AIM To explore the value of three-dimensional(3 D) visualization technology in the minimally invasive treatment for infected necrotizing pancreatitis(INP). METHODS Clinical data of 18 patients with INP, who were admit...AIM To explore the value of three-dimensional(3 D) visualization technology in the minimally invasive treatment for infected necrotizing pancreatitis(INP). METHODS Clinical data of 18 patients with INP, who were admitted to the PLA General Hospital in 2017, were retrospectively analyzed. Two-dimensional images of computed tomography were converted into 3 D images based on 3 D visualization technology. The size, number, shape and position of lesions and their relationship with major abdominal vasculature were well displayed. Also, percutaneous catheter drainage(PCD) number and puncture paths were designed through virtual surgery(percutaneous nephroscopic necrosectomy) based on the principle of maximum removal of infected necrosis conveniently.RESULTS Abdominal 3 D visualization images of all the patients were well reconstructed, and the optimal PCD puncture paths were well designed. Infected necrosis was conveniently removed in abundance using a nephroscope during the following surgery, and the median operation time was 102(102 ± 20.7) min. Only 1 patient underwent endoscopic necrosectomy because of residual necrosis. CONCLUSION The 3 D visualization technology could optimize the PCD puncture paths, improving the drainage effect in patients with INP. Moreover, it significantly increased the efficiency of necrosectomy through the rigid nephroscope. As a result, it decreased operation times and improved the prognosis.展开更多
The geometric and spatial characteristics of pore structures determine the permeability and water retention of soils, which have important effects on soil functional diversity and ecological restoration. Until recentl...The geometric and spatial characteristics of pore structures determine the permeability and water retention of soils, which have important effects on soil functional diversity and ecological restoration. Until recently, there have not been tools and methods to visually and quantitatively describe the characteristics of soil pores. To solve this problem, this research reconstructs the geometry and spatial distribution of soil pores by the marching cubes method, texture mapping method and the ray casting method widely used in literature. The objectives were to explore an optimal method for three-dimensional visualization of soil pore structure by comparing the robustness of the three methods on soil CT images with single pore structure and porosity ranging from low (2–5%) to high (12–18%), and to evaluate the reconstruction performance of the three methods with different geometric features. The results demonstrate that there are aliases (jagged edges) and deficiency at the boundaries of the model reconstructed by the marching cubes method and pore volumes are smaller than the ground truth, whereas the results of the texture mapping method lack the details of pore structures. For all the soil images, the ray casting method is preferable since it better preserves the pore characteristics of the ground truth. Furthermore, the ray casting method produced the best soil pore model with higher rendering speed and lower memory consumption. Therefore, the ray casting method provides a more advanced method for visualization of pore structures and provides an optional technique for the study of the transport of moisture and the exchange of air in soil.展开更多
The divergence three-dimensional millet-seed body model and the continuous distributing layer-imitating model were introduced, which were used to express geologic body, and the procedure of generating these two models...The divergence three-dimensional millet-seed body model and the continuous distributing layer-imitating model were introduced, which were used to express geologic body, and the procedure of generating these two models and their merits and demerits were synthesized. Three methods of geologic body’s three-dimensional expression were separately introduced, and the merits of the continuous distributing layer imitating model were proposed as comparing with the divergence three-dimensional millet-seed body model. The three-dimensional cubes were observed from any direction and any tangle with the application of dealing methods such as peeling, hollowing out, transparent or half-transparent.展开更多
Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the inter...Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the interaction between project management and technical personnel and engineering construction achievement, and provides intuitive, flexible and strong realistic experience for project management. It can effectively improve the level of project communication, and assist the needs of project construction planning management, training, exhibition, etc. As a tool to help improve project management skills, it has good application effect and prospects.展开更多
