Angular velocity stabilization control and attitude stabilization control for an underactuated spacecraft using only two single gimbal control moment gyros (SGCMGs) as actuators is investigated. First of all, the dy...Angular velocity stabilization control and attitude stabilization control for an underactuated spacecraft using only two single gimbal control moment gyros (SGCMGs) as actuators is investigated. First of all, the dynamic model of the underactuated spacecraft is established and the singularity of different configurations with the two SGCMGs is analyzed. Under the assumption that the gimbal axes of the two SGCMGs are installed in any direction, and that the total system angular momentum is not zero, a state feedback control law via Lyapunov method is designed to globally asymptotically stabilize the angular velocity of spacecraft. Under the assumption that the gimbal axes of the two SGCMGs are coaxially installed along anyone of the three principal axes of spacecraft inertia, and that the total system angular momentum is zero, a discontinuous state feedback control law is designed to stabilize three-axis attitude of spacecraft with respect to the inertial frame. Furthermore, the singularity escape of SGCMGs for the above two control problems is also studied. Simulation results demonstrate the validity of the control laws.展开更多
The most challenging problem of navigation in three-axis stabilized geostationary satellite is accurate calculation of misalignment angles, deduced by orbit measurement error, attitude measurement error, thermal elast...The most challenging problem of navigation in three-axis stabilized geostationary satellite is accurate calculation of misalignment angles, deduced by orbit measurement error, attitude measurement error, thermal elastic deformation, time synchronization error, and so on. Before the satellite is launched, the misalignment model must be established and validated. But there were no observation data, which is a non-negligible risk of yielding the greatest returns on investment. On the basis of misalignment modeling using landmarks and stars, which is not available between different organizations and is developed by ourselves, experimental data are constructed to validate the navigation processing flow as well as misalignment calculation accuracy. In the condition of using landmarks, the maximum misalignment calculation errors of roll, pitch, and yaw axis are 2, 2, and 104 micro radians, respectively, without considering the accuracy of image edge detection. While in the condition of using stars, the maximum errors of roll, pitch, and yaw axis are 1, 1, and 3 micro radians, respectively, without considering the accuracy of star center extraction. Results are rather encouraging, which pave the way for high-accuracy image navigation of three-axis stabilized geostationary satellite. The misalignment modeling as well as calculation method has been used in the new generation of geostationary meteorological satellite in China, FY-4 series, the first satellite of which was launched at the end of 2016.展开更多
In order to research stability of four-wheel independent driving (4WID) electric vehicle, a torque allocation method based on the tire longitudinal forces optimization distribution is adopted. There are two layers in ...In order to research stability of four-wheel independent driving (4WID) electric vehicle, a torque allocation method based on the tire longitudinal forces optimization distribution is adopted. There are two layers in the controller, which includes the upper layer and the lower layer. In the upper layer, according to the demand of the longitudinal force, PID controller is set up to calculate the additional yaw moment created by yaw rate and side-slip angle. In the lower layer, the additional yaw moment is distributed properly to each wheel limited by several constraints. Carsim is used to build up the vehicle model and MATLAB/Simulink is used to build up the control model and both of them are used to simulate jointly. The result of simulation shows that a torque allocation method based on the tire longitudinal forces optimization distribution can ensure the stability of the vehicle.展开更多
A study is devoted to the delay robust stability for linear system with time delay, using matrix analysis and comparison theory on differential integral difference equations. Since the matrix norm used to derive...A study is devoted to the delay robust stability for linear system with time delay, using matrix analysis and comparison theory on differential integral difference equations. Since the matrix norm used to derive the results may be arbitrary consistent matrix norm, the obtained results possess some agility, and it makes quite convenient to check stability for linear systems with time delay. In particular, a sufficient and necessary condition for delay robust stability is obtained, and a formula to calculate the maximum delay for systems with stability is given. At the end, the results are used to analyze a flight control system (FCS). Comparison with some literature shows that the criteria in this paper are not only simple, but also of small conservativeness.展开更多
The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution ar...The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the first-order moment is identical to that of the deterministic delayed system, and the delay-independent stable condition of the second-order moment depends on the noise intensities. The corresponding critical time delays are determined once the stabilities of moments lose. Further, when the time delays are greater than the critical time delays, the system solution becomes unstable with the increase of noise intensities. Finally, some numerical simulations are given to verify the theoretical results.展开更多
For a discrete-time linear system with input delay, the predictor feedback law is the product of a feedback gain matrix with the predicted state at a future time instant ahead of the current time instant by the amount...For a discrete-time linear system with input delay, the predictor feedback law is the product of a feedback gain matrix with the predicted state at a future time instant ahead of the current time instant by the amount of the delay, which is the sum of the zero in put solution and the zero state solutio n of the system. The zero state solution is a finite summation that involves past in put, requiring considerable memory in the digital implementation of the predictor feedback law. The truncated predictor feedback, which results from discarding the finite summat沁n part of the predictor feedback law, reduces implementation complexity. The delay independent truncated predictor feedback law further discards the delay dependent transition matrix in the truncated predictor feedback law and is thus robust to unknown delays. It is known that such a delay independent truncated predictor feedback law stabilizes a discrete-time linear system with all its poles at z = 1 or inside the unit circle no matter how large the delay is. In this paper, we first construct an example to show that the delay independent truncated predictor feedback law cannot compensate too large a delay if the open loop system has poles on the unit circle at z ≠ 1. Then, a delay bound is provided for the stabilizability of a general linear system by the delay independent truncated predictor feedback.展开更多
