This paper describes the significant cost saving opportunities for consumers in developing countries by the use of a simple non-cooperative game theoretic mathematical model for demandside management techniques to mit...This paper describes the significant cost saving opportunities for consumers in developing countries by the use of a simple non-cooperative game theoretic mathematical model for demandside management techniques to mitigate the massive use of diesel back-up during grid outages and also other cost optimization schemes. Application of real time load scheduling optimization is investigated during power outages, for residential consumer in India. This method involves a beautiful formulation of a non–cooperation behavior between the diesel generator & the residential consumer during power outages. This involves a tree model with a two player game, where in player one is the diesel generator & player two is the consumer. Depending on the duration of the outage & the consumers limit on the cost for energy different cost optimization strategies can be generated. The load types modeled include passive loads and schedulable, i.e. typically heavy loads. It is found that this DSM schemes show excellent benefits to the consumer. The maximum diesel savings for the consumer due to strategy formulation can be approximately ranging from 45% to as high as 75% for a flat-tariff grid. The study also showed that the actual savings potential depends on the timing of power outage, duration and the specific load characteristics.展开更多
In this paper, an autonomous and distributive demand-side management based on Bayesian game theory is developed and applied among users in a grid connected micro-grid with storage. To derive that strategy, an energy c...In this paper, an autonomous and distributive demand-side management based on Bayesian game theory is developed and applied among users in a grid connected micro-grid with storage. To derive that strategy, an energy consumption of shiftable loads belonging to a given user is modelled as a noncooperative three-player game of incomplete information, in which each user plays against the storage unit and an opponent gathering all the other users in the micro-grid. Each player is assumed to be endowed with statistical information about its behavior and that of its opponents so that he can take actions maximizing his expected utility. Results of the proposed strategy evaluated by simulating, under MATLAB environment, a connected micro-grid with storage device evidence its efficacy when employed to manage the charging of electric vehicles.展开更多
文摘This paper describes the significant cost saving opportunities for consumers in developing countries by the use of a simple non-cooperative game theoretic mathematical model for demandside management techniques to mitigate the massive use of diesel back-up during grid outages and also other cost optimization schemes. Application of real time load scheduling optimization is investigated during power outages, for residential consumer in India. This method involves a beautiful formulation of a non–cooperation behavior between the diesel generator & the residential consumer during power outages. This involves a tree model with a two player game, where in player one is the diesel generator & player two is the consumer. Depending on the duration of the outage & the consumers limit on the cost for energy different cost optimization strategies can be generated. The load types modeled include passive loads and schedulable, i.e. typically heavy loads. It is found that this DSM schemes show excellent benefits to the consumer. The maximum diesel savings for the consumer due to strategy formulation can be approximately ranging from 45% to as high as 75% for a flat-tariff grid. The study also showed that the actual savings potential depends on the timing of power outage, duration and the specific load characteristics.
文摘In this paper, an autonomous and distributive demand-side management based on Bayesian game theory is developed and applied among users in a grid connected micro-grid with storage. To derive that strategy, an energy consumption of shiftable loads belonging to a given user is modelled as a noncooperative three-player game of incomplete information, in which each user plays against the storage unit and an opponent gathering all the other users in the micro-grid. Each player is assumed to be endowed with statistical information about its behavior and that of its opponents so that he can take actions maximizing his expected utility. Results of the proposed strategy evaluated by simulating, under MATLAB environment, a connected micro-grid with storage device evidence its efficacy when employed to manage the charging of electric vehicles.