An improved three-dimensional (3-D) experimental visualization methodology is presented tor evaluating the fracture mechanisms of ferritic stainless steels by in-situ tensile testing with an environmental scanning e...An improved three-dimensional (3-D) experimental visualization methodology is presented tor evaluating the fracture mechanisms of ferritic stainless steels by in-situ tensile testing with an environmental scanning electron microscope (ESEM). The samples were machined with a radial notched shape and a sloped surface. Both planar surface deformation and sloping surface deformation-induced microvoids were observed during dynamic tension experiments, where a greater amount of information could be obtained from the sloping surface. The results showed that microvoids formed at the grain boundaries of highly elongated large grains. The microvoids nucleated in the severely deformed regions grew nearly parallel to the tensile axis, predominantly along the grain boundaries. The microvoids nucleated at the interface of particles and the matrix did not propagate due to the high plasticity of the matrix. The large microvoids propagated and showed a zigzag shape along the grain boundaries,seemingly a consequence of the fracture of the slip bands caused by dislocation pile-ups. The final failure took place due to the reduction of the load-beating area.展开更多
In order to realize visualization of three-dimensional data field (TDDF) in instrument, two methods of visualization of TDDF and the usual manner of quick graphic and image processing are analyzed. And how to use Op...In order to realize visualization of three-dimensional data field (TDDF) in instrument, two methods of visualization of TDDF and the usual manner of quick graphic and image processing are analyzed. And how to use OpenGL technique and the characteristic of analyzed data to construct a TDDF, the ways of reality processing and interactive processing are described. Then the medium geometric element and a related realistic model are constructed by means of the first algorithm. Models obtained for attaching the third dimension in three-dimensional data field are presented. An example for TDDF realization of machine measuring is provided. The analysis of resultant graphic indicates that the three-dimensional graphics built by the method developed is featured by good reality, fast processing and strong interaction展开更多
In the field of weapon system of systems (WSOS) simulation, various indicators are widely used to describe the capability of WSOS, but it is always difficult to describe the comprehensive capability of WSOS quickly an...In the field of weapon system of systems (WSOS) simulation, various indicators are widely used to describe the capability of WSOS, but it is always difficult to describe the comprehensive capability of WSOS quickly and intuitively by visualization of multi-dimensional indicators. A method of machine learning and visualization is proposed, which can display and analyze the capabilities of different WSOS in a two-dimensional plane. The analysis and comparison of the comprehensive capability of different components of WSOS is realized by the method, which consists of six parts: multiple simulations, key indicators mining, three spatial distance calculation, fusion project calculation, calculation of individual capability density, and calculation of multiple capability ranges overlay. Binding a simulation experiment, the collaborative analysis of six indicators and 100 possible kinds of red WSOS are achieved. The experimental results show that this method can effectively improve the quality and speed of capabilities analysis, reveal a large number of potential information, and provide a visual support for the qualitative and quantitative analysis model.展开更多
Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate ...Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.展开更多
A calculation scheme, which combines a horizontal upwind finite element method with vertical implicit differences, is used to establish a three-dimensional mathematical model of tidal motion and sediment transport in...A calculation scheme, which combines a horizontal upwind finite element method with vertical implicit differences, is used to establish a three-dimensional mathematical model of tidal motion and sediment transport in tidal current. Compared with those of the relative theoretical formula, the results are satisfactory. The model mentioned above has been applied to the water area of the Lianzhou Bay, Guangxi Province. On the basis of the analysis and comparison with the field data, it shows clearly that the model calculation results are reasonable.展开更多
