisms and evolution of excavation damaged zone of tunnels in interlocked rock masses at high stresses using a finitediscrete element approach 被引量:11
14
作者 I.Vazaios N.Vlachopoulos M.S.Diederichs 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第4期701-722,共22页
Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-ex... Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-existing joints in the damage evolution around the underground opening is of critical importance as they govern the fracturing mechanisms and influence the brittle responses of these hard rock masses under highly anisotropic in situ stresses.In this study,the main focus is the impact of joint network geometry,joint strength and applied field stresses on the rock mass behaviours and the evolution of excavation induced damage due to the loss of confinement as a tunnel face advances.Analysis of such a phenomenon was conducted using the finite-discrete element method (FDEM).The numerical model is initially calibrated in order to match the behaviour of the fracture-free,massive Lac du Bonnet granite during the excavation of the Underground Research Laboratory (URL) Test Tunnel,Canada.The influence of the pre-existing joints on the rock mass response during excavation is investigated by integrating discrete fracture networks (DFNs) of various characteristics into the numerical models under varying in situ stresses.The numerical results obtained highlight the significance of the pre-existing joints on the reduction of in situ rock mass strength and its capacity for extension with both factors controlling the brittle response of the material.Furthermore,the impact of spatial distribution of natural joints on the stability of an underground excavation is discussed,as well as the potentially minor influence of joint strength on the stress induced damage within joint systems of a non-persistent nature under specific conditions.Additionally,the in situ stress-joint network interaction is examined,revealing the complex fracturing mechanisms that may lead to uncontrolled fracture propagation that compromises the overall stability of an underground excavation. 展开更多
关键词 EXCAVATION damaged zone (EDZ) BRITTLE failure Finite-discrete element method (FDEM) TUNNELLING DISCRETE fracture network (DFN)
下载PDF
Mountain tunnel under earthquake force:A review of possible causes of damages and restoration methods 被引量:13
15
作者 Xuepeng Zhang Yujing Jiang Kazuhiko Maegawa 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第2期414-426,共13页
Accurate seismic assessment and proper aseismic design of underground structures require a comprehensive understanding of seismic performance and response of underground structures under earthquake force.In order to u... Accurate seismic assessment and proper aseismic design of underground structures require a comprehensive understanding of seismic performance and response of underground structures under earthquake force.In order to understand the seismic behavior of tunnels during an earthquake,a wide collection of case histories has been reviewed from the available literature with respect to damage classification,to discuss the possible causes of damage,such as earthquake parameters,structural form and geological conditions.In addition,a case of Tawarayama tunnel subjected to the 2016 Kumamoto earthquake is studied.Discussion on the possible influence factors aims at improving the performancebased aseismic design of tunnels.Finally,restoration design criterion and methods are presented taking Tawarayama tunnel as an example. 展开更多
关键词 MOUNTAIN TUNNEL SEISMIC damage Influence factor RESTORATION method
下载PDF
Rock mechanical problems and optimization for the long and deep diversion tunnels at Jinping Ⅱ hydropower station 被引量:5
16
作者 Shiyong Wu Ge Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第4期314-328,共15页
According to site-specific environments such as high water pressures, high in-situ stresses and strong rockbursts, the design scheme of the long and deep diversion tunnels at Jinping II hydropower station was optimize... According to site-specific environments such as high water pressures, high in-situ stresses and strong rockbursts, the design scheme of the long and deep diversion tunnels at Jinping II hydropower station was optimized to ensure construction safety. New drainage tunnels were considered. Furthermore, lining structures and grouting pressures were modified during the excavation of tunnels. The construction scheme was updated dynamically based on the complex geological conditions. For instances, the diversion tunnels were first excavated by drilling and blasting method at the first stage of construction, and then by the combination method of tunnel boring machine (TBM) and drilling and blasting, and finally by drilling and blasting method. Through optimized scheme and updated construction scheme, the excavation of diversion tunnel #1 was successfully completed in June, 2011. This paper summarizes the key issues in rock mechanics associated with the construction of the long and deep diversion tunnels at Jinping II hydropower station. The experiences of design and construction obtained from this project could provide reference to similar projects. 展开更多
关键词 Jinping II hydropower station diversion tunnels optimized design construction method GROUTING
下载PDF
Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels 被引量:4
17
作者 杨小礼 黄阜 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期819-823,共5页
