Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary freque...Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy.展开更多
A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the paramet...A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the parameters, the back- propagation algorithm is applied to train the proposed neural networks. The proposed model is verified by the typical odd- order-only memory polynomial model in simulation, and the performance is compared with different numbers of taped delay lines(TDLs) and perceptrons of the hidden layer. For validating the TDFFNN model by experiments, a digital test bench is set up to collect input and output data of power amplifiers at a 60 × 10^6 sample/s sampling rate. The 3.75 MHz 16-QAM signal generated in the vector signal generator(VSG) is chosen as the input signal, when measuring the dynamic AM/AM and AM/PM characteristics of power amplifiers. By comparisons and analyses, the presented model provides a good performance in convergence, accuracy and efficiency, which is approved by simulation results and experimental results in the time domain and frequency domain.展开更多
基金the support of the National Natural Science Foundation of China(52077061)Fundamental Research Funds for the Central Universities(B240201121).
文摘Offshore wind farms are becoming increasingly distant from onshore centralized control centers,and the communication delays between them inevitably introduce time delays in the measurement signal of the primary frequency control.This causes a deterioration in the performance of the primary frequency control and,in some cases,may even result in frequency instability within the power system.Therefore,a frequency response model that incorporates communication delays was established for power systems that integrate offshore wind power.The Padéapproximation was used to model the time delays,and a linearized frequency response model of the power system was derived to investigate the frequency stability under different time delays.The influences of the wind power proportion and frequency control parameters on the system frequency stability were explored.In addition,a Smith delay compensation control strategy was devised to mitigate the effects of communication delays on the system frequency dynamics.Finally,a power system incorporating offshore wind power was constructed using the MATLAB/Simulink platform.The simulation results demonstrate the effectiveness and robustness of the proposed delay compensation control strategy.
基金The National Natural Science Foundation of China(No.60621002)the National High Technology Research and Development Pro-gram of China(863 Program)(No.2007AA01Z2B4).
文摘A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the parameters, the back- propagation algorithm is applied to train the proposed neural networks. The proposed model is verified by the typical odd- order-only memory polynomial model in simulation, and the performance is compared with different numbers of taped delay lines(TDLs) and perceptrons of the hidden layer. For validating the TDFFNN model by experiments, a digital test bench is set up to collect input and output data of power amplifiers at a 60 × 10^6 sample/s sampling rate. The 3.75 MHz 16-QAM signal generated in the vector signal generator(VSG) is chosen as the input signal, when measuring the dynamic AM/AM and AM/PM characteristics of power amplifiers. By comparisons and analyses, the presented model provides a good performance in convergence, accuracy and efficiency, which is approved by simulation results and experimental results in the time domain and frequency domain.