With the development of computer graphics, the three-dimensional (3D) visualization brings new technological revolution to the traditional cartography. Therefore, the topographic 3D-map emerges to adapt to this techno...With the development of computer graphics, the three-dimensional (3D) visualization brings new technological revolution to the traditional cartography. Therefore, the topographic 3D-map emerges to adapt to this technological revolution, and the applications of topographic 3D-map are spread rapidly to other relevant fields due to its incomparable advantage. The researches on digital map and the construction of map database offer strong technical support and abundant data source for this new technology, so the research and development of topographic 3D-map will receive greater concern. The basic data of the topographic 3D-map are rooted mainly in digital map and its basic model is derived from digital elevation model (DEM) and 3D-models of other DEM-based geographic features. In view of the potential enormous data and the complexity of geographic features, the dynamic representation of geographic information becomes the focus of the research of topographic 3D-map and also the prerequisite condition of 3D query and analysis. In addition to the equipment of hardware that are restraining, to a certain extent, the 3D representation, the data organization structure of geographic information will be the core problem of research on 3D-map. Level of detail (LOD), space partitioning, dynamic object loading (DOL) and object culling are core technologies of the dynamic 3D representation. The object- selection, attribute-query and model-editing are important functions and interaction tools for users with 3D-maps provided by topographic 3D-map system, all of which are based on the data structure of the 3D-model. This paper discusses the basic theories, concepts and cardinal principles of topographic 3D-map, expounds the basic way to organize the scene hierarchy of topographic 3D-map based on the node mechanism and studies the dynamic representation technologies of topographic 3D-map based on LOD, space partitioning, DOL and object culling. Moreover, such interactive operation functions are explored, in this paper, as spatial query, scene editing and management of topographic 3D-map. Finally, this paper describes briefly the applications of topographic 3D-map in its related fields.展开更多
Digital mine is the inevitable outcome of the information processing, and is also a complicated system engineering. Firstly, for the 3D visualization application of the digital mine, the ground and underground integra...Digital mine is the inevitable outcome of the information processing, and is also a complicated system engineering. Firstly, for the 3D visualization application of the digital mine, the ground and underground integrative visualization framework model was proposed based on the mine entity database. So, the visualization problem was availably resolved, as well as the professional analytical ability was improved. Secondly, aiming at the irregularities, non-uniformity, dynamics of mine entities, mix modeling method based on the entity character was put forward, in which 3D expression of mine entities was realized. Lastly, the 3D visualization project for a copper mine was experimentally studied. Satisfactory results were acquired, and the rationality of visualization model and feasibility of 3D modeling were validated.展开更多
Excessive unplanned urban growth leads to many vulnerabilities and impacts on urban environments to varying degrees. However, the majority of the extant literature focuses on the problems related to location and socio...Excessive unplanned urban growth leads to many vulnerabilities and impacts on urban environments to varying degrees. However, the majority of the extant literature focuses on the problems related to location and socioeconomic conditions, rather than vulnerability processes and related environmental degradation. This paper analyzes the scope of urban vulnerabilities for five rapidly urbanizing and highly-congested cities in the Kathmandu Valley, Nepal. First, the historic context of the Valley’s uncontrolled urbanization sets the scene. Second, the optic is narrowed to focus upon the geographical features of the resultant urbanized Valley landscape that includes spatial arrangements and of houses, population densities, road networks, vehicular densities, garbage problems, and available open spaces. Additionally, seismic vulnerabilities in the urban areas are also considering in this examination. Third, three-dimensional visualizations of selected urban locations are presented to differentiate between vulnerable and relatively safe locations. The intent of this research is to contribute to the methodological understanding of human/hazards interactions in rapidly urbanizing cities of the Third World, which share similar socioeconomic conditions and environmental con-texts.展开更多
Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential...Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential element in cardiovascular and abdominal imaging.In addition to sonography and computer tomography,MRI is a valuable tool for diagnosing cardiovascular and abdominal diseases,for determining disease severity,and for assessing therapeutic success.MRI techniques have improved over the last few decades,revealing not just morphologic information,but functional information about perfusion,diffusion and hemodynamics as well.Four-dimensional(4D)flow MRI,a time-resolved phase contrast-MRI with three-dimensional(3D)anatomic coverage and velocity encoding along all three flow directions has been used to comprehensively assess complex cardiovascular hemodynamics in multiple regions of the body.The technique enables visualization of 3D blood flow patterns and retrospective quantification of blood flow parameters in a region of interest.Over the last few years,4D flow MRI has been increasingly performed in the abdominal region.By applying different acceleration techniques,taking 4D flow MRI measurements has dropped to a reasonable scanning time of 8 to 12 min.These new developments have encouraged a growing number of patient studies in the literature validating the technique’s potential for enhanced evaluation of blood flow parameters within the liver’s complex vascular system.The purpose of this review article is to broaden our understanding of 4D flow MRI for the assessment of liver hemodynamics by providing insights into acquisition,data analysis,visualization and quantification.Furthermore,in this article we highlight its development,focussing on the clinical application of the technique.展开更多
Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud de...Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud detection from the visual band of a satellite image is developed. Firstly, we consider the differences between the cloud and ground including high grey level, good continuity of grey level, area of cloud region, and the variance of local fractal dimension (VLFD) of the cloud region. A single cloud region detection method is proposed. Secondly, by introducing a reference satellite image and by comparing the variance in the dimensions corresponding to the reference and the tested images, a method that detects multiple cloud regions and determines whether or not the cloud exists in an image is described. By using several Ikonos images, the performance of the proposed method is demonstrated.展开更多
In this paper, with the general retrospect to the research on surface reconstruction and the marching cubes algorithm, we gave detailed description of an algorithm on the construction of object surfaces. The possible ...In this paper, with the general retrospect to the research on surface reconstruction and the marching cubes algorithm, we gave detailed description of an algorithm on the construction of object surfaces. The possible ambiguity problem in the original marching cubes algorithm was eliminated by its index mechanism. Some results on the MRI images were presented. Based on extracting and clipping contours from a set of medial slice images and setting the patch vertices values according to the gray images, this algorithm may be applied to form the arbitrary section images with three dimensional effects. It can also enhance the visual effect and interpretation of medical data.展开更多
The objective of the China Digital Human Project (CDH) is to digitize and visualize the anatomical structures of human body. In the project, a database with information of morphology, physical charac-teristics and phy...The objective of the China Digital Human Project (CDH) is to digitize and visualize the anatomical structures of human body. In the project, a database with information of morphology, physical charac-teristics and physiological function will be constructed. The raw data of CDH which was completed in the Southern Medical University is employed. In Huazhong University of Science and Technology (HUST), the frozen section images are preprocessed, segmented, labeled in accordance with the major organs and tissues of human beings, and reconstructed into three-dimensional (3D) models in parallel on high performance computing clusters (HPC). Some visualization software for 2D atlas and 3D mod-els are developed based on the new dataset with high resolution (0.1mm×0.1mm×0.2mm). In order to share, release and popularize the above work, a website (www.vch.org.cn) is online. The dataset is one of the most important parts in the national information database and the medical infrastructure.展开更多
基金Supported by Beijing Natural Science foundation,No.7172201
文摘AIM To explore the value of three-dimensional(3 D) visualization technology in the minimally invasive treatment for infected necrotizing pancreatitis(INP). METHODS Clinical data of 18 patients with INP, who were admitted to the PLA General Hospital in 2017, were retrospectively analyzed. Two-dimensional images of computed tomography were converted into 3 D images based on 3 D visualization technology. The size, number, shape and position of lesions and their relationship with major abdominal vasculature were well displayed. Also, percutaneous catheter drainage(PCD) number and puncture paths were designed through virtual surgery(percutaneous nephroscopic necrosectomy) based on the principle of maximum removal of infected necrosis conveniently.RESULTS Abdominal 3 D visualization images of all the patients were well reconstructed, and the optimal PCD puncture paths were well designed. Infected necrosis was conveniently removed in abundance using a nephroscope during the following surgery, and the median operation time was 102(102 ± 20.7) min. Only 1 patient underwent endoscopic necrosectomy because of residual necrosis. CONCLUSION The 3 D visualization technology could optimize the PCD puncture paths, improving the drainage effect in patients with INP. Moreover, it significantly increased the efficiency of necrosectomy through the rigid nephroscope. As a result, it decreased operation times and improved the prognosis.
