A three-dimensional coupled physical and water quality model was developed and applied to the Jiaozhou Bay to study water quality involving nutrients, biochemical oxygen demand, dissolved oxygen, and phytoplankton tha...A three-dimensional coupled physical and water quality model was developed and applied to the Jiaozhou Bay to study water quality involving nutrients, biochemical oxygen demand, dissolved oxygen, and phytoplankton that are closely related to eutrophication process. The physical model is a modified ECOM-si version with inclusion of flooding/draining processes over the intertidal zone. The water quality model is based on WASP5 which quantifies processes governing internal nutrients cycling, dissolved oxygen balance and phytoplankton growth. The model was used to simulate the spatial distribution and the temporal variation of water quality in the Jiaozhou Bay for the period of May 2005 to May 2006. In addition, the effect of reduction of riverine nutrients load was simulated and evaluated. The simulated results show that under the influence of nutrients discharged from river, the concentrations of nutrients and phytoplankton were higher in the northwest and northeast of the bay, and decreased from the inner bay to the outer. Affected by strong tidal mixing, the concentrations of all state variables were vertically homogeneous except in the deeper regions where a small gradient was found. Obvious seasonal variation of phytoplankton biomass was found, which exhibited two peaks in March and July, respectively. The variation of riverine waste loads had remarkable impact on nutrients concentration in coastal areas, but slightly altered the distribution in the center of the bay.展开更多
The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water qu...The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water quality. The eddy viscosities and diffusivities are computed from the Prandtl mixing length model. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter. The model simulates full oxygen and nutrient balance, primary productivity and the transport, reaction mechanism and fate of pollutants over tidal time-scales. The model is applied to numerical simulation of tidal flows and water quality in Dalian Bay. The model has been calibrated against a limited data set of historical water quality observations and in general demonstrates excellent agreement with all available data.展开更多
In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method wit...In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method with the k-ε turbulence mathematical model. Then, the water hydrodynamic characteristics and transport processes for BOD_5, NH_(3^-)N and TP were analyzed. The results showed that the water surface of convex bank was a little lower than that of concave bank due to the centrifugal force near the bend, and most concentrations were inferior to the type Ⅴ standard indexes of surface water environmental quality. The model validation indicated that the errors between the simulated and monitored values were comparatively small, satisfying the application demands and providing scientific basis and decision support for the restoration and protection of water quality.展开更多
Taking the transport of total phosphor pollutants in the Beijing Miyun reservoir for example,we have obtained three dimensional distributing regularity of total phosphor pollutants by the calculation of the linear int...Taking the transport of total phosphor pollutants in the Beijing Miyun reservoir for example,we have obtained three dimensional distributing regularity of total phosphor pollutants by the calculation of the linear interpolation value of each point between horizontal layers. The credibility analysis in allusion to this method was carried out and the programming scheme for realizing this method was set forth.展开更多
With complex fractured-vuggy heterogeneous structures, water has to be injected to facilitate oil pro- duction. However, the effect of different water injection modes on oil recovery varies. The limitation of existing...With complex fractured-vuggy heterogeneous structures, water has to be injected to facilitate oil pro- duction. However, the effect of different water injection modes on oil recovery varies. The limitation of existing numerical simulation methods in representing fractured- vuggy carbonate reservoirs makes numerical simulation difficult to characterize the fluid flow in these reservoirs. In this paper, based on a geological example unit in the Tahe Oilfield, a three-dimensional physical model was designed and constructed to simulate fluid flow in a fractured-vuggy reservoir according to similarity criteria. The model was validated by simulating a bottom water drive reservoir, and then subsequent water injection modes were optimized. These were continuous (constant rate), intermittent, and pulsed injection of water. Experimental results reveal that due to the unbalanced formation pressure caused by pulsed water injection, the swept volume was expanded and consequently the highest oil recovery increment was achieved. Similar to continuous water injection, intermit- tent injection was influenced by factors including the connectivity of the fractured-vuggy reservoir, well depth, and the injection-production relationship, which led to a relative low oil recovery. This study may provide a constructive guide to field production and for the devel- opment of the commercial numerical models specialized for fractured-vuggy carbonate reservoirs.展开更多
Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item ...Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater抯 economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da抋n in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.展开更多
After the Three Gorges Reservoir starts running, it can not only take into consideration the interest of departments such as flood control, power generation, water supply, and shipping, but also reduce or eliminate th...After the Three Gorges Reservoir starts running, it can not only take into consideration the interest of departments such as flood control, power generation, water supply, and shipping, but also reduce or eliminate the adverse effects of pollutants by discharge regulation. The evolution of pollutant plumes under different operation schemes of the Three Gorges Reservoir and three kinds of pollutant discharge types were calculated with the MIKE 21 AD software. The feasibility and effectiveness of the reservoir emergency operation when pollution accidents occur were investigated. The results indicate that the emergency operation produces significant effects on the instantaneous discharge type with lesser effects on the constant discharge type, the impact time is shortened, and the concentration of pollutant is reduced. Meanwhile, the results show that the larger the discharge is and the shorter the operation duration is, the more favorable the result is.展开更多
Full operation of the Three Gorges Dam(TGD) reduces flood risk of the middle and lower parts of the Yangtze River Basin. However,Dongting Lake, which is located in the Yangtze River Basin, is still at high risk for po...Full operation of the Three Gorges Dam(TGD) reduces flood risk of the middle and lower parts of the Yangtze River Basin. However,Dongting Lake, which is located in the Yangtze River Basin, is still at high risk for potentially severe flooding in the future. The effects of the TGD on flood processes were investigated using a hydrodynamic model. The 1998 and 2010 flood events before and after the operation of the TGD, respectively, were analyzed. The numerical results show that the operation of the TGD changes flood processes, including the timing and magnitude of flood peaks in Dongting Lake. The TGD can effectively reduce the flood level in Dongting Lake, which is mainly caused by the flood water from the upper reach of the Yangtze River. This is not the case, however, for floods mainly induced by flood water from four main rivers in the catchment. In view of this, a comprehensive strategy for flood management in Dongting Lake is required. Non-engineering measures, such as warning systems and combined operation of the TGD and other reservoirs in the catchment, as well as traditional engineering measures, should be further improved. Meanwhile, a sustainable philosophy for flood control, including natural flood management and lake restoration, is recommended to reduce the flood risk.展开更多
In order to evaluate the need of controlling the temperature of water discharged from the Fenhe Reservoir, the reservoir water temperature distribution was examined. A three-dimensional mathematical model was used to ...In order to evaluate the need of controlling the temperature of water discharged from the Fenhe Reservoir, the reservoir water temperature distribution was examined. A three-dimensional mathematical model was used to simulate the in-plane and vertical distribution of water temperature. The parameters of the model were calibrated with field data of the temperature distribution in the Fenhe Reservoir. The simulated temperature of discharged water is consistent with the measured data. The difference in temperature between the discharged water and the natural river channel is less than 3 ℃ under the current operating conditions. This will not significantly impact the environment of downstream areas.展开更多
Various water samples were collected for electrical conductivity (EC) and δ^18O analysis,and the proportion and contribution of atmospheric precipitation,glacier ice and shallow groundwater to discharge in the Koxkar...Various water samples were collected for electrical conductivity (EC) and δ^18O analysis,and the proportion and contribution of atmospheric precipitation,glacier ice and shallow groundwater to discharge in the Koxkar glacier basin at the south slope of the Tianshan Mountains were studied.The results show that glacial ice-water recharge was dominant,accounting for 72.11% of the annual runoff.It also had a significant positive correlation with temperature during the warm season (from May to September).However,glacier ice ablation replenishment still existed when the temperature in the cold season was below the critical temperature of 0 ℃.This could be that the heat generated by the friction between the ice body and the ice bed during the subglacial ice sliding process led ice to melt,what's more,the stored water in the geometric passages inside and below the glacier could slowly release.Groundwater recharge accounted for 16.38% of the total runoff.The supplement was small and its variation range was relatively small in the cold season.But in the warm season,the amount of groundwater recharge increased and changed drastically.It might be that the seasonal frozen soil in the basin was widely developed and was affected by temperature changes.Atmospheric precipitation replenishment only accounted for 11.51%.The daily precipitation recharge river water had a significant response to regional precipitation,but there was hysteresis in time,and there was still precipitation recharge runoff even in the absence of precipitation.展开更多
Dalian Bay is a large coastal embayment situated in the Yellow Sea. The bay is heavily industrialised and the surrounding water they receives large amounts of industrial effluent. A numerical model of water quality in...Dalian Bay is a large coastal embayment situated in the Yellow Sea. The bay is heavily industrialised and the surrounding water they receives large amounts of industrial effluent. A numerical model of water quality in Dalian Bay has been developed to study the long-term transport and fate of pollutants in the system. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter.The waters of Dalisn Bay are stratified due to the density variations resulting from the seasonal variations in meteorological conditions. In order to simulate the vertical structure of the hydrodynamics and pollutant transport in the bay the three-dimensional segmented and layered hydrodynamic model has been utilised. The results are used to drive the water quality model which simulates full oxygen and nutrient balance, primary productivity and the transport,reaction mechanism and fate of pollutants. The model has been used to study seasonal effects.The model has been calibrated against a limited data set of historical water quality observations and in general demonstrates excellent agreement with all available data.展开更多
