Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore s...Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.展开更多
Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm...Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer.展开更多
A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas.Experimental...A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas.Experimental studies were performed to determine the characteristics of viscous debris flow in a drainage channel of this type with a slope of 15%.The velocity and depth of the viscous debris flow were measured,processed,and subsequently used to characterize the viscous debris flow in the drainage channel.Observations of this experiment showed that the surface of the viscous debris flow in a smooth drainage channel was smoother than that of a similar debris flow passing through the energy dissipation section in a channel of the new type studied here.However,the flow patterns in the two types of channels were similar at other points.These experimental results show that the depth of the viscous debris flow downstream of the energy dissipation structure increased gradually with the length of the energy dissipation structure.In addition,in the smooth channel,the viscous debris-flow velocity downstream of the energy dissipation structure decreased gradually with the length of the energy dissipation structure.Furthermore,theviscous debris-flow depth and velocity were slightly affected by variations in the width of the energy dissipation structure when the channel slope was 15%.Finally,the energy dissipation ratio increased gradually as the length and width of the energy dissipation structure increased;the maximum energy dissipation ratio observed was 62.9%(where B = 0.6m and L/w = 6.0).展开更多
On the basis of the analysis of field thermogeochemical data along abnormal zones of a thermal stream in the Bukhara-Khiva, oil-and-gas region of the Turan (Tegermen, Chagakul, Shimoly Alat, Beshtepa) was succeeded to...On the basis of the analysis of field thermogeochemical data along abnormal zones of a thermal stream in the Bukhara-Khiva, oil-and-gas region of the Turan (Tegermen, Chagakul, Shimoly Alat, Beshtepa) was succeeded to obtain important data on a deep structure of sites. Data of gas-chemical and geothermal observations show about confinedness of abnormal concentration of methane to zones of the increased values of the temperature field the measured values of temperatures (Tegermen Square and others). On geoelectric section mines 2-D of inversion of the MT-field depth of 4000 m are lower, among very high-resistance the chemogenic and carbonate deposits of the Paleozoic is traced the subvertical carrying-out abnormal zone. This zone is identified as the channel of a deep heat and mass transfer with which hydrocarbon (HC) deposits are connected. It is shown that electro-investigation when using a geophysical complex can and has to become “advancing” at exploration by oil and gas.展开更多
Structural health monitoring(SHM)is a research focus involving a large category of techniques performing in-situ identification of structural damage,stress,external loads,vibration signatures,etc.Among various SHM tec...Structural health monitoring(SHM)is a research focus involving a large category of techniques performing in-situ identification of structural damage,stress,external loads,vibration signatures,etc.Among various SHM techniques,those able to monitoring structural deformed shapes are considered as an important category.A novel method of deformed shape reconstruction for thinwalled beam structures was recently proposed by Xu et al.[1],which is capable of decoupling complex beam deformations subject to the combination of different loading cases,including tension/compression,bending and warping torsion,and also able to reconstruct the full-field displacement distributions.However,this method was demonstrated only under a relatively simple loading coupling cases,involving uni-axial bending and warping torsion.The effectiveness of the method under more complex loading cases needs to be thoroughly investigated.In this study,more complex deformations under the coupling between bi-axial bending and warping torsion was decoupled using the method.The set of equations for deformation decoupling was established,and the reconstruction algorithm for bending and torsion deformation were utilized.The effectiveness and accuracy of the method was examined using a thin-walled channel beam,relying on analysis results of finite element analysis(FEA).In the analysis,the influence of the positions of the measurement of surface strain distributions on the reconstruction accuracy was discussed.Moreover,different levels of measurement noise were added to the axial strain values based on numerical method,and the noise resistance ability of the deformation reconstruction method was investigated systematically.According to the FEA results,the effectiveness and precision of the method in complex deformation decoupling and reconstruction were demonstrated.Moreover,the immunity of the method to measurement noise was proven to be considerably strong.展开更多