基金supported by the National Natural Science Foundation Project(41501283)Beijing Science and Technology Plan Project(Z161100000916012)+2 种基金the National Key Research and Development Program(2017YFD0600901)Special Fund for Beijing Common Construction Projectthe Fundamental Research Funds for the Central Universities(2015ZCQ-GX-04)
文摘The geometric and spatial characteristics of pore structures determine the permeability and water retention of soils, which have important effects on soil functional diversity and ecological restoration. Until recently, there have not been tools and methods to visually and quantitatively describe the characteristics of soil pores. To solve this problem, this research reconstructs the geometry and spatial distribution of soil pores by the marching cubes method, texture mapping method and the ray casting method widely used in literature. The objectives were to explore an optimal method for three-dimensional visualization of soil pore structure by comparing the robustness of the three methods on soil CT images with single pore structure and porosity ranging from low (2–5%) to high (12–18%), and to evaluate the reconstruction performance of the three methods with different geometric features. The results demonstrate that there are aliases (jagged edges) and deficiency at the boundaries of the model reconstructed by the marching cubes method and pore volumes are smaller than the ground truth, whereas the results of the texture mapping method lack the details of pore structures. For all the soil images, the ray casting method is preferable since it better preserves the pore characteristics of the ground truth. Furthermore, the ray casting method produced the best soil pore model with higher rendering speed and lower memory consumption. Therefore, the ray casting method provides a more advanced method for visualization of pore structures and provides an optional technique for the study of the transport of moisture and the exchange of air in soil.
基金Project supported by the Opening Foundation of the Key Lab of Resource , Environment and GISin Beijing
文摘The divergence three-dimensional millet-seed body model and the continuous distributing layer-imitating model were introduced, which were used to express geologic body, and the procedure of generating these two models and their merits and demerits were synthesized. Three methods of geologic body’s three-dimensional expression were separately introduced, and the merits of the continuous distributing layer imitating model were proposed as comparing with the divergence three-dimensional millet-seed body model. The three-dimensional cubes were observed from any direction and any tangle with the application of dealing methods such as peeling, hollowing out, transparent or half-transparent.
文摘Three-dimensional visualization technology converts engineering design drawings and data into graphics or images, realizes virtual reality perception of simulated users in future construction scene, enhances the interaction between project management and technical personnel and engineering construction achievement, and provides intuitive, flexible and strong realistic experience for project management. It can effectively improve the level of project communication, and assist the needs of project construction planning management, training, exhibition, etc. As a tool to help improve project management skills, it has good application effect and prospects.
文摘An improved three-dimensional (3-D) experimental visualization methodology is presented tor evaluating the fracture mechanisms of ferritic stainless steels by in-situ tensile testing with an environmental scanning electron microscope (ESEM). The samples were machined with a radial notched shape and a sloped surface. Both planar surface deformation and sloping surface deformation-induced microvoids were observed during dynamic tension experiments, where a greater amount of information could be obtained from the sloping surface. The results showed that microvoids formed at the grain boundaries of highly elongated large grains. The microvoids nucleated in the severely deformed regions grew nearly parallel to the tensile axis, predominantly along the grain boundaries. The microvoids nucleated at the interface of particles and the matrix did not propagate due to the high plasticity of the matrix. The large microvoids propagated and showed a zigzag shape along the grain boundaries,seemingly a consequence of the fracture of the slip bands caused by dislocation pile-ups. The final failure took place due to the reduction of the load-beating area.
基金This project is supported by National Natural Science Foundation of China (No.50405009)
文摘In order to realize visualization of three-dimensional data field (TDDF) in instrument, two methods of visualization of TDDF and the usual manner of quick graphic and image processing are analyzed. And how to use OpenGL technique and the characteristic of analyzed data to construct a TDDF, the ways of reality processing and interactive processing are described. Then the medium geometric element and a related realistic model are constructed by means of the first algorithm. Models obtained for attaching the third dimension in three-dimensional data field are presented. An example for TDDF realization of machine measuring is provided. The analysis of resultant graphic indicates that the three-dimensional graphics built by the method developed is featured by good reality, fast processing and strong interaction
基金supported by the National Natural Science Foundation of China(U14352186140340161273189)
文摘In the field of weapon system of systems (WSOS) simulation, various indicators are widely used to describe the capability of WSOS, but it is always difficult to describe the comprehensive capability of WSOS quickly and intuitively by visualization of multi-dimensional indicators. A method of machine learning and visualization is proposed, which can display and analyze the capabilities of different WSOS in a two-dimensional plane. The analysis and comparison of the comprehensive capability of different components of WSOS is realized by the method, which consists of six parts: multiple simulations, key indicators mining, three spatial distance calculation, fusion project calculation, calculation of individual capability density, and calculation of multiple capability ranges overlay. Binding a simulation experiment, the collaborative analysis of six indicators and 100 possible kinds of red WSOS are achieved. The experimental results show that this method can effectively improve the quality and speed of capabilities analysis, reveal a large number of potential information, and provide a visual support for the qualitative and quantitative analysis model.