A three-dimensional nonlinear numerical model with inclined pressure was developed to compute the saltwater intrusion at the Yangtze River Estuary. The σ-transformation was introduced in the vertical plane to achieve...A three-dimensional nonlinear numerical model with inclined pressure was developed to compute the saltwater intrusion at the Yangtze River Estuary. The σ-transformation was introduced in the vertical plane to achieve the same lattices in the whole domain of interest. The mode-splitting technique can be used to split the three-dimensional governing equations into the surface gravity waves (external mode) and the internal gravity waves (internal mode). And the external mode was solved by the improved double-sweep-implicit (DSI) finite difference method and the internal mode was solved by the Eulerian-Lagrangian method. The Eulerian-Lagrangian method can not only reduce the numerical diffusion but also increase the computational accuracy through the improvement of the finite difference scheme in the vertical direction. The application of the model to the Yangtze River Estuary was carried out for the calculation of the saltwater intrusion and the null point. Results of the temporal and spatial distribution of the flow velocity and the salinity coincide with the measured data quite well. The formation and location of the underwater sandbars in the North Channel of the Yangtze River Estuary are closely related to the local salinity, the null point, the predominant current and the residual flow.展开更多
By means of the computational fluid dynamics software Fluent 6.3, a mathematical model of three-dimensional three-phase fluid flow field in the molten bath of electric arc furnace (EAF) with side accessorial oxygen ...By means of the computational fluid dynamics software Fluent 6.3, a mathematical model of three-dimensional three-phase fluid flow field in the molten bath of electric arc furnace (EAF) with side accessorial oxygen lances was developed to study the transient phenomena of oxygen jet impingement on the molten steel and the molten slag. The water modeling experiment was carried out to verify the simulation results. The impingement of the supersonic oxygen jet caused impact dent on the molten steel surface accordingly. The area of impact dent changed almost in linear relationship to flow rate of oxygen jet, which can be expressed by a deduced mathematical equation. And the relationship between the impact force of oxygen iet and the correspondingly formed apparent static pressure on molten bath was obtained, which was in linear relationship and a direct proportion, and can also be expressed by a deduced mathematical equation.展开更多
文摘A three-dimensional coupled physical and water quality model was developed and applied to the Jiaozhou Bay to study water quality involving nutrients, biochemical oxygen demand, dissolved oxygen, and phytoplankton that are closely related to eutrophication process. The physical model is a modified ECOM-si version with inclusion of flooding/draining processes over the intertidal zone. The water quality model is based on WASP5 which quantifies processes governing internal nutrients cycling, dissolved oxygen balance and phytoplankton growth. The model was used to simulate the spatial distribution and the temporal variation of water quality in the Jiaozhou Bay for the period of May 2005 to May 2006. In addition, the effect of reduction of riverine nutrients load was simulated and evaluated. The simulated results show that under the influence of nutrients discharged from river, the concentrations of nutrients and phytoplankton were higher in the northwest and northeast of the bay, and decreased from the inner bay to the outer. Affected by strong tidal mixing, the concentrations of all state variables were vertically homogeneous except in the deeper regions where a small gradient was found. Obvious seasonal variation of phytoplankton biomass was found, which exhibited two peaks in March and July, respectively. The variation of riverine waste loads had remarkable impact on nutrients concentration in coastal areas, but slightly altered the distribution in the center of the bay.
基金The project is supported by The National Natural Science Foundation of China
文摘The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water quality. The eddy viscosities and diffusivities are computed from the Prandtl mixing length model. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter. The model simulates full oxygen and nutrient balance, primary productivity and the transport, reaction mechanism and fate of pollutants over tidal time-scales. The model is applied to numerical simulation of tidal flows and water quality in Dalian Bay. The model has been calibrated against a limited data set of historical water quality observations and in general demonstrates excellent agreement with all available data.
基金Supported by the Innovative Research Groups of National Natural Science Foundation of China(No.51321065)the Major Science and Technology Program for Water Pollution Control and Treatment(2012ZX07101-008)the National Natural Science Foundation of China(No.51439005)
文摘In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method with the k-ε turbulence mathematical model. Then, the water hydrodynamic characteristics and transport processes for BOD_5, NH_(3^-)N and TP were analyzed. The results showed that the water surface of convex bank was a little lower than that of concave bank due to the centrifugal force near the bend, and most concentrations were inferior to the type Ⅴ standard indexes of surface water environmental quality. The model validation indicated that the errors between the simulated and monitored values were comparatively small, satisfying the application demands and providing scientific basis and decision support for the restoration and protection of water quality.