New delay-independent and delay-dependent stability criteria for linear systems with multiple time-varying delays are established by using the time-domain method. The results are derived based on a new-type stability ...New delay-independent and delay-dependent stability criteria for linear systems with multiple time-varying delays are established by using the time-domain method. The results are derived based on a new-type stability theorem for general retarded dynamical systems and new analysis techniques developed in the author's previous work. Unlike some results in the literature, all of the established results do not depend on the derivative of time-varying delays. Therefore, they are suitable for the case with very fast time-varying delays. In addition, some remarks are also given to explain the obtained results and to point out the limitations of the previous results in the literature. Keywords Stability - Delay-independent criteria - Delay-dependent criteria - Linear time-delay systems - Multiple time-varying delays This work was supported by NSFC Key-Project (No. 60334010) and Guangdong Province Natural Science Foundation of China (No. 31406).展开更多
According to the consensus view, central banks reached a high level of independence by the end of last century. This paper argues that as a result short-term political considerations applied during the appointment pro...According to the consensus view, central banks reached a high level of independence by the end of last century. This paper argues that as a result short-term political considerations applied during the appointment process of central bank decision-makers, their actual independence was at a lower level already that time. The global f'mancial crisis created new tasks for central banks and forced a review of the meaning of independence. The paper argues that central banks should be responsible for safeguarding fmancial stability and their macro-prudential activity can only be executed in cooperation with governments. However, interest rate policy decisions must remain free of political influence. The novelty of this paper lies in showing the conflictual relationship of the various roles of central banks. The paper concludes that the duality of independence and cooperation represents a major uncertainty in the operation of central banks. As a result of the greater degree of politicisation of the activities of central banks, their de facto independence in interest rate policy making may further shrink in the future. The paper also shows that India represents a unique case of central bank independence. In most countries, de jure independence is higher than de facto. India is one of the very rare countries where the reverse is the case.展开更多
Improving the energy efficiency of an electric vehicle(EV) is an effective approach to extend its driving range. This paper proposes an integrated energy-oriented lateral stability controller(IESC) for a four-wheel in...Improving the energy efficiency of an electric vehicle(EV) is an effective approach to extend its driving range. This paper proposes an integrated energy-oriented lateral stability controller(IESC) for a four-wheel independent-drive EV(4 WID-EV) to optimize its energy consumption while maintaining vehicular stability during cornering. The IESC is a hierarchical controller with two levels. The high-level decision-making controller determines the virtual control inputs, i.e., the desired additional yaw moment and total wheel torque, while the low-level controller allocates the motor torques according to the virtual control inputs.In the high-level controller, the desired additional yaw moment is first calculated using a linear quadratic regulator(LQR) to minimize the control expenditure. Meanwhile, a stability weighting factor(SWF) based on phase plane analysis is proposed to adjust the additional yaw moment, which can reduce the additional energy consumption caused by the mismatch between the reference model and the actual vehicle. In addition to the yaw moment, the desired total wheel torque is calculated using a proportional-integral(PI) controller to track the desired longitudinal velocity. In the low-level controller, a multi-objective convex-optimization problem is established to optimize the motor torque by minimizing the energy consumption and considering the tire-road frictional limit and motor saturation. A globally optimal solution is obtained by using an active-set method. Finally,double-lane change(DLC) simulations are conducted using Car Sim and MATLAB/Simulink. The simulation results demonstrate that the proposed controller achieves great lateral stability control performance and reduces the energy consumption by5.23% and 2.95% compared with the rule-based control strategy for high-and low-friction DLC maneuvers, respectively.展开更多
文摘Angular velocity stabilization control and attitude stabilization control for an underactuated spacecraft using only two single gimbal control moment gyros (SGCMGs) as actuators is investigated. First of all, the dynamic model of the underactuated spacecraft is established and the singularity of different configurations with the two SGCMGs is analyzed. Under the assumption that the gimbal axes of the two SGCMGs are installed in any direction, and that the total system angular momentum is not zero, a state feedback control law via Lyapunov method is designed to globally asymptotically stabilize the angular velocity of spacecraft. Under the assumption that the gimbal axes of the two SGCMGs are coaxially installed along anyone of the three principal axes of spacecraft inertia, and that the total system angular momentum is zero, a discontinuous state feedback control law is designed to stabilize three-axis attitude of spacecraft with respect to the inertial frame. Furthermore, the singularity escape of SGCMGs for the above two control problems is also studied. Simulation results demonstrate the validity of the control laws.
