Three-degree of freedom(3-DOF) translational parallel manipulators(TPMs) have been widely studied both in industry and academia in the past decades. However, most architectures of 3-DOF TPMs are created mainly on ...Three-degree of freedom(3-DOF) translational parallel manipulators(TPMs) have been widely studied both in industry and academia in the past decades. However, most architectures of 3-DOF TPMs are created mainly on designers' intuition, empirical knowledge, or associative reasoning and the topology synthesis researches of 3-DOF TPMs are still limited. In order to find out the atlas of designs for 3-DOF TPMs, a topology search is presented for enumeration of 3-DOF TPMs whose limbs can be modeled as 5-DOF serial chains. The proposed topology search of 3-DOF TPMs is aimed to overcome the sensitivities of the design solution of a 3-DOF TPM for a LARM leg mechanism in a biped robot. The topology search, which is based on the concept of generation and specialization in graph theory, is reported as a step-by-step procedure with desired specifications, principle and rules of generalization, design requirements and constraints, and algorithm of number synthesis. In order to obtain new feasible designs for a chosen example and to limit the search domain under general considerations, one topological generalized kinematic chain is chosen to be specialized. An atlas of new feasible designs is obtained and analyzed for a specific solution as leg mechanisms. The proposed methodology provides a topology search for 3-DOF TPMs for leg mechanisms, but it can be also expanded for other applications and tasks.展开更多
The pneumatic muscle actuator(PMA)has many advantages,such as good flexibility,high power/weight ratio,but its nonlinearity makes it difficult to build a static mathematical model with high precision.A new method is p...The pneumatic muscle actuator(PMA)has many advantages,such as good flexibility,high power/weight ratio,but its nonlinearity makes it difficult to build a static mathematical model with high precision.A new method is proposed to establish the model of PMA.The concept of hybrid elastic modulus which is related to the static characteristic of PMA is put forward,and the energy conservation law is used to achieve the expression of the hybrid elastic modulus,which can be fitted out based on experimental data,and the model of PMA can be derived from this expression.At the same time,a 3-DOF parallel mechanism(a new bionic shoulder joint)driven by five PMAs is designed.This bionic shoulder joint adopts the structure of two antagonistic PMAs actualizing a rotation control and three PMAs controlling another two rotations to get better rotation characteristics.The kinematic and dynamic characteristics of the mechanism are analyzed and a new static model of PMA is used to control it.Experimental results demonstrate the effectiveness of this new static model.展开更多
Ocean wave energy converters(WECs) are obtaining more and more attentions in the world. So far, many types of converters have been invented. Oscillating body systems are a major class of WECs, which typically have one...Ocean wave energy converters(WECs) are obtaining more and more attentions in the world. So far, many types of converters have been invented. Oscillating body systems are a major class of WECs, which typically have one degree of freedom(DOF), and the power absorption efficiency is not quite satisfactory. In this paper, a 3-DOF WEC is proposed and a simplified frequency-domain dynamic model of the WEC depending on the linