A turbulent separation-rcattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter.The turbulent boundary layer separates on the lower curved wall...A turbulent separation-rcattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter.The turbulent boundary layer separates on the lower curved wall under strong pressure gradient and then reattaches on a parallel channel.At the inlet of the diffuser,Reynolds number based on the diffuser height is 1.2×10~5 and the velocity is 25.2m/s.The re- sults of experiments are presented and analyzed in new defined streamline-aligned coordinates.The experiment shows that after Transitory Detachment Reynolds shear stress is negative in the near-wall backflow region. Their characteristics are approximately the same as in simple turbulent shear layers near the maximum Reynolds shear stress.A scale is formed using the maximum Reynolds shear stresses.It is found that a Reynolds shear stress similarity exists from separation to reattachment and the Schofield-Perry velocity law ex- ists in the forward shear flow.Both profiles are used in the experimental work that leads to the design of a new eddy-viscosity model.The length scale is taken from that developed by Schofield and Perry.The composite velocity scale is formed by the maximum Reynolds shear stress and the Schofield Perry velocity scale as well as the edge velocity of the boundary layer.The results of these experiments are presented in this paper展开更多
In this paper,to simulate the three dimensional turbulent flow in suddenly expanded rectangular duct numerically,the SIMPLEC algorithm is employed to solve the incompressible Navier-Stckes equation with k-εturbulenc...In this paper,to simulate the three dimensional turbulent flow in suddenly expanded rectangular duct numerically,the SIMPLEC algorithm is employed to solve the incompressible Navier-Stckes equation with k-εturbulence model.The numerical resulis show well the three dimensional turbulent flow field in the rectangular duct behind the sudden expansion cross-section. and agree.fairly well with the experimental result of the length of the main circumfluence.The numerical method of this paper can be applied to numerical analysis of this kind of turbulent flow.展开更多
Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of press...Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of pressure gradient and the historical variation of eddy viscosity, so the model is with memory. Numerical calculation by solving boundary layer equations was carried out for the five pressure driven three dimensional turbulent boundary layers developed on flat plates, swept wing, and prolate spheroid in symmetrical plane. Comparing the computational results with the experimental data, it is obvious that the prediction will be more accurate if the proposed closure equations are used, especially for the turbulent shear stresses.展开更多
Oil flow through pipe bends is found in many engineering applications. However, up to now, the studies of oil flow field in the pipe bend appear to be relatively sparse, although the oil flow field and the associated ...Oil flow through pipe bends is found in many engineering applications. However, up to now, the studies of oil flow field in the pipe bend appear to be relatively sparse, although the oil flow field and the associated losses of pipe bend are very important in practice. In this paper, the relationships between the turbulent flow of hydraulic oil in a bend and the Reynolds number Re and the curvature ratio δare studied by using computational fluid dynamics (CFD). A particular emphasis is put on hydraulic oil, which differs from air or water, flowing through 90° circular-sectional bend, with the purpose of determining the turbulent flow characteristics as well as losses. Three turbulence models, namely, RNG κ-ε model, realizable k-ε model, and Reynolds stress model (RSM), are used respectively. The simulation results in the form of contour and vector plots for all the three turbulence models for pipe bends having curvature ratio of δ=0.5, and the detailed pressure fields and total pressure losses for different Re and δ for RSM are presented. The RSM can predict the stronger secondary flow in the bend better than other models. As Re increases, the pressure gradient changes rapidly, and the pressure magnitude increases at inner and outer wall of the bend. When δ decreases, two transition points or transition zones of pressure gradient arise at inner wall, meanwhile, the transition point moves towards the inlet at outer wall of the bend. Owing to secondary flow, the total pressure loss factor k increases as the bend tightens, on the contrary, as Re increases, factor k decreases due to higher velocity heads, and the rapid change of pressure gradient on the surface of the bend leads to increasing of friction and separation effects, and magnified swirl intensity of secondary flow. A new mathematical model is proposed for predicting pressure loss in terms of Re and δ in order to provide support to the one-dimensional simulation software. The proposed research provides reference for the analysis of oil flow with higher Re in the large bends.展开更多