文摘The most challenging problem of navigation in three-axis stabilized geostationary satellite is accurate calculation of misalignment angles, deduced by orbit measurement error, attitude measurement error, thermal elastic deformation, time synchronization error, and so on. Before the satellite is launched, the misalignment model must be established and validated. But there were no observation data, which is a non-negligible risk of yielding the greatest returns on investment. On the basis of misalignment modeling using landmarks and stars, which is not available between different organizations and is developed by ourselves, experimental data are constructed to validate the navigation processing flow as well as misalignment calculation accuracy. In the condition of using landmarks, the maximum misalignment calculation errors of roll, pitch, and yaw axis are 2, 2, and 104 micro radians, respectively, without considering the accuracy of image edge detection. While in the condition of using stars, the maximum errors of roll, pitch, and yaw axis are 1, 1, and 3 micro radians, respectively, without considering the accuracy of star center extraction. Results are rather encouraging, which pave the way for high-accuracy image navigation of three-axis stabilized geostationary satellite. The misalignment modeling as well as calculation method has been used in the new generation of geostationary meteorological satellite in China, FY-4 series, the first satellite of which was launched at the end of 2016.
文摘In order to research stability of four-wheel independent driving (4WID) electric vehicle, a torque allocation method based on the tire longitudinal forces optimization distribution is adopted. There are two layers in the controller, which includes the upper layer and the lower layer. In the upper layer, according to the demand of the longitudinal force, PID controller is set up to calculate the additional yaw moment created by yaw rate and side-slip angle. In the lower layer, the additional yaw moment is distributed properly to each wheel limited by several constraints. Carsim is used to build up the vehicle model and MATLAB/Simulink is used to build up the control model and both of them are used to simulate jointly. The result of simulation shows that a torque allocation method based on the tire longitudinal forces optimization distribution can ensure the stability of the vehicle.
文摘A study is devoted to the delay robust stability for linear system with time delay, using matrix analysis and comparison theory on differential integral difference equations. Since the matrix norm used to derive the results may be arbitrary consistent matrix norm, the obtained results possess some agility, and it makes quite convenient to check stability for linear systems with time delay. In particular, a sufficient and necessary condition for delay robust stability is obtained, and a formula to calculate the maximum delay for systems with stability is given. At the end, the results are used to analyze a flight control system (FCS). Comparison with some literature shows that the criteria in this paper are not only simple, but also of small conservativeness.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272051 and 11302172)
文摘The stability of the first-order and second-order solution moments for a Harrison-type predator-prey model with parametric Gaussian white noise is analyzed in this paper. The moment equations of the system solution are obtained under Ito interpretations. The delay-independent stable condition of the first-order moment is identical to that of the deterministic delayed system, and the delay-independent stable condition of the second-order moment depends on the noise intensities. The corresponding critical time delays are determined once the stabilities of moments lose. Further, when the time delays are greater than the critical time delays, the system solution becomes unstable with the increase of noise intensities. Finally, some numerical simulations are given to verify the theoretical results.
基金US National Science Foundation (No. CMMI-1462171).
文摘For a discrete-time linear system with input delay, the predictor feedback law is the product of a feedback gain matrix with the predicted state at a future time instant ahead of the current time instant by the amount of the delay, which is the sum of the zero in put solution and the zero state solutio n of the system. The zero state solution is a finite summation that involves past in put, requiring considerable memory in the digital implementation of the predictor feedback law. The truncated predictor feedback, which results from discarding the finite summat沁n part of the predictor feedback law, reduces implementation complexity. The delay independent truncated predictor feedback law further discards the delay dependent transition matrix in the truncated predictor feedback law and is thus robust to unknown delays. It is known that such a delay independent truncated predictor feedback law stabilizes a discrete-time linear system with all its poles at z = 1 or inside the unit circle no matter how large the delay is. In this paper, we first construct an example to show that the delay independent truncated predictor feedback law cannot compensate too large a delay if the open loop system has poles on the unit circle at z ≠ 1. Then, a delay bound is provided for the stabilizability of a general linear system by the delay independent truncated predictor feedback.
文摘New delay-independent and delay-dependent stability criteria for linear systems with multiple time-varying delays are established by using the time-domain method. The results are derived based on a new-type stability theorem for general retarded dynamical systems and new analysis techniques developed in the author's previous work. Unlike some results in the literature, all of the established results do not depend on the derivative of time-varying delays. Therefore, they are suitable for the case with very fast time-varying delays. In addition, some remarks are also given to explain the obtained results and to point out the limitations of the previous results in the literature. Keywords Stability - Delay-independent criteria - Delay-dependent criteria - Linear time-delay systems - Multiple time-varying delays This work was supported by NSFC Key-Project (No. 60334010) and Guangdong Province Natural Science Foundation of China (No. 31406).
文摘According to the consensus view, central banks reached a high level of independence by the end of last century. This paper argues that as a result short-term political considerations applied during the appointment process of central bank decision-makers, their actual independence was at a lower level already that time. The global f'mancial crisis created new tasks for central banks and forced a review of the meaning of independence. The paper argues that central banks should be responsible for safeguarding fmancial stability and their macro-prudential activity can only be executed in cooperation with governments. However, interest rate policy decisions must remain free of political influence. The novelty of this paper lies in showing the conflictual relationship of the various roles of central banks. The paper concludes that the duality of independence and cooperation represents a major uncertainty in the operation of central banks. As a result of the greater degree of politicisation of the activities of central banks, their de facto independence in interest rate policy making may further shrink in the future. The paper also shows that India represents a unique case of central bank independence. In most countries, de jure independence is higher than de facto. India is one of the very rare countries where the reverse is the case.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.51675281,and 51805081)the National Science and Technology Major Project of China(Grant No.2018ZX04024001)+2 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.30918011101,and 309181B8809)and the Graduate Student Innovation Project of Jiangsu Province,China(Grant No.KYLX15_0341)the Chinese Scholarship Council for providing a scholarship(Grant No.201506840033)
文摘Improving the energy efficiency of an electric vehicle(EV) is an effective approach to extend its driving range. This paper proposes an integrated energy-oriented lateral stability controller(IESC) for a four-wheel independent-drive EV(4 WID-EV) to optimize its energy consumption while maintaining vehicular stability during cornering. The IESC is a hierarchical controller with two levels. The high-level decision-making controller determines the virtual control inputs, i.e., the desired additional yaw moment and total wheel torque, while the low-level controller allocates the motor torques according to the virtual control inputs.In the high-level controller, the desired additional yaw moment is first calculated using a linear quadratic regulator(LQR) to minimize the control expenditure. Meanwhile, a stability weighting factor(SWF) based on phase plane analysis is proposed to adjust the additional yaw moment, which can reduce the additional energy consumption caused by the mismatch between the reference model and the actual vehicle. In addition to the yaw moment, the desired total wheel torque is calculated using a proportional-integral(PI) controller to track the desired longitudinal velocity. In the low-level controller, a multi-objective convex-optimization problem is established to optimize the motor torque by minimizing the energy consumption and considering the tire-road frictional limit and motor saturation. A globally optimal solution is obtained by using an active-set method. Finally,double-lane change(DLC) simulations are conducted using Car Sim and MATLAB/Simulink. The simulation results demonstrate that the proposed controller achieves great lateral stability control performance and reduces the energy consumption by5.23% and 2.95% compared with the rule-based control strategy for high-and low-friction DLC maneuvers, respectively.