文摘Taking the transport of total phosphor pollutants in the Beijing Miyun reservoir for example,we have obtained three dimensional distributing regularity of total phosphor pollutants by the calculation of the linear interpolation value of each point between horizontal layers. The credibility analysis in allusion to this method was carried out and the programming scheme for realizing this method was set forth.
基金supported by China National Science and Technology Major Project(2011ZX05009-004,2011ZX05014-003)National Key Basic Research and Development Program(973 Program),China(2011CB201006)Science Foundation of China University of Petroleum,Beijing(2462014YJRC053)
文摘With complex fractured-vuggy heterogeneous structures, water has to be injected to facilitate oil pro- duction. However, the effect of different water injection modes on oil recovery varies. The limitation of existing numerical simulation methods in representing fractured- vuggy carbonate reservoirs makes numerical simulation difficult to characterize the fluid flow in these reservoirs. In this paper, based on a geological example unit in the Tahe Oilfield, a three-dimensional physical model was designed and constructed to simulate fluid flow in a fractured-vuggy reservoir according to similarity criteria. The model was validated by simulating a bottom water drive reservoir, and then subsequent water injection modes were optimized. These were continuous (constant rate), intermittent, and pulsed injection of water. Experimental results reveal that due to the unbalanced formation pressure caused by pulsed water injection, the swept volume was expanded and consequently the highest oil recovery increment was achieved. Similar to continuous water injection, intermit- tent injection was influenced by factors including the connectivity of the fractured-vuggy reservoir, well depth, and the injection-production relationship, which led to a relative low oil recovery. This study may provide a constructive guide to field production and for the devel- opment of the commercial numerical models specialized for fractured-vuggy carbonate reservoirs.
基金The Key Project of the National Ninth-Five-Year Plan No. 96-004-02-09The 48Project of Ministry of Water Resources No. 985106The Project of Chinese Academy of Sciences
文摘Through the study of mutual process between groundwater systems and eco-environmental water demand, the eco-environmental water demand is brought into groundwater systems model as the important water consumption item and unification of groundwater抯 economic, environmental and ecological functions were taken into account. Based on eco-environmental water demand at Da抋n in Jilin province, a three-dimensional simulation and optimized management model of groundwater systems was established. All water balance components of groundwater systems in 1998 and 1999 were simulated with this model and the best optimal exploitation scheme of groundwater systems in 2000 was determined, so that groundwater resource was efficiently utilized and good economic, ecologic and social benefits were obtained.
基金supported by the Nonprofit Scientific Research Project of the Ministry of Water Resources of China (Grant No. 20081035)the National Fund for Major Projects of Water Pollution Control (Grant No. 2009ZX07104-006)
文摘After the Three Gorges Reservoir starts running, it can not only take into consideration the interest of departments such as flood control, power generation, water supply, and shipping, but also reduce or eliminate the adverse effects of pollutants by discharge regulation. The evolution of pollutant plumes under different operation schemes of the Three Gorges Reservoir and three kinds of pollutant discharge types were calculated with the MIKE 21 AD software. The feasibility and effectiveness of the reservoir emergency operation when pollution accidents occur were investigated. The results indicate that the emergency operation produces significant effects on the instantaneous discharge type with lesser effects on the constant discharge type, the impact time is shortened, and the concentration of pollutant is reduced. Meanwhile, the results show that the larger the discharge is and the shorter the operation duration is, the more favorable the result is.
基金supported by the National Basic Research Program of China(973 Program,Grant No.2012CB417000)
文摘Full operation of the Three Gorges Dam(TGD) reduces flood risk of the middle and lower parts of the Yangtze River Basin. However,Dongting Lake, which is located in the Yangtze River Basin, is still at high risk for potentially severe flooding in the future. The effects of the TGD on flood processes were investigated using a hydrodynamic model. The 1998 and 2010 flood events before and after the operation of the TGD, respectively, were analyzed. The numerical results show that the operation of the TGD changes flood processes, including the timing and magnitude of flood peaks in Dongting Lake. The TGD can effectively reduce the flood level in Dongting Lake, which is mainly caused by the flood water from the upper reach of the Yangtze River. This is not the case, however, for floods mainly induced by flood water from four main rivers in the catchment. In view of this, a comprehensive strategy for flood management in Dongting Lake is required. Non-engineering measures, such as warning systems and combined operation of the TGD and other reservoirs in the catchment, as well as traditional engineering measures, should be further improved. Meanwhile, a sustainable philosophy for flood control, including natural flood management and lake restoration, is recommended to reduce the flood risk.