Explicit finite difference code was used to calculate the stability factors of shallow tunnels without internal support in limit state. The proposed method was formulated within the nonassociative plasticity. For the ... Explicit finite difference code was used to calculate the stability factors of shallow tunnels without internal support in limit state. The proposed method was formulated within the nonassociative plasticity. For the shallow tunnels in soft clay, without considering the influences of pore water pressure and dilatancy, numerical results were compared with the previously published solutions. From the comparisons, it is found that the present solutions agree well with the previous solutions. The accuracy of the strength reduction technique was demonstrated through the comparisons. The influence of the pore water pressure was discussed. For the shallow tunnels in dilatant cohesive-frictional soils, the dilatant analysis was carried out. 展开更多
关键词 SHALLOW TUNNEL STRENGTH reduction method DILATANCY PORE water pressure
下载PDF
Numerical and experimental investigation of rock breaking method under free surface by TBM disc cutter 被引量:10
18
作者 ZHANG Xu-hui XIA Yi-min +2 位作者 ZENG Gui-ying TAN Qing GUO Ben 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2107-2118,共12页
To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under th... To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under the free surface was studied including stressed zone,crush zone,crack initiation and propagation.Then the crack propagation conditions,specific energy,etc.under different free surface distance(S)were also investigated combined with linear cutting experiments.The results show that the rock breaking process under the free surface induced by disc cutter is dominated by tension failure mode.There exists a critical S to promote crack propagation to free surface effectively.And this rock breaking method can improve the rock breaking force and breaking efficiency significantly when proper. 展开更多
关键词 free surface tunnel boring machine disc cutter rock breaking method
下载PDF
Risk identification and risk mitigation during metro station construction by enlarging shield tunnel combined with cut-and-cover method 被引量:3
19
作者 Zhang, Xinjin Liu, Weining Lu, Meili 《Journal of Southeast University(English Edition)》 EI CAS 2008年第S1期142-146,共5页
Constructing a metro station by enlarging shield tunnels combined with a mining/cut-and-cover method provides a new method to solve the contradictions of construction time limits of shield tunnels and stations. As a n... Constructing a metro station by enlarging shield tunnels combined with a mining/cut-and-cover method provides a new method to solve the contradictions of construction time limits of shield tunnels and stations. As a new-style construction method, there are several specific risks involved in the construction process. Based on the test section of Sanyuanqiao station on Beijing metro line 10, and combined with the existing methods of risk identification at present, including a review of world-wide operational experience of similar projects, the study of generic guidance on hazards associated with the type of work being undertaken, and discussions with qualified and experienced staff from the project team, etc., the specific risks during the construction process of the metro station constructed by enlarging shield tunnels combined with the cut-and-cover method are identified. The results show that the specific risks mainly come from three construction processes which include constructing upper enclosure structures, excavating the soil between shield tunnels and demolishing shield segments. Then relevant risk mitigation measures are put forward. The results can provide references for scheme improvement and a comprehensive risk assessment of the new-style construction method. 展开更多
关键词 shield tunnel cut-and-cover method metro station risk identification risk mitigation
下载PDF
Initial support distance of a non-circular tunnel based on convergence constraint method and integral failure criteria of rock 被引量:5
20
作者 AN Xue-xu HU Zhi-ping +3 位作者 SU Yan CAO Shuang-li TAO Lei ZHANG Yong-hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第11期3732-3744,共13页
For deep tunnel projects,selecting an appropriate initial support distance is critical to improving the self-supporting capacity of surrounding rock.In this work,an intuitive method for determining the tunnel’s initi... For deep tunnel projects,selecting an appropriate initial support distance is critical to improving the self-supporting capacity of surrounding rock.In this work,an intuitive method for determining the tunnel’s initial support distance was proposed.First,based on the convergence-confinement method,a three-dimensional analytical model was constructed by combining an analytical solution of a non-circular tunnel with the Tecplot software.Then,according to the integral failure criteria of rock,the failure tendency coefficients of hard surrounding rock were computed and the spatial distribution plots of that were constructed.On this basis,the tunnel’s key failure positions were identified,and the relationship between the failure tendency coefficient at key failure positions and their distances from the working face was established.Finally,the distance from the working face that corresponds to the critical failure tendency coefficient was taken as the optimal support distance.A practical project was used as an example,and a reasonable initial support distance was successfully determined by applying the developed method.Moreover,it is found that the stability of hard surrounding rock decreases rapidly within the range of 1.0D(D is the tunnel diameter)from the working face,and tends to be stable outside the range of 1.0D. 展开更多
关键词 tunnel engineering convergence confinement method integral failure criteria of rock non-circular tunnel initial supporting distance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部