On the problem of competing channel structure, we present asymmetry competing channel structure models under bargaining power, analyze the evolving process of channel structure under different bargaining power and pro...On the problem of competing channel structure, we present asymmetry competing channel structure models under bargaining power, analyze the evolving process of channel structure under different bargaining power and product nature, find different bargaining power and product nature important role for channel structure, and also present equilibrium result. Furthermore, the academic proof for channel structure choice is presented.展开更多
The purpose of this paper is to expand Trivedi’s study on the influence of channel structure ,which based on product difference, to cost difference; and analyze the evolution course of channel structure under differe...The purpose of this paper is to expand Trivedi’s study on the influence of channel structure ,which based on product difference, to cost difference; and analyze the evolution course of channel structure under different conditions. We find that like product difference, cost difference have important influence on the choice of channel structure. This paper has improved the present result and provided proof for the choice of channel structure under different environments.展开更多
The combination of both 4,4′-bipyridine(4,4′-bipy) and dihydrogen phosphate anion ligands with copper(Ⅱ) results in the formation of a novel layered compound Cu(4,4′-bipy)_2(H_2PO_4)_2(H_2O)_2. The crystal structu...The combination of both 4,4′-bipyridine(4,4′-bipy) and dihydrogen phosphate anion ligands with copper(Ⅱ) results in the formation of a novel layered compound Cu(4,4′-bipy)_2(H_2PO_4)_2(H_2O)_2. The crystal structure comprises discrete neutral Cu(4,4′-bipy)_2(H_2PO_4)_2(H_2O)_2 units. The copper atom,located on the crystallographic twofold axis,is coordinated with two nitrogen atoms of terminal 4,4′-bipy ligands and two water molecules at the equatorial positions,and two dihydrogen phosphate oxygen atoms at the axial positions,forming an elongated octahedron. The complex is a two-dimensional distorted rhomboidal network possessing two kinds of rhomboids with dimensions of ca . 1.6792 nm×0.3203 nm and 1.2778 nm×0.3198 nm,respectively. The two-dimensional networks are stacked parallelly on each other along c -axis to give an extended three-dimensional channel network with an interlayer distance of ca . 0.5030 nm. Crystal data: triclinic,space group P -_1,a =1.0253(2) nm,b =1.4501(3) nm,c =0.79715(16) nm, α =97.91(3)°,β = 90.99(3)° ,γ =85.54(3)°,V =1.1703(4) nm 3,Z =2,R =0.0892,wR =0.2451.展开更多
Compound open channel flows appear in most natural rivers are of great importance in river management and flood control.In this study,large eddy simulations were carried out to simulate the compound open channel flows...Compound open channel flows appear in most natural rivers are of great importance in river management and flood control.In this study,large eddy simulations were carried out to simulate the compound open channel flows with four different depth ratios(hr=0.10,0.25,0.50,and 0.75).The main flow velocity,secondary flow,Reynolds stress,and bed shear stress were obtained from numerical simulations.The depth-averaged stream wise momentum equation was used to quantify the lateral momentum exchange between the main channel and floodplain.The instantaneous coherent structures were presented by the Q criterion method.The impact of hr on flow structure and turbulence charac-teristics was analyzed.The results showed that with the increase of hr,the high velocity area in the main channel shifted to the floodplain,and the dip phenomenon became more obvious;the Reynolds stress largely contributed to the lateral momentum exchange within the flows near the side walls of floodplain;and the vortex structures were found to significantly increase in the floodplain region.展开更多
Molecular dynamics method is used to study the conformation behavior of a semi-flexible polymer chain confined in a cylinder channel.A novel helix-like structure is found to form during the simulation.Moreover,the det...Molecular dynamics method is used to study the conformation behavior of a semi-flexible polymer chain confined in a cylinder channel.A novel helix-like structure is found to form during the simulation.Moreover,the detailed characteristic parameters and formation probability of these helix-like structures under moderate conditions are investigated.We find that the structure is not a perfect helix,but a bundle of elliptical turns.In addition,we conduct a statistical analysis for the chain monomer distribution along the radial direction.This research contributes to our understanding of the microscopic conformation of polymer chains in confined environments filled with a solvent.展开更多
The ground-state energy level (GEL) and electron distribution of GaAs pseudomorphic high-electron-mobility transistors (PHEMTs) are analyzed by a self-consistent solution to the Schrodinger-Poisson equations. The ...The ground-state energy level (GEL) and electron distribution of GaAs pseudomorphic high-electron-mobility transistors (PHEMTs) are analyzed by a self-consistent solution to the Schrodinger-Poisson equations. The indium composition and thickness of the InGaAs channel are optimized according to the GEL position. The GEL position is not in direct proportion to 1/d^2 (d is the channel thickness) by considering the influence of electron distribution in the InGaAs channel. Indium composition 0.22 and channel thickness 9 nm are obtained by considering the mismatch between InGaAs and AlGaAs. Several PHEMT samples are grown according to the theoretical results and mobility 6300 cm^2 /V.s is achieved.展开更多