文摘In order to evaluate the need of controlling the temperature of water discharged from the Fenhe Reservoir, the reservoir water temperature distribution was examined. A three-dimensional mathematical model was used to simulate the in-plane and vertical distribution of water temperature. The parameters of the model were calibrated with field data of the temperature distribution in the Fenhe Reservoir. The simulated temperature of discharged water is consistent with the measured data. The difference in temperature between the discharged water and the natural river channel is less than 3 ℃ under the current operating conditions. This will not significantly impact the environment of downstream areas.
基金Supported by the National Natural Science Foundation of China(41471060,41401084,41730751 and 41871055)
文摘Various water samples were collected for electrical conductivity (EC) and δ^18O analysis,and the proportion and contribution of atmospheric precipitation,glacier ice and shallow groundwater to discharge in the Koxkar glacier basin at the south slope of the Tianshan Mountains were studied.The results show that glacial ice-water recharge was dominant,accounting for 72.11% of the annual runoff.It also had a significant positive correlation with temperature during the warm season (from May to September).However,glacier ice ablation replenishment still existed when the temperature in the cold season was below the critical temperature of 0 ℃.This could be that the heat generated by the friction between the ice body and the ice bed during the subglacial ice sliding process led ice to melt,what's more,the stored water in the geometric passages inside and below the glacier could slowly release.Groundwater recharge accounted for 16.38% of the total runoff.The supplement was small and its variation range was relatively small in the cold season.But in the warm season,the amount of groundwater recharge increased and changed drastically.It might be that the seasonal frozen soil in the basin was widely developed and was affected by temperature changes.Atmospheric precipitation replenishment only accounted for 11.51%.The daily precipitation recharge river water had a significant response to regional precipitation,but there was hysteresis in time,and there was still precipitation recharge runoff even in the absence of precipitation.
文摘Dalian Bay is a large coastal embayment situated in the Yellow Sea. The bay is heavily industrialised and the surrounding water they receives large amounts of industrial effluent. A numerical model of water quality in Dalian Bay has been developed to study the long-term transport and fate of pollutants in the system. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter.The waters of Dalisn Bay are stratified due to the density variations resulting from the seasonal variations in meteorological conditions. In order to simulate the vertical structure of the hydrodynamics and pollutant transport in the bay the three-dimensional segmented and layered hydrodynamic model has been utilised. The results are used to drive the water quality model which simulates full oxygen and nutrient balance, primary productivity and the transport,reaction mechanism and fate of pollutants. The model has been used to study seasonal effects.The model has been calibrated against a limited data set of historical water quality observations and in general demonstrates excellent agreement with all available data.
文摘A three-dimensional nonlinear numerical model with inclined pressure was developed to compute the saltwater intrusion at the Yangtze River Estuary. The σ-transformation was introduced in the vertical plane to achieve the same lattices in the whole domain of interest. The mode-splitting technique can be used to split the three-dimensional governing equations into the surface gravity waves (external mode) and the internal gravity waves (internal mode). And the external mode was solved by the improved double-sweep-implicit (DSI) finite difference method and the internal mode was solved by the Eulerian-Lagrangian method. The Eulerian-Lagrangian method can not only reduce the numerical diffusion but also increase the computational accuracy through the improvement of the finite difference scheme in the vertical direction. The application of the model to the Yangtze River Estuary was carried out for the calculation of the saltwater intrusion and the null point. Results of the temporal and spatial distribution of the flow velocity and the salinity coincide with the measured data quite well. The formation and location of the underwater sandbars in the North Channel of the Yangtze River Estuary are closely related to the local salinity, the null point, the predominant current and the residual flow.
基金Sponsored by National Key Technology Research and Development Program in 11th Five-year Plan of China(2008AF33B01)Fuzhou University Foundation for Development of Science and Technology of China(0020-600588)
文摘By means of the computational fluid dynamics software Fluent 6.3, a mathematical model of three-dimensional three-phase fluid flow field in the molten bath of electric arc furnace (EAF) with side accessorial oxygen lances was developed to study the transient phenomena of oxygen jet impingement on the molten steel and the molten slag. The water modeling experiment was carried out to verify the simulation results. The impingement of the supersonic oxygen jet caused impact dent on the molten steel surface accordingly. The area of impact dent changed almost in linear relationship to flow rate of oxygen jet, which can be expressed by a deduced mathematical equation. And the relationship between the impact force of oxygen iet and the correspondingly formed apparent static pressure on molten bath was obtained, which was in linear relationship and a direct proportion, and can also be expressed by a deduced mathematical equation.