In order to verify the effectiveness and superiority of the dynamic hybrid RANS/LES(DHRL)model,the flow around a cylinder with sinusoidal fluctuating velocity at the inlet was used as the test case.The latest computat...In order to verify the effectiveness and superiority of the dynamic hybrid RANS/LES(DHRL)model,the flow around a cylinder with sinusoidal fluctuating velocity at the inlet was used as the test case.The latest computational fluid dynamics(CFD)model can flexibly choose any existing large-eddy simulation(LES)method combined with RANS method to calculate the flow field.In addition,the DLES model and DDES model are selected as typical representatives of the turbulence model to compare the capture ability of the flow field mechanism.The internal flow field including the y+value,velocity distribution,turbulent kinetic energy and vortex structures is comprehensively analyzed.Finally,the results show that the new model has enough sensitivity to capture the information of the flow field and has more consistent velocity distribution with the experimental value,which shows its potential in practical engineering applications to some extent.展开更多
A finite different method is developed to predict the side force on a high speedtrain in a cross-wind at low yaw anglee. The k-εturbulence model with wallfunctions is employed. the solution algorithm is based on curv...A finite different method is developed to predict the side force on a high speedtrain in a cross-wind at low yaw anglee. The k-εturbulence model with wallfunctions is employed. the solution algorithm is based on curvilinearnonorthogonal coordinates,covariant velocity components ,and staggered gridarrangement. The convective fluxes are described by the Power tow Scheme.A highly deformed grid generated with an elliptic grid generator is used aroundthe comero of the cross-section of the train. The results obtained comparepositively with wind tunnel experinients.展开更多
The combined effect of magnetic field, thermal radiation and local suction on the steady turbulent compressible boundary layer flow with adverse pressure gradient is numerically studied. The magnetic field is constant...The combined effect of magnetic field, thermal radiation and local suction on the steady turbulent compressible boundary layer flow with adverse pressure gradient is numerically studied. The magnetic field is constant and applied transversely to the direction of the flow. The fluid is subjected to a localized suction and is considered as a radiative optically thin gray fluid. The Reynolds Averaged Boundary Layer (RABL) equations with appropriate boundary conditions are transformed using the compressible Falkner Skan transformation. The nonlinear and coupled system of partial differential equations (PDEs) is solved using the Keller box method. For the eddy-kinematic viscosity the Baldwin Lomax turbulent model and for the turbulent Prandtl number the extended Kays Crawford model are used. The numerical results show that the flow field can be controlled by the combined effect of the applied magnetic field, thermal radiation, and localized suction, moving the separation point, xs , downstream towards the plate’s end, and increasing total drag, D . The combined effect of thermal radiation and magnetic field has a cooling effect on the fluid at the wall vicinity. The combined effect has a greater influence in the case of high free-stream temperature.展开更多
To study fluctuations of the free surface of liquid steel in the mold,two different models with the same casting conditions but different thicknesses were employed to analyze the hydrodynamic behavior at the top of th...To study fluctuations of the free surface of liquid steel in the mold,two different models with the same casting conditions but different thicknesses were employed to analyze the hydrodynamic behavior at the top of the mold.The first model was a standard thickness slab,and the second had a thickness three times wider.It is found with the second model that above the plane formed by the steel jets,it is possible to observe four three-dimensional vortexes that interact with the submerged entry nozzle(SEN)and mold walls.By using a biphasic model to simulate the interface between the liquid and air inside the mold,the flow asymmetry and the fluctuations of the free surface can be clearly observed.展开更多
In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method wit...In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method with the k-ε turbulence mathematical model. Then, the water hydrodynamic characteristics and transport processes for BOD_5, NH_(3^-)N and TP were analyzed. The results showed that the water surface of convex bank was a little lower than that of concave bank due to the centrifugal force near the bend, and most concentrations were inferior to the type Ⅴ standard indexes of surface water environmental quality. The model validation indicated that the errors between the simulated and monitored values were comparatively small, satisfying the application demands and providing scientific basis and decision support for the restoration and protection of water quality.展开更多