This paper proposes a wavelet based receiver structure for frequency-flat time-varying Rayleigh channels, consisting of a receiver front-end followed by a Maximum A-Posteriori (MAP) detector. Discretization of the rec...This paper proposes a wavelet based receiver structure for frequency-flat time-varying Rayleigh channels, consisting of a receiver front-end followed by a Maximum A-Posteriori (MAP) detector. Discretization of the received continuous time signal using filter banks is an essential stage in the front-end part, where the Fast Haar Transform (FHT) is used to reduce complexity. Analysis of our receiver over slow-fading channels shows that it is optimal for certain modulation schemes. By comparison with literature, it is shown that over such channels our receiver can achieve optimal performance for Time-Orthogonal modulation. Computed and Monte-Carlo simulated performance results over fast time-varying Rayleigh fading channels show that with Minimum Shift Keying (MSK), our receiver using four basis functions (filters) lowers the error floor by more than one order of magnitude with respect to other techniques of comparable complexity. Orthogonal Frequency Shift Keying (FSK) can achieve the same performance as Time-Orthogonal modulation for the slow-fading case, but suffers some degradation over fast-fading channels where it exhibits an error floor. Compared to MSK, however, Orthogonal FSK provides better performance.展开更多
The first important problem in the star forming process is the formation of proto star core in star forming regions of molecular cloud. The multi core structure in star forming regions is related to the forming of pro...The first important problem in the star forming process is the formation of proto star core in star forming regions of molecular cloud. The multi core structure in star forming regions is related to the forming of proto star core. The molecular radiation of C 18 O( J = 1-0) in Cepheus C has been observed. The C 18 O( J = 1-0) observations form the basis for an interesting study on the cloud cores and star formation activity in the cores of the Cepheus C. In order to study the multi core structure of C 18 O( J = 1-0) in the Cepheus C the channel maps and the position velocity diagrams of C 18 O( J = 1-0) will be shown. From the maps it is found that the contour level and distribution size of the three cores in Cepheus C are related to the channel velocity very much. The channel velocity of C 18 O( J = 1-0) molecules in core b, which distributed in all the channels velocity, is different with one in core a and core c very much. The C 18 O( J = 1-0) molecules in core a and core c of the Cepheus C mostly distributed in the blue shifted channel velocity relating to peak velocity, and only in -10.0 ~ -9.5 km/s, which is the red shifted channel velocity relating to peak velocity. And the contour level of C 18 O( J = 1-0) in -10.0 ~ -9.5 km/s is small and the distrbution size in the channel map is small. According to the position velocity diagrams the asymmetry of the distribution both blue shifted and red shifted components should reflect the asymmetry of the profile. From the diagrams it also is found that the contour level and the distribution size of the three cores are different from each other. Both results from the maps and diagrams are coincident with each other.展开更多
From the bargaining process, competing channel structure models are presented. The evolving process of channel structure under different bargaining power is analyzed The important role of different bargaining power is...From the bargaining process, competing channel structure models are presented. The evolving process of channel structure under different bargaining power is analyzed The important role of different bargaining power is discussed and the equilibrium result is found. Also the theoretical evidences for competing channel structure choice are given.展开更多
Distributed acoustic sensing(DAS) is one recently developed seismic acquisition technique that is based on fiber-optic sensing. DAS provides dense spatial spacing that is useful to image shallow structure with surface...Distributed acoustic sensing(DAS) is one recently developed seismic acquisition technique that is based on fiber-optic sensing. DAS provides dense spatial spacing that is useful to image shallow structure with surface waves.To test the feasibility of DAS in shallow structure imaging,the PoroTomo team conducted a DAS experiment with the vibroseis truck T-Rex in Brady’s Hot Springs, Nevada, USA.The Rayleigh waves excited by the vertical mode of the vibroseis truck were analyzed with the Multichannel Analysis of Surface Waves(MASW) method. Phase velocities between5 and 20 Hz were successfully extracted for one segment of cable and were employed to build a shear-wave velocity model for the top 50 meters. The dispersion curves obtained with DAS agree well with the ones extracted from co-located geophones data and from the passive source Noise Correlation Functions(NCF). Comparing to the co-located geophone array, the higher sensor density that DAS arrays provides help reducing aliasing in dispersion analysis, and separating different surface wave modes. This study demonstrates the feasibility and advantage of DAS in imaging shallow structure with surface waves.展开更多