基金supported by the National Natural Science Foundation of China (10872096)the Open Fund of State Key Laboratory of Explosion Science and Technology, Beijing University of Science and Technology (KFJJ09-13)
文摘Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.
文摘A calculation scheme, which combines a horizontal upwind finite element method with vertical implicit differences, is used to establish a three-dimensional mathematical model of tidal motion and sediment transport in tidal current. Compared with those of the relative theoretical formula, the results are satisfactory. The model mentioned above has been applied to the water area of the Lianzhou Bay, Guangxi Province. On the basis of the analysis and comparison with the field data, it shows clearly that the model calculation results are reasonable.
文摘With the development of computer graphics, the three-dimensional (3D) visualization brings new technological revolution to the traditional cartography. Therefore, the topographic 3D-map emerges to adapt to this technological revolution, and the applications of topographic 3D-map are spread rapidly to other relevant fields due to its incomparable advantage. The researches on digital map and the construction of map database offer strong technical support and abundant data source for this new technology, so the research and development of topographic 3D-map will receive greater concern. The basic data of the topographic 3D-map are rooted mainly in digital map and its basic model is derived from digital elevation model (DEM) and 3D-models of other DEM-based geographic features. In view of the potential enormous data and the complexity of geographic features, the dynamic representation of geographic information becomes the focus of the research of topographic 3D-map and also the prerequisite condition of 3D query and analysis. In addition to the equipment of hardware that are restraining, to a certain extent, the 3D representation, the data organization structure of geographic information will be the core problem of research on 3D-map. Level of detail (LOD), space partitioning, dynamic object loading (DOL) and object culling are core technologies of the dynamic 3D representation. The object- selection, attribute-query and model-editing are important functions and interaction tools for users with 3D-maps provided by topographic 3D-map system, all of which are based on the data structure of the 3D-model. This paper discusses the basic theories, concepts and cardinal principles of topographic 3D-map, expounds the basic way to organize the scene hierarchy of topographic 3D-map based on the node mechanism and studies the dynamic representation technologies of topographic 3D-map based on LOD, space partitioning, DOL and object culling. Moreover, such interactive operation functions are explored, in this paper, as spatial query, scene editing and management of topographic 3D-map. Finally, this paper describes briefly the applications of topographic 3D-map in its related fields.
基金Project(41061043)supported by the National Natural Science Foundation of China
文摘Digital mine is the inevitable outcome of the information processing, and is also a complicated system engineering. Firstly, for the 3D visualization application of the digital mine, the ground and underground integrative visualization framework model was proposed based on the mine entity database. So, the visualization problem was availably resolved, as well as the professional analytical ability was improved. Secondly, aiming at the irregularities, non-uniformity, dynamics of mine entities, mix modeling method based on the entity character was put forward, in which 3D expression of mine entities was realized. Lastly, the 3D visualization project for a copper mine was experimentally studied. Satisfactory results were acquired, and the rationality of visualization model and feasibility of 3D modeling were validated.
文摘Excessive unplanned urban growth leads to many vulnerabilities and impacts on urban environments to varying degrees. However, the majority of the extant literature focuses on the problems related to location and socioeconomic conditions, rather than vulnerability processes and related environmental degradation. This paper analyzes the scope of urban vulnerabilities for five rapidly urbanizing and highly-congested cities in the Kathmandu Valley, Nepal. First, the historic context of the Valley’s uncontrolled urbanization sets the scene. Second, the optic is narrowed to focus upon the geographical features of the resultant urbanized Valley landscape that includes spatial arrangements and of houses, population densities, road networks, vehicular densities, garbage problems, and available open spaces. Additionally, seismic vulnerabilities in the urban areas are also considering in this examination. Third, three-dimensional visualizations of selected urban locations are presented to differentiate between vulnerable and relatively safe locations. The intent of this research is to contribute to the methodological understanding of human/hazards interactions in rapidly urbanizing cities of the Third World, which share similar socioeconomic conditions and environmental con-texts.
文摘Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential element in cardiovascular and abdominal imaging.In addition to sonography and computer tomography,MRI is a valuable tool for diagnosing cardiovascular and abdominal diseases,for determining disease severity,and for assessing therapeutic success.MRI techniques have improved over the last few decades,revealing not just morphologic information,but functional information about perfusion,diffusion and hemodynamics as well.Four-dimensional(4D)flow MRI,a time-resolved phase contrast-MRI with three-dimensional(3D)anatomic coverage and velocity encoding along all three flow directions has been used to comprehensively assess complex cardiovascular hemodynamics in multiple regions of the body.The technique enables visualization of 3D blood flow patterns and retrospective quantification of blood flow parameters in a region of interest.Over the last few years,4D flow MRI has been increasingly performed in the abdominal region.By applying different acceleration techniques,taking 4D flow MRI measurements has dropped to a reasonable scanning time of 8 to 12 min.These new developments have encouraged a growing number of patient studies in the literature validating the technique’s potential for enhanced evaluation of blood flow parameters within the liver’s complex vascular system.The purpose of this review article is to broaden our understanding of 4D flow MRI for the assessment of liver hemodynamics by providing insights into acquisition,data analysis,visualization and quantification.Furthermore,in this article we highlight its development,focussing on the clinical application of the technique.
基金supported by the National Natural Science Foundation of China(61702385)the Key Projects of National Social Science Foundation of China(11&ZD189)
文摘Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud detection from the visual band of a satellite image is developed. Firstly, we consider the differences between the cloud and ground including high grey level, good continuity of grey level, area of cloud region, and the variance of local fractal dimension (VLFD) of the cloud region. A single cloud region detection method is proposed. Secondly, by introducing a reference satellite image and by comparing the variance in the dimensions corresponding to the reference and the tested images, a method that detects multiple cloud regions and determines whether or not the cloud exists in an image is described. By using several Ikonos images, the performance of the proposed method is demonstrated.
文摘In this paper, with the general retrospect to the research on surface reconstruction and the marching cubes algorithm, we gave detailed description of an algorithm on the construction of object surfaces. The possible ambiguity problem in the original marching cubes algorithm was eliminated by its index mechanism. Some results on the MRI images were presented. Based on extracting and clipping contours from a set of medial slice images and setting the patch vertices values according to the gray images, this algorithm may be applied to form the arbitrary section images with three dimensional effects. It can also enhance the visual effect and interpretation of medical data.
基金the National High Technology Research and Development Program of China (Grant No.2006AA02Z343)
文摘The objective of the China Digital Human Project (CDH) is to digitize and visualize the anatomical structures of human body. In the project, a database with information of morphology, physical charac-teristics and physiological function will be constructed. The raw data of CDH which was completed in the Southern Medical University is employed. In Huazhong University of Science and Technology (HUST), the frozen section images are preprocessed, segmented, labeled in accordance with the major organs and tissues of human beings, and reconstructed into three-dimensional (3D) models in parallel on high performance computing clusters (HPC). Some visualization software for 2D atlas and 3D mod-els are developed based on the new dataset with high resolution (0.1mm×0.1mm×0.2mm). In order to share, release and popularize the above work, a website (www.vch.org.cn) is online. The dataset is one of the most important parts in the national information database and the medical infrastructure.