Large eddy simulation(LES) cooperated with a high performance parallel computing method is applied to simulate the flow in a curved duct with square cross section in the paper. The method consists of parallel domain d...Large eddy simulation(LES) cooperated with a high performance parallel computing method is applied to simulate the flow in a curved duct with square cross section in the paper. The method consists of parallel domain decomposition of grids, creation of virtual diagonal bordered matrix, assembling of boundary matrix, parallel LDL^T decomposition, parallel solving of Poisson Equation, parallel estimation of convergence and so on. The parallel computing method can solve the problems that are difficult to solve using traditional serial computing. Furthermore, existing microcomputers can be fully used to resolve some large-scale problems of complex turbulent flow.展开更多
A quasi-simultaneous viscous/inviscid interaction model and a new integral method are tried to predict twodimensional incompressible turbulent boundary-layer separating flows. The results are compared with experiment...A quasi-simultaneous viscous/inviscid interaction model and a new integral method are tried to predict twodimensional incompressible turbulent boundary-layer separating flows. The results are compared with experiments and other prediction.展开更多
The main purpose of this paper is to analyze the influence of different turbulence flow models on scouring pit of bridge-pier. Flow-3D software is applied in line with the purpose. The key motivation for this study is...The main purpose of this paper is to analyze the influence of different turbulence flow models on scouring pit of bridge-pier. Flow-3D software is applied in line with the purpose. The key motivation for this study is to contribute to the Flow-3D software by means of some modification and adjustment in the sediment scour model and shallow water model. An assessment of turbulence model adopted with the parameters of the Melville experiment to estimate the maximum scour-depth was performed. In the simulation results, the alternate eddy formation and shedding were repeated while the Karman vortex street formed behind the pier for the large eddy simulation LES turbulence model is more realistic in the flow phenomenon. The results of the scour development of large eddy simulation (LES) turbulence model were found to be more satisfied than the Renormalized group (RNG) turbulence model and close to the prior experiment results. The simulated scour results were significantly different with the observed data collected from previous literature in the reason of some unsuitability of meshing method in Flow-3D software.展开更多
A two-dimensional model of unsteady turbulent flow induced by high-speed elevator system was established in the present study. The research was focused on the instantaneous variation of the aerodynamic force on the ca...A two-dimensional model of unsteady turbulent flow induced by high-speed elevator system was established in the present study. The research was focused on the instantaneous variation of the aerodynamic force on the car structure during traversing motion of the counter weight in the hoistway. A dynamic meshing method was employed to treat the multi-body motion system to avoid poor distortion of meshes. A comprehensive understanding of this significant aspect was obtained by varying the horizontal gap (δ =0.1m, 0.2m, and 0.3m) between the elevator car and the counter weight, and the moving speed ( U 0= 2m/s, 6m/s, and 10m/s) of the elevator system. A pulsed intensification of the aerodynamic force on the elevator car and subsequent appearance of large valley with negative aerodynamic force were clearly observed in the numerical results. In parameters studied ( δ =0.1m, U 0= 2m/s, 6m/s, 10m/s), the peaked horizontal and vertical forces are respectively 7-11 and 4.3-5.65 times of that when the counter weight is far from the car. These results demonstrated the prominent influence of the traversing counter weight on aerodynamic force on the elevator car, which is of great significance to designers of high-speed elevator system.展开更多
An extensive set of measurements in 2-D turbulent mixing layer, wake and jet flow by the hot-wire technique and data sampling are presented. The measured quantities, i. e. the mean velocity, the turbulence intensity, ...An extensive set of measurements in 2-D turbulent mixing layer, wake and jet flow by the hot-wire technique and data sampling are presented. The measured quantities, i. e. the mean velocity, the turbulence intensity, the Reynolds stress and higher-order correlations of the fluctuating velocity in the self-preserving region of the above free shear flows are compared with the computational results based on Zhou's theory for the shear turbulence of in- compressible fluid. The experimental and computational results are in good agreement.展开更多
Ⅰ. INTRODUCTIONThe flow phenomena that exist in the advanced turbomachinery are extremely complex and propose a challenge to the engineers and scientists to improve the design procedure. The rapid progress of high sp...Ⅰ. INTRODUCTIONThe flow phenomena that exist in the advanced turbomachinery are extremely complex and propose a challenge to the engineers and scientists to improve the design procedure. The rapid progress of high speed and large capacity computers has encouraged the development of computational fluid dynamics that has had an increasingly important influence on turbomachinery blade design and analysis. Compared with the inviscid solver, the N.S.展开更多
文章采用FLOW-3D软件,通过RNGk-ε模型和volume of fluid(VOF)方法相结合,实现了竖井水平旋流泄洪洞水力特性的三维水流流场数值模拟;对开敞式进水口轴线与旋流洞轴线交角不同时起旋室的压强分布、旋流角和紊动能等水力特性进行了对比...文章采用FLOW-3D软件,通过RNGk-ε模型和volume of fluid(VOF)方法相结合,实现了竖井水平旋流泄洪洞水力特性的三维水流流场数值模拟;对开敞式进水口轴线与旋流洞轴线交角不同时起旋室的压强分布、旋流角和紊动能等水力特性进行了对比分析研究,数值模拟能够客观地反映起旋室旋流的流场特性,成果可为旋流溢洪道的研究应用提供参考.展开更多
Almost without exception literature data and modeling effort are understandably devoted to water as the sprayed liquid since it constitutes the most common liquid used in spray drying applications. In selected applica...Almost without exception literature data and modeling effort are understandably devoted to water as the sprayed liquid since it constitutes the most common liquid used in spray drying applications. In selected applications, however, the liquid making up the solution or suspension may not be water. The objective of this work is to examine the differences in flow patterns, thermal behavior and drying rates caused by different liquids having different thermo-physical properties spray into a spray dryer using a computational fluid dynamic model.Numerical experiments were carried out for water (base case), ethyl alcohol and isopropyl alcohol-the latter two as model non-aqueous liquids. The chamber geometry was cylinder type with a co-current axial pressure nozzle and also an axial central exit so that the configuration is two dimensional and axi-symmetric. It is shown that the liquid properties can have major influence on the thermal field, droplet trajectories, residence times and overall evaporation capacity when all parameters of the problem are held fixed. Deviations from the single phase turbulent airflow in the same chamber without spray are different for the three liquids examined.展开更多
This work focuses on the design improvement of the long-short blades(LSB)impeller by using pitched short blades(SBs)to regulate the flow field in the stirred vessel.After mesh size evaluation and velocity field valida...This work focuses on the design improvement of the long-short blades(LSB)impeller by using pitched short blades(SBs)to regulate the flow field in the stirred vessel.After mesh size evaluation and velocity field validation by the particle image velocimetry,large eddy simulation method coupled with sliding mesh approach was used to study the effect of the pitched SBs on the flow characteristics.We changed the inclined angles of the SBs from 30°to 60°and compared the flow characteristics when the impeller was operated in the down-pumping and up-pumping modes.In the case of down-pumping mode,the power number is relatively smaller and vortexes below the SBs are suppressed,leading to turbulence intensification in the bottom of the vessel.Whereas in the case of up-pumping mode,the axial flow rate in the center increased significantly with bigger power number,resulting in more efficient mass exchange between the axial and radial flows in the whole vessel.The LSB with 45°inclined angle of the SBs in the up-pumping mode has the most uniform distributions of flow field and turbulent kinetic energy compared with other impeller configurations.展开更多
Computational modeling methods have been increasingly employed to quantify aortic hemodynamic parameters that are challenging to in vivo measurements but important for the diagnosis/treatment of aortic disease.Althoug...Computational modeling methods have been increasingly employed to quantify aortic hemodynamic parameters that are challenging to in vivo measurements but important for the diagnosis/treatment of aortic disease.Although the presence of turbulence-like behaviors of blood flow in normal or diseased aorta has long been confirmed,the majority of existing computational model studies adopted the laminar flow assumption(LFA)in the treatment of sub-grid flow variables.So far,it remains unclear whether LFA would significantly compromise the reliability of hemodynamic simulation.In the present study,we addressed the issue in the context of a specific aortopathy,namely aortic dilation,which is usually accompanied by disturbed flow patterns.Three patient-specific aortas with treated/untreated dilation of the ascending segment were investigated,and their geometrical models were reconstructed from computed tomography angiographic images,with the boundary conditions being prescribed based on flow velocity information measured in vivo with the phase contrast magnetic resonance imaging technique.For the modeling of blood flow,apart from the traditional LFA-based method in which sub-grid flow dynamics is ignored,the large eddy simulation(LES)method capable of incorporating the dissipative energy loss induced by turbulent eddies at the sub-grid level,was adopted and taken as a reference for examining the performance of the LFA-based method.Obtained results showed that the simulated large-scale flow patterns with the two methods had high similarity,both agreeing well with in vivo measurements,although locally large between-method discrepancies in computed hemodynamic quantities existed in regions with high intensity of flow turbulence.Quantitatively,a switch from the LES to the LFAbased modeling method led to mild(<6%)changes in computed space-averaged wall shear stress metrics(i.e.,SA-TAWSS,SA-OSI)in the ascending aortic segment where intensive vortex evolution accompanied by high statistical Reynolds stress was observed.In addition,comparisons among the three aortas revealed that the treatment status of aortic dilation or the concomitant presence of aortic valve disease,despite its remarkable influence on flow patterns in the ascending aortic segment,did not significantly affect the degrees of discrepancies between the two modeling methods in predicting SA-TAWSS and SA-OSI.These findings suggest that aortic dilation per se does not induce strong flow turbulence that substantially negates the validity of LFA-based modeling,especially in simulating macro-scale hemodynamic features.展开更多
文摘A turbulent separation-rcattachment flow in a two-dimensional asymmetrical curved-wall diffuser is studied by a two-dimensional laser doppler velocimeter.The turbulent boundary layer separates on the lower curved wall under strong pressure gradient and then reattaches on a parallel channel.At the inlet of the diffuser,Reynolds number based on the diffuser height is 1.2×10~5 and the velocity is 25.2m/s.The re- sults of experiments are presented and analyzed in new defined streamline-aligned coordinates.The experiment shows that after Transitory Detachment Reynolds shear stress is negative in the near-wall backflow region. Their characteristics are approximately the same as in simple turbulent shear layers near the maximum Reynolds shear stress.A scale is formed using the maximum Reynolds shear stresses.It is found that a Reynolds shear stress similarity exists from separation to reattachment and the Schofield-Perry velocity law ex- ists in the forward shear flow.Both profiles are used in the experimental work that leads to the design of a new eddy-viscosity model.The length scale is taken from that developed by Schofield and Perry.The composite velocity scale is formed by the maximum Reynolds shear stress and the Schofield Perry velocity scale as well as the edge velocity of the boundary layer.The results of these experiments are presented in this paper
文摘In this paper,to simulate the three dimensional turbulent flow in suddenly expanded rectangular duct numerically,the SIMPLEC algorithm is employed to solve the incompressible Navier-Stckes equation with k-εturbulence model.The numerical resulis show well the three dimensional turbulent flow field in the rectangular duct behind the sudden expansion cross-section. and agree.fairly well with the experimental result of the length of the main circumfluence.The numerical method of this paper can be applied to numerical analysis of this kind of turbulent flow.
基金National Natural Science F oundation of China !( No.91880 10 )National Defense Science Foundation!( 95 J13 A .1.2 )
文摘Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of pressure gradient and the historical variation of eddy viscosity, so the model is with memory. Numerical calculation by solving boundary layer equations was carried out for the five pressure driven three dimensional turbulent boundary layers developed on flat plates, swept wing, and prolate spheroid in symmetrical plane. Comparing the computational results with the experimental data, it is obvious that the prediction will be more accurate if the proposed closure equations are used, especially for the turbulent shear stresses.
基金supported by National Natural Science Foundation of China (Grant No. 50775194)Shanxi Provincial Natural Science Foundation of China (Grant No. 2011011026-1)
文摘Oil flow through pipe bends is found in many engineering applications. However, up to now, the studies of oil flow field in the pipe bend appear to be relatively sparse, although the oil flow field and the associated losses of pipe bend are very important in practice. In this paper, the relationships between the turbulent flow of hydraulic oil in a bend and the Reynolds number Re and the curvature ratio δare studied by using computational fluid dynamics (CFD). A particular emphasis is put on hydraulic oil, which differs from air or water, flowing through 90° circular-sectional bend, with the purpose of determining the turbulent flow characteristics as well as losses. Three turbulence models, namely, RNG κ-ε model, realizable k-ε model, and Reynolds stress model (RSM), are used respectively. The simulation results in the form of contour and vector plots for all the three turbulence models for pipe bends having curvature ratio of δ=0.5, and the detailed pressure fields and total pressure losses for different Re and δ for RSM are presented. The RSM can predict the stronger secondary flow in the bend better than other models. As Re increases, the pressure gradient changes rapidly, and the pressure magnitude increases at inner and outer wall of the bend. When δ decreases, two transition points or transition zones of pressure gradient arise at inner wall, meanwhile, the transition point moves towards the inlet at outer wall of the bend. Owing to secondary flow, the total pressure loss factor k increases as the bend tightens, on the contrary, as Re increases, factor k decreases due to higher velocity heads, and the rapid change of pressure gradient on the surface of the bend leads to increasing of friction and separation effects, and magnified swirl intensity of secondary flow. A new mathematical model is proposed for predicting pressure loss in terms of Re and δ in order to provide support to the one-dimensional simulation software. The proposed research provides reference for the analysis of oil flow with higher Re in the large bends.