An inorganic-organic hybrid thioantimonate(Ⅲ) [CH3(CH2)3NH3]2Sb4S7 1 with layered structure was synthesized by solvothermal method. 1 crystallizes in the triclinic system, space group P1 with a = 7.0124(11), b ...An inorganic-organic hybrid thioantimonate(Ⅲ) [CH3(CH2)3NH3]2Sb4S7 1 with layered structure was synthesized by solvothermal method. 1 crystallizes in the triclinic system, space group P1 with a = 7.0124(11), b = 11.919(2), c =14.879(3)A, α = 108.791(3), β= 102.441(3), γ = 92.846(2)°, V= 1140.1(3)A3, Mr = 859.71, Z= 2, Do = 2.504 g/cm^3 ,μ = 5.324 mm^-1, F(000) = 804, S = 1.013, the Final R = 0.0297 and wR = 0.0618 for 3534 observed reflections with Ⅰ 〉 2 σ(Ⅰ). 1 consists of [C4HgNH3]+ cations and two-dimensional [Sb4ST]n^2n- anion which is composed of three SbS3 trigonal pyranaids and one SbS4 unit joined by sharing common comers. The anionic layers are stacked perpendicularly to the c axis of the unit cell forming two-dimensional channels between the layers. The [C4H9NH3]^+ cations interdigitate in a bilayer and reside in the 2D channels leading to a sandwich-like arrangement of the anion and cations.展开更多
Three novel dehydroabietate oxime derivatives were synthesized from dehydroabietic acid and their crystal structures were determined by X-ray crystallographic techniques. All of these 12-oxime dehydroabietic acid deri...Three novel dehydroabietate oxime derivatives were synthesized from dehydroabietic acid and their crystal structures were determined by X-ray crystallographic techniques. All of these 12-oxime dehydroabietic acid derivatives crystallize in orthorhombic system, space group P212121. In the structures, rings A and B exhibit chair and half-chair configurations, respectively and form trans ring junction with two methyl groups(C(19) and C(20)) in the axis positions. The oxime groups have E conformations. Comparison of conformations reveals subtle differences principally in ring B due to the modification in C(12). The E-acetaldehyde oxime derivative 2c showed distinct BKα gate-opening activity with an ionic current increase of 164% at 30 μM versus the control current.展开更多
3D structure of the crust and upper mantle in the studied area has been analyzed from surface wave tomography. The velocity distribution in the uppermost crust is symmetrical on two sides of the central line of the se...3D structure of the crust and upper mantle in the studied area has been analyzed from surface wave tomography. The velocity distribution in the uppermost crust is symmetrical on two sides of the central line of the sea, and coincides with the structure of crystalline basement. The essential difference in tectonics between the East China Sea and the Yellow Sea mainly lies in that the velocity structures of their lower crust and upper mantle are identical to those of South China and North China respectively. In the upper mantle there exists a high-velocity zone with a nearly EW strike from the Hangzhou Bay, China, to the Tokara Channel, Japan, along about the latitude of 30°N. It is found that between the East China Sea and the Yellow Sea there are systematical differences in geomorphology, geology, seismicity, heat flow, quality factor and gravity and aeromagnetic anomalies, which is related to both left-lateral shear dislocation and right-lateral tear of the Benioff zone from the Hangzhou Bay to the Tokara Channel.It is inferred that the East China Sea was formed by Cenozoic back-arc extension. The boundary between the North China and South China crustal blocks stretches along the southern piedmont of Mts. Daba-Dabie-Hangzhou Bay-Tokara Channel, and the subduction zone at the Okinawa trench is the eastern boundary of the South China crustal block. The movements of the Pacific plate, Indian plate and upper mantle rather than the Philippine plate subduction have played a dominant role for the modern tectonic movements in East Asia.展开更多
In order to study the permeability and water-resisting ability of the strata on the top of the Ordovician in Longgu Coal Mine, this paper tested the permeability and porosity of the strata, investigated the fracture a...In order to study the permeability and water-resisting ability of the strata on the top of the Ordovician in Longgu Coal Mine, this paper tested the permeability and porosity of the strata, investigated the fracture and pore structure features of the strata, and identified the main channels which govern the permeability and water-resisting ability of the strata. The permeability of the upper, central and lower strata shows as 2.0504 × 10^-3-2.782762× 10^-3, 4.1092 × 10^-3 -7.3387 × 10^-3 and 2.0891 ×10^-3-3.2705 × 10-3 μm^2, respectively, and porosity of that is 0.6786-0.9197%, 0.3109-0.3951% and 0.9829-1.8655%, respectively. The results indicate that: (I) the main channels of the relative water-resisting layer are the pore throats with a diameter more than 6 μm; (2) the major proportion of pore throats in the vertical flow channel and the permeability first increases and then sharply decreases; (3) the fractures occurring from the top to 20 m in depth of the strata were filled and there occurred almost no fracture under the depth of 40 m; and (4) the ratio of turning point of the main flow channel in the strata on top of Ordovician can be used to confirm the thickness of filled water-resisting lavers.展开更多
