One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing...One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing and superimpose theory can keep the voltage balance through compensating the positive-, negative- and zero-sequence components of the output voltage of inverter, however, this method is time-consuming and not suitable for control. Aiming at high power medium frequency inverter source, a P+Resonant (Proportion and Resonant) controller which ensured a balanced three phase output voltage under unbalanced load is proposed in this paper. The regulator was proved to be applicable to both three-phase three-wire system and three-phase four-wire system and developed two methods of realization. The simulation results verified that this method can suppressed effectively the output voltage distorted caused by the unbalanced load and attained a high quality voltage waveforms.展开更多
Z-source inverter can boost the voltage of the DC-side, allow the two switches of the same bridge arm conducting at the same time and it has some other advantages. The zero-sequence current flows through the fourth le...Z-source inverter can boost the voltage of the DC-side, allow the two switches of the same bridge arm conducting at the same time and it has some other advantages. The zero-sequence current flows through the fourth leg of the three-phase four-leg inverter so the three-phase four-leg inverter can work with unbalanced load. This paper presents a Z-source three-phase four-leg inverter which combines a Z-source network with three-phase four-leg inverter. The circuit uses simple SPWM modulation technique and the fourth bridge arm uses fully compensated control method. The inverter can maintain a symmetrical output voltage when the proposed scheme under the unbalanced load.展开更多
We study a double phase Dirichlet problem with a reaction that has a parametric singular term. Using the Nehari manifold method, we show that for all small values of the parameter, the problem has at least two positiv...We study a double phase Dirichlet problem with a reaction that has a parametric singular term. Using the Nehari manifold method, we show that for all small values of the parameter, the problem has at least two positive, energy minimizing solutions.展开更多
为保证电池储能持续平抑波动,该文提出一种基于双层协调控制的电池集成储能控制策略。外层控制中,提出基于近零相位自适应滤波的风功率平滑策略,不仅使并网功率满足1、10 min时间尺度波动平抑需求,还减小了控制过程中相位滞后,并在风功...为保证电池储能持续平抑波动,该文提出一种基于双层协调控制的电池集成储能控制策略。外层控制中,提出基于近零相位自适应滤波的风功率平滑策略,不仅使并网功率满足1、10 min时间尺度波动平抑需求,还减小了控制过程中相位滞后,并在风功率较平稳时自适应控制储能系统退出运行,有效降低了储能系统额定功率需求和运行负担。内层控制中,采用不同充、放电特性的两组磷酸铁锂电池集成以跟踪功率指令,并定义等效荷电状态(state of charge,SOC)指标衡量储能系统的整体SOC水平,随后将等效SOC与外层控制相联系,提出基于Logistic动态区间的SOC优化策略,确保优化过程中并网功率满足要求,并解决充、放电不均衡情况下的高/低SOC极端运行状态,保证电池储能持续平抑波动能力,同时可使两组电池储能接近最优放电深度(depth of discharge,DOD)运行,充分利用其循环寿命。展开更多
The admittance is a strong tool for stability analysis and assessment of the three-phase voltage source converters(VSCs) especially in grid-connected mode.However, the sequence admittance is hard to calculate when the...The admittance is a strong tool for stability analysis and assessment of the three-phase voltage source converters(VSCs) especially in grid-connected mode.However, the sequence admittance is hard to calculate when the VSC is operating under unbalanced grid voltage conditions. In this paper, a simple and direct modeling method is proposed for a three-phase VSC taking the unbalanced grid voltage as a new variable for the system.Then coupling in the three-phase system can be calculated by applying the harmonic linearization method. The calculated admittance of three-phase VSCs is verified by detailed circuit simulations.展开更多
文摘One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing and superimpose theory can keep the voltage balance through compensating the positive-, negative- and zero-sequence components of the output voltage of inverter, however, this method is time-consuming and not suitable for control. Aiming at high power medium frequency inverter source, a P+Resonant (Proportion and Resonant) controller which ensured a balanced three phase output voltage under unbalanced load is proposed in this paper. The regulator was proved to be applicable to both three-phase three-wire system and three-phase four-wire system and developed two methods of realization. The simulation results verified that this method can suppressed effectively the output voltage distorted caused by the unbalanced load and attained a high quality voltage waveforms.
文摘Z-source inverter can boost the voltage of the DC-side, allow the two switches of the same bridge arm conducting at the same time and it has some other advantages. The zero-sequence current flows through the fourth leg of the three-phase four-leg inverter so the three-phase four-leg inverter can work with unbalanced load. This paper presents a Z-source three-phase four-leg inverter which combines a Z-source network with three-phase four-leg inverter. The circuit uses simple SPWM modulation technique and the fourth bridge arm uses fully compensated control method. The inverter can maintain a symmetrical output voltage when the proposed scheme under the unbalanced load.
基金supported by the NNSF of China (12071413, 12111530282)the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No. 823731 CONMECH。
文摘We study a double phase Dirichlet problem with a reaction that has a parametric singular term. Using the Nehari manifold method, we show that for all small values of the parameter, the problem has at least two positive, energy minimizing solutions.
文摘为保证电池储能持续平抑波动,该文提出一种基于双层协调控制的电池集成储能控制策略。外层控制中,提出基于近零相位自适应滤波的风功率平滑策略,不仅使并网功率满足1、10 min时间尺度波动平抑需求,还减小了控制过程中相位滞后,并在风功率较平稳时自适应控制储能系统退出运行,有效降低了储能系统额定功率需求和运行负担。内层控制中,采用不同充、放电特性的两组磷酸铁锂电池集成以跟踪功率指令,并定义等效荷电状态(state of charge,SOC)指标衡量储能系统的整体SOC水平,随后将等效SOC与外层控制相联系,提出基于Logistic动态区间的SOC优化策略,确保优化过程中并网功率满足要求,并解决充、放电不均衡情况下的高/低SOC极端运行状态,保证电池储能持续平抑波动能力,同时可使两组电池储能接近最优放电深度(depth of discharge,DOD)运行,充分利用其循环寿命。
基金supported by National Natural Science Foundation of China(No.51637007,No.51507118)
文摘The admittance is a strong tool for stability analysis and assessment of the three-phase voltage source converters(VSCs) especially in grid-connected mode.However, the sequence admittance is hard to calculate when the VSC is operating under unbalanced grid voltage conditions. In this paper, a simple and direct modeling method is proposed for a three-phase VSC taking the unbalanced grid voltage as a new variable for the system.Then coupling in the three-phase system can be calculated by applying the harmonic linearization method. The calculated admittance of three-phase VSCs is verified by detailed circuit simulations.