基金Supported by the Open Fund of Key Laboratory of Road Construction Technology and Equipment of Chang’an University,Ministry of Education(310825171104)the Advanced Manufacturing Projects of Government and University Co-construction Program Funded by Jilin Province(SXGJSF2017-2)
文摘In order to verify the effectiveness and superiority of the dynamic hybrid RANS/LES(DHRL)model,the flow around a cylinder with sinusoidal fluctuating velocity at the inlet was used as the test case.The latest computational fluid dynamics(CFD)model can flexibly choose any existing large-eddy simulation(LES)method combined with RANS method to calculate the flow field.In addition,the DLES model and DDES model are selected as typical representatives of the turbulence model to compare the capture ability of the flow field mechanism.The internal flow field including the y+value,velocity distribution,turbulent kinetic energy and vortex structures is comprehensively analyzed.Finally,the results show that the new model has enough sensitivity to capture the information of the flow field and has more consistent velocity distribution with the experimental value,which shows its potential in practical engineering applications to some extent.
文摘A finite different method is developed to predict the side force on a high speedtrain in a cross-wind at low yaw anglee. The k-εturbulence model with wallfunctions is employed. the solution algorithm is based on curvilinearnonorthogonal coordinates,covariant velocity components ,and staggered gridarrangement. The convective fluxes are described by the Power tow Scheme.A highly deformed grid generated with an elliptic grid generator is used aroundthe comero of the cross-section of the train. The results obtained comparepositively with wind tunnel experinients.
文摘The combined effect of magnetic field, thermal radiation and local suction on the steady turbulent compressible boundary layer flow with adverse pressure gradient is numerically studied. The magnetic field is constant and applied transversely to the direction of the flow. The fluid is subjected to a localized suction and is considered as a radiative optically thin gray fluid. The Reynolds Averaged Boundary Layer (RABL) equations with appropriate boundary conditions are transformed using the compressible Falkner Skan transformation. The nonlinear and coupled system of partial differential equations (PDEs) is solved using the Keller box method. For the eddy-kinematic viscosity the Baldwin Lomax turbulent model and for the turbulent Prandtl number the extended Kays Crawford model are used. The numerical results show that the flow field can be controlled by the combined effect of the applied magnetic field, thermal radiation, and localized suction, moving the separation point, xs , downstream towards the plate’s end, and increasing total drag, D . The combined effect of thermal radiation and magnetic field has a cooling effect on the fluid at the wall vicinity. The combined effect has a greater influence in the case of high free-stream temperature.
基金support by Universidad Autonoma Metropolitana (Nos.2231207 and 2270303)Sistema Nacional de Investigadores (SNI-CONACYT)
文摘To study fluctuations of the free surface of liquid steel in the mold,two different models with the same casting conditions but different thicknesses were employed to analyze the hydrodynamic behavior at the top of the mold.The first model was a standard thickness slab,and the second had a thickness three times wider.It is found with the second model that above the plane formed by the steel jets,it is possible to observe four three-dimensional vortexes that interact with the submerged entry nozzle(SEN)and mold walls.By using a biphasic model to simulate the interface between the liquid and air inside the mold,the flow asymmetry and the fluctuations of the free surface can be clearly observed.
基金Supported by the Innovative Research Groups of National Natural Science Foundation of China(No.51321065)the Major Science and Technology Program for Water Pollution Control and Treatment(2012ZX07101-008)the National Natural Science Foundation of China(No.51439005)
文摘In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method with the k-ε turbulence mathematical model. Then, the water hydrodynamic characteristics and transport processes for BOD_5, NH_(3^-)N and TP were analyzed. The results showed that the water surface of convex bank was a little lower than that of concave bank due to the centrifugal force near the bend, and most concentrations were inferior to the type Ⅴ standard indexes of surface water environmental quality. The model validation indicated that the errors between the simulated and monitored values were comparatively small, satisfying the application demands and providing scientific basis and decision support for the restoration and protection of water quality.
文摘Large eddy simulation(LES) cooperated with a high performance parallel computing method is applied to simulate the flow in a curved duct with square cross section in the paper. The method consists of parallel domain decomposition of grids, creation of virtual diagonal bordered matrix, assembling of boundary matrix, parallel LDL^T decomposition, parallel solving of Poisson Equation, parallel estimation of convergence and so on. The parallel computing method can solve the problems that are difficult to solve using traditional serial computing. Furthermore, existing microcomputers can be fully used to resolve some large-scale problems of complex turbulent flow.
文摘A quasi-simultaneous viscous/inviscid interaction model and a new integral method are tried to predict twodimensional incompressible turbulent boundary-layer separating flows. The results are compared with experiments and other prediction.
文摘The main purpose of this paper is to analyze the influence of different turbulence flow models on scouring pit of bridge-pier. Flow-3D software is applied in line with the purpose. The key motivation for this study is to contribute to the Flow-3D software by means of some modification and adjustment in the sediment scour model and shallow water model. An assessment of turbulence model adopted with the parameters of the Melville experiment to estimate the maximum scour-depth was performed. In the simulation results, the alternate eddy formation and shedding were repeated while the Karman vortex street formed behind the pier for the large eddy simulation LES turbulence model is more realistic in the flow phenomenon. The results of the scour development of large eddy simulation (LES) turbulence model were found to be more satisfied than the Renormalized group (RNG) turbulence model and close to the prior experiment results. The simulated scour results were significantly different with the observed data collected from previous literature in the reason of some unsuitability of meshing method in Flow-3D software.
文摘A two-dimensional model of unsteady turbulent flow induced by high-speed elevator system was established in the present study. The research was focused on the instantaneous variation of the aerodynamic force on the car structure during traversing motion of the counter weight in the hoistway. A dynamic meshing method was employed to treat the multi-body motion system to avoid poor distortion of meshes. A comprehensive understanding of this significant aspect was obtained by varying the horizontal gap (δ =0.1m, 0.2m, and 0.3m) between the elevator car and the counter weight, and the moving speed ( U 0= 2m/s, 6m/s, and 10m/s) of the elevator system. A pulsed intensification of the aerodynamic force on the elevator car and subsequent appearance of large valley with negative aerodynamic force were clearly observed in the numerical results. In parameters studied ( δ =0.1m, U 0= 2m/s, 6m/s, 10m/s), the peaked horizontal and vertical forces are respectively 7-11 and 4.3-5.65 times of that when the counter weight is far from the car. These results demonstrated the prominent influence of the traversing counter weight on aerodynamic force on the elevator car, which is of great significance to designers of high-speed elevator system.
文摘An extensive set of measurements in 2-D turbulent mixing layer, wake and jet flow by the hot-wire technique and data sampling are presented. The measured quantities, i. e. the mean velocity, the turbulence intensity, the Reynolds stress and higher-order correlations of the fluctuating velocity in the self-preserving region of the above free shear flows are compared with the computational results based on Zhou's theory for the shear turbulence of in- compressible fluid. The experimental and computational results are in good agreement.
基金Project supported by the National Natural Science Foundation of China
文摘Ⅰ. INTRODUCTIONThe flow phenomena that exist in the advanced turbomachinery are extremely complex and propose a challenge to the engineers and scientists to improve the design procedure. The rapid progress of high speed and large capacity computers has encouraged the development of computational fluid dynamics that has had an increasingly important influence on turbomachinery blade design and analysis. Compared with the inviscid solver, the N.S.
文摘文章采用FLOW-3D软件,通过RNGk-ε模型和volume of fluid(VOF)方法相结合,实现了竖井水平旋流泄洪洞水力特性的三维水流流场数值模拟;对开敞式进水口轴线与旋流洞轴线交角不同时起旋室的压强分布、旋流角和紊动能等水力特性进行了对比分析研究,数值模拟能够客观地反映起旋室旋流的流场特性,成果可为旋流溢洪道的研究应用提供参考.