基金supported by the National Key Research and Development Program of China (Grant No.2018YFA0702400)the National Natural Science Foundation of China (Grant No.52174050)+1 种基金the Natural Science Foundation of Shandong Province (Grant No.ZR2020ME088)the National Natural Science Foundation of Qingdao (Grant No.23-2-1-227-zyyd-jch)。
文摘Hot water flooding is an effective way to develop heavy oil reservoirs.However,local channeling channels may form,possibly leading to a low thermal utilization efficiency and high water cut in the reservoir.The pore structure heterogeneity is an important factor in forming these channels.This study proposes a method that mixes quartz sand with different particle sizes to prepare weakly heterogeneous and strongly heterogeneous models through which hot water flooding experiments are conducted.During the experiments,computer tomography(CT)scanning identifies the pore structure and micro remaining oil saturation distribution to analyze the influence of the pore structure heterogeneity on the channeling channels.The oil saturation reduction and average pore size are divided into three levels to quantitatively describe the relationship between the channeling channel distribution and pore structure heterogeneity.The zone where oil saturation reduction exceeds 20%is defined as a channeling channel.The scanning area is divided into 180 equally sized zones based on the CT scanning images,and threedimensional(3D)distributions of the channeling channels are developed.Four micro remaining oil distribution patterns are proposed,and the morphology characteristics of micro remaining oil inside and outside the channeling channels are analyzed.The results show that hot water flooding is more balanced in the weakly heterogeneous model,and the oil saturation decreases by more than 20%in most zones without narrow channeling channels forming.In the strongly heterogeneous model,hot water flooding is unbalanced,and three narrow channeling channels of different lengths form.In the weakly heterogeneous model,the oil saturation reduction is greater in zones with larger pores.The distribution range of the average pore size is larger in the strongly heterogeneous model.The network remaining oil inside the channeling channels is less than outside the channeling channels,and the hot water converts the network remaining oil into cluster,film,and droplet remaining oil.
基金financially supported by the National Natural Science Foundation of China(No.52074130)the Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality,Ministry of Education。
文摘Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer.
基金supported by the Key Deployment Project of Chinese Academy of Sciences (Grant No.KZZD-EW-05-01)the National Natural Science Foundation of China (Grant No.41302283)the West Light Foundation of Chinese Academy of Sciences
文摘A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas.Experimental studies were performed to determine the characteristics of viscous debris flow in a drainage channel of this type with a slope of 15%.The velocity and depth of the viscous debris flow were measured,processed,and subsequently used to characterize the viscous debris flow in the drainage channel.Observations of this experiment showed that the surface of the viscous debris flow in a smooth drainage channel was smoother than that of a similar debris flow passing through the energy dissipation section in a channel of the new type studied here.However,the flow patterns in the two types of channels were similar at other points.These experimental results show that the depth of the viscous debris flow downstream of the energy dissipation structure increased gradually with the length of the energy dissipation structure.In addition,in the smooth channel,the viscous debris-flow velocity downstream of the energy dissipation structure decreased gradually with the length of the energy dissipation structure.Furthermore,theviscous debris-flow depth and velocity were slightly affected by variations in the width of the energy dissipation structure when the channel slope was 15%.Finally,the energy dissipation ratio increased gradually as the length and width of the energy dissipation structure increased;the maximum energy dissipation ratio observed was 62.9%(where B = 0.6m and L/w = 6.0).
文摘On the basis of the analysis of field thermogeochemical data along abnormal zones of a thermal stream in the Bukhara-Khiva, oil-and-gas region of the Turan (Tegermen, Chagakul, Shimoly Alat, Beshtepa) was succeeded to obtain important data on a deep structure of sites. Data of gas-chemical and geothermal observations show about confinedness of abnormal concentration of methane to zones of the increased values of the temperature field the measured values of temperatures (Tegermen Square and others). On geoelectric section mines 2-D of inversion of the MT-field depth of 4000 m are lower, among very high-resistance the chemogenic and carbonate deposits of the Paleozoic is traced the subvertical carrying-out abnormal zone. This zone is identified as the channel of a deep heat and mass transfer with which hydrocarbon (HC) deposits are connected. It is shown that electro-investigation when using a geophysical complex can and has to become “advancing” at exploration by oil and gas.
基金the National Science Foundation of China(No.11602048 and No.51805068).
文摘Structural health monitoring(SHM)is a research focus involving a large category of techniques performing in-situ identification of structural damage,stress,external loads,vibration signatures,etc.Among various SHM techniques,those able to monitoring structural deformed shapes are considered as an important category.A novel method of deformed shape reconstruction for thinwalled beam structures was recently proposed by Xu et al.[1],which is capable of decoupling complex beam deformations subject to the combination of different loading cases,including tension/compression,bending and warping torsion,and also able to reconstruct the full-field displacement distributions.However,this method was demonstrated only under a relatively simple loading coupling cases,involving uni-axial bending and warping torsion.The effectiveness of the method under more complex loading cases needs to be thoroughly investigated.In this study,more complex deformations under the coupling between bi-axial bending and warping torsion was decoupled using the method.The set of equations for deformation decoupling was established,and the reconstruction algorithm for bending and torsion deformation were utilized.The effectiveness and accuracy of the method was examined using a thin-walled channel beam,relying on analysis results of finite element analysis(FEA).In the analysis,the influence of the positions of the measurement of surface strain distributions on the reconstruction accuracy was discussed.Moreover,different levels of measurement noise were added to the axial strain values based on numerical method,and the noise resistance ability of the deformation reconstruction method was investigated systematically.According to the FEA results,the effectiveness and precision of the method in complex deformation decoupling and reconstruction were demonstrated.Moreover,the immunity of the method to measurement noise was proven to be considerably strong.
文摘On the problem of competing channel structure, we present asymmetry competing channel structure models under bargaining power, analyze the evolving process of channel structure under different bargaining power and product nature, find different bargaining power and product nature important role for channel structure, and also present equilibrium result. Furthermore, the academic proof for channel structure choice is presented.
基金Supported by the National Preeminence Youth Foundation of China(No.79275002)
文摘The purpose of this paper is to expand Trivedi’s study on the influence of channel structure ,which based on product difference, to cost difference; and analyze the evolution course of channel structure under different conditions. We find that like product difference, cost difference have important influence on the choice of channel structure. This paper has improved the present result and provided proof for the choice of channel structure under different environments.
文摘The combination of both 4,4′-bipyridine(4,4′-bipy) and dihydrogen phosphate anion ligands with copper(Ⅱ) results in the formation of a novel layered compound Cu(4,4′-bipy)_2(H_2PO_4)_2(H_2O)_2. The crystal structure comprises discrete neutral Cu(4,4′-bipy)_2(H_2PO_4)_2(H_2O)_2 units. The copper atom,located on the crystallographic twofold axis,is coordinated with two nitrogen atoms of terminal 4,4′-bipy ligands and two water molecules at the equatorial positions,and two dihydrogen phosphate oxygen atoms at the axial positions,forming an elongated octahedron. The complex is a two-dimensional distorted rhomboidal network possessing two kinds of rhomboids with dimensions of ca . 1.6792 nm×0.3203 nm and 1.2778 nm×0.3198 nm,respectively. The two-dimensional networks are stacked parallelly on each other along c -axis to give an extended three-dimensional channel network with an interlayer distance of ca . 0.5030 nm. Crystal data: triclinic,space group P -_1,a =1.0253(2) nm,b =1.4501(3) nm,c =0.79715(16) nm, α =97.91(3)°,β = 90.99(3)° ,γ =85.54(3)°,V =1.1703(4) nm 3,Z =2,R =0.0892,wR =0.2451.
基金supported by the Fundamental Research Funds for the Central Universities(Grants No.B200202116 and B200204044)the National Natural Science Foundation of China(Grant No.51879086)the 111 Project from the Minstry of Education and State Administration of Foreign Expert Affairs of China(Grant No.B17015).
文摘Compound open channel flows appear in most natural rivers are of great importance in river management and flood control.In this study,large eddy simulations were carried out to simulate the compound open channel flows with four different depth ratios(hr=0.10,0.25,0.50,and 0.75).The main flow velocity,secondary flow,Reynolds stress,and bed shear stress were obtained from numerical simulations.The depth-averaged stream wise momentum equation was used to quantify the lateral momentum exchange between the main channel and floodplain.The instantaneous coherent structures were presented by the Q criterion method.The impact of hr on flow structure and turbulence charac-teristics was analyzed.The results showed that with the increase of hr,the high velocity area in the main channel shifted to the floodplain,and the dip phenomenon became more obvious;the Reynolds stress largely contributed to the lateral momentum exchange within the flows near the side walls of floodplain;and the vortex structures were found to significantly increase in the floodplain region.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504033 and 11404290)the General Research Fund of Hong Kong Research Council of China(Grant No.15301014)
文摘Molecular dynamics method is used to study the conformation behavior of a semi-flexible polymer chain confined in a cylinder channel.A novel helix-like structure is found to form during the simulation.Moreover,the detailed characteristic parameters and formation probability of these helix-like structures under moderate conditions are investigated.We find that the structure is not a perfect helix,but a bundle of elliptical turns.In addition,we conduct a statistical analysis for the chain monomer distribution along the radial direction.This research contributes to our understanding of the microscopic conformation of polymer chains in confined environments filled with a solvent.
文摘The ground-state energy level (GEL) and electron distribution of GaAs pseudomorphic high-electron-mobility transistors (PHEMTs) are analyzed by a self-consistent solution to the Schrodinger-Poisson equations. The indium composition and thickness of the InGaAs channel are optimized according to the GEL position. The GEL position is not in direct proportion to 1/d^2 (d is the channel thickness) by considering the influence of electron distribution in the InGaAs channel. Indium composition 0.22 and channel thickness 9 nm are obtained by considering the mismatch between InGaAs and AlGaAs. Several PHEMT samples are grown according to the theoretical results and mobility 6300 cm^2 /V.s is achieved.
文摘This paper proposes a wavelet based receiver structure for frequency-flat time-varying Rayleigh channels, consisting of a receiver front-end followed by a Maximum A-Posteriori (MAP) detector. Discretization of the received continuous time signal using filter banks is an essential stage in the front-end part, where the Fast Haar Transform (FHT) is used to reduce complexity. Analysis of our receiver over slow-fading channels shows that it is optimal for certain modulation schemes. By comparison with literature, it is shown that over such channels our receiver can achieve optimal performance for Time-Orthogonal modulation. Computed and Monte-Carlo simulated performance results over fast time-varying Rayleigh fading channels show that with Minimum Shift Keying (MSK), our receiver using four basis functions (filters) lowers the error floor by more than one order of magnitude with respect to other techniques of comparable complexity. Orthogonal Frequency Shift Keying (FSK) can achieve the same performance as Time-Orthogonal modulation for the slow-fading case, but suffers some degradation over fast-fading channels where it exhibits an error floor. Compared to MSK, however, Orthogonal FSK provides better performance.
文摘The first important problem in the star forming process is the formation of proto star core in star forming regions of molecular cloud. The multi core structure in star forming regions is related to the forming of proto star core. The molecular radiation of C 18 O( J = 1-0) in Cepheus C has been observed. The C 18 O( J = 1-0) observations form the basis for an interesting study on the cloud cores and star formation activity in the cores of the Cepheus C. In order to study the multi core structure of C 18 O( J = 1-0) in the Cepheus C the channel maps and the position velocity diagrams of C 18 O( J = 1-0) will be shown. From the maps it is found that the contour level and distribution size of the three cores in Cepheus C are related to the channel velocity very much. The channel velocity of C 18 O( J = 1-0) molecules in core b, which distributed in all the channels velocity, is different with one in core a and core c very much. The C 18 O( J = 1-0) molecules in core a and core c of the Cepheus C mostly distributed in the blue shifted channel velocity relating to peak velocity, and only in -10.0 ~ -9.5 km/s, which is the red shifted channel velocity relating to peak velocity. And the contour level of C 18 O( J = 1-0) in -10.0 ~ -9.5 km/s is small and the distrbution size in the channel map is small. According to the position velocity diagrams the asymmetry of the distribution both blue shifted and red shifted components should reflect the asymmetry of the profile. From the diagrams it also is found that the contour level and the distribution size of the three cores are different from each other. Both results from the maps and diagrams are coincident with each other.
文摘From the bargaining process, competing channel structure models are presented. The evolving process of channel structure under different bargaining power is analyzed The important role of different bargaining power is discussed and the equilibrium result is found. Also the theoretical evidences for competing channel structure choice are given.
基金partially supported by the Geothermal Technologies Office of the USA Department of Energy (No. DE-EE0006760)the State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodey and Geophysics, Chinese Academy of Sciences (No. SKLGED2019-5-4-E)
文摘Distributed acoustic sensing(DAS) is one recently developed seismic acquisition technique that is based on fiber-optic sensing. DAS provides dense spatial spacing that is useful to image shallow structure with surface waves.To test the feasibility of DAS in shallow structure imaging,the PoroTomo team conducted a DAS experiment with the vibroseis truck T-Rex in Brady’s Hot Springs, Nevada, USA.The Rayleigh waves excited by the vertical mode of the vibroseis truck were analyzed with the Multichannel Analysis of Surface Waves(MASW) method. Phase velocities between5 and 20 Hz were successfully extracted for one segment of cable and were employed to build a shear-wave velocity model for the top 50 meters. The dispersion curves obtained with DAS agree well with the ones extracted from co-located geophones data and from the passive source Noise Correlation Functions(NCF). Comparing to the co-located geophone array, the higher sensor density that DAS arrays provides help reducing aliasing in dispersion analysis, and separating different surface wave modes. This study demonstrates the feasibility and advantage of DAS in imaging shallow structure with surface waves.
基金the Natural Science Foundation of Universities of Jiangsu Province (No. 05KJB150110)
文摘An inorganic-organic hybrid thioantimonate(Ⅲ) [CH3(CH2)3NH3]2Sb4S7 1 with layered structure was synthesized by solvothermal method. 1 crystallizes in the triclinic system, space group P1 with a = 7.0124(11), b = 11.919(2), c =14.879(3)A, α = 108.791(3), β= 102.441(3), γ = 92.846(2)°, V= 1140.1(3)A3, Mr = 859.71, Z= 2, Do = 2.504 g/cm^3 ,μ = 5.324 mm^-1, F(000) = 804, S = 1.013, the Final R = 0.0297 and wR = 0.0618 for 3534 observed reflections with Ⅰ 〉 2 σ(Ⅰ). 1 consists of [C4HgNH3]+ cations and two-dimensional [Sb4ST]n^2n- anion which is composed of three SbS3 trigonal pyranaids and one SbS4 unit joined by sharing common comers. The anionic layers are stacked perpendicularly to the c axis of the unit cell forming two-dimensional channels between the layers. The [C4H9NH3]^+ cations interdigitate in a bilayer and reside in the 2D channels leading to a sandwich-like arrangement of the anion and cations.
基金supports from the National Natural Science Foundation of China (No. 81202402 and 21272154)
文摘Three novel dehydroabietate oxime derivatives were synthesized from dehydroabietic acid and their crystal structures were determined by X-ray crystallographic techniques. All of these 12-oxime dehydroabietic acid derivatives crystallize in orthorhombic system, space group P212121. In the structures, rings A and B exhibit chair and half-chair configurations, respectively and form trans ring junction with two methyl groups(C(19) and C(20)) in the axis positions. The oxime groups have E conformations. Comparison of conformations reveals subtle differences principally in ring B due to the modification in C(12). The E-acetaldehyde oxime derivative 2c showed distinct BKα gate-opening activity with an ionic current increase of 164% at 30 μM versus the control current.
基金The study (Project No. 85078) was supported by the Joint Foundation of Seismic Science.
文摘3D structure of the crust and upper mantle in the studied area has been analyzed from surface wave tomography. The velocity distribution in the uppermost crust is symmetrical on two sides of the central line of the sea, and coincides with the structure of crystalline basement. The essential difference in tectonics between the East China Sea and the Yellow Sea mainly lies in that the velocity structures of their lower crust and upper mantle are identical to those of South China and North China respectively. In the upper mantle there exists a high-velocity zone with a nearly EW strike from the Hangzhou Bay, China, to the Tokara Channel, Japan, along about the latitude of 30°N. It is found that between the East China Sea and the Yellow Sea there are systematical differences in geomorphology, geology, seismicity, heat flow, quality factor and gravity and aeromagnetic anomalies, which is related to both left-lateral shear dislocation and right-lateral tear of the Benioff zone from the Hangzhou Bay to the Tokara Channel.It is inferred that the East China Sea was formed by Cenozoic back-arc extension. The boundary between the North China and South China crustal blocks stretches along the southern piedmont of Mts. Daba-Dabie-Hangzhou Bay-Tokara Channel, and the subduction zone at the Okinawa trench is the eastern boundary of the South China crustal block. The movements of the Pacific plate, Indian plate and upper mantle rather than the Philippine plate subduction have played a dominant role for the modern tectonic movements in East Asia.
基金Financial supports for this work provided by the National Basic Research Program of China(2013CB227900)the Innovation of Graduate Student Training Project in Jiangsu Province of China(CXZZ13_0934)
文摘In order to study the permeability and water-resisting ability of the strata on the top of the Ordovician in Longgu Coal Mine, this paper tested the permeability and porosity of the strata, investigated the fracture and pore structure features of the strata, and identified the main channels which govern the permeability and water-resisting ability of the strata. The permeability of the upper, central and lower strata shows as 2.0504 × 10^-3-2.782762× 10^-3, 4.1092 × 10^-3 -7.3387 × 10^-3 and 2.0891 ×10^-3-3.2705 × 10-3 μm^2, respectively, and porosity of that is 0.6786-0.9197%, 0.3109-0.3951% and 0.9829-1.8655%, respectively. The results indicate that: (I) the main channels of the relative water-resisting layer are the pore throats with a diameter more than 6 μm; (2) the major proportion of pore throats in the vertical flow channel and the permeability first increases and then sharply decreases; (3) the fractures occurring from the top to 20 m in depth of the strata were filled and there occurred almost no fracture under the depth of 40 m; and (4) the ratio of turning point of the main flow channel in the strata on top of Ordovician can be used to confirm the thickness of filled water-resisting lavers.