文摘Almost without exception literature data and modeling effort are understandably devoted to water as the sprayed liquid since it constitutes the most common liquid used in spray drying applications. In selected applications, however, the liquid making up the solution or suspension may not be water. The objective of this work is to examine the differences in flow patterns, thermal behavior and drying rates caused by different liquids having different thermo-physical properties spray into a spray dryer using a computational fluid dynamic model.Numerical experiments were carried out for water (base case), ethyl alcohol and isopropyl alcohol-the latter two as model non-aqueous liquids. The chamber geometry was cylinder type with a co-current axial pressure nozzle and also an axial central exit so that the configuration is two dimensional and axi-symmetric. It is shown that the liquid properties can have major influence on the thermal field, droplet trajectories, residence times and overall evaporation capacity when all parameters of the problem are held fixed. Deviations from the single phase turbulent airflow in the same chamber without spray are different for the three liquids examined.
基金financial support from the National Natural Science Foundation of China (22078058)。
文摘This work focuses on the design improvement of the long-short blades(LSB)impeller by using pitched short blades(SBs)to regulate the flow field in the stirred vessel.After mesh size evaluation and velocity field validation by the particle image velocimetry,large eddy simulation method coupled with sliding mesh approach was used to study the effect of the pitched SBs on the flow characteristics.We changed the inclined angles of the SBs from 30°to 60°and compared the flow characteristics when the impeller was operated in the down-pumping and up-pumping modes.In the case of down-pumping mode,the power number is relatively smaller and vortexes below the SBs are suppressed,leading to turbulence intensification in the bottom of the vessel.Whereas in the case of up-pumping mode,the axial flow rate in the center increased significantly with bigger power number,resulting in more efficient mass exchange between the axial and radial flows in the whole vessel.The LSB with 45°inclined angle of the SBs in the up-pumping mode has the most uniform distributions of flow field and turbulent kinetic energy compared with other impeller configurations.
基金The study was supported by the National Natural Science Foundation of China(Grant nos.11972231,11832003,81611530715)the China Postdoctoral Science Foundation(Grant no.2018M640385)the SJTU Medical-Engineering Cross-cutting Research Project(Grant no.YG2017MS45).
文摘Computational modeling methods have been increasingly employed to quantify aortic hemodynamic parameters that are challenging to in vivo measurements but important for the diagnosis/treatment of aortic disease.Although the presence of turbulence-like behaviors of blood flow in normal or diseased aorta has long been confirmed,the majority of existing computational model studies adopted the laminar flow assumption(LFA)in the treatment of sub-grid flow variables.So far,it remains unclear whether LFA would significantly compromise the reliability of hemodynamic simulation.In the present study,we addressed the issue in the context of a specific aortopathy,namely aortic dilation,which is usually accompanied by disturbed flow patterns.Three patient-specific aortas with treated/untreated dilation of the ascending segment were investigated,and their geometrical models were reconstructed from computed tomography angiographic images,with the boundary conditions being prescribed based on flow velocity information measured in vivo with the phase contrast magnetic resonance imaging technique.For the modeling of blood flow,apart from the traditional LFA-based method in which sub-grid flow dynamics is ignored,the large eddy simulation(LES)method capable of incorporating the dissipative energy loss induced by turbulent eddies at the sub-grid level,was adopted and taken as a reference for examining the performance of the LFA-based method.Obtained results showed that the simulated large-scale flow patterns with the two methods had high similarity,both agreeing well with in vivo measurements,although locally large between-method discrepancies in computed hemodynamic quantities existed in regions with high intensity of flow turbulence.Quantitatively,a switch from the LES to the LFAbased modeling method led to mild(<6%)changes in computed space-averaged wall shear stress metrics(i.e.,SA-TAWSS,SA-OSI)in the ascending aortic segment where intensive vortex evolution accompanied by high statistical Reynolds stress was observed.In addition,comparisons among the three aortas revealed that the treatment status of aortic dilation or the concomitant presence of aortic valve disease,despite its remarkable influence on flow patterns in the ascending aortic segment,did not significantly affect the degrees of discrepancies between the two modeling methods in predicting SA-TAWSS and SA-OSI.These findings suggest that aortic dilation per se does not induce strong flow turbulence that substantially negates the validity of LFA-based modeling,especially in simulating macro-scale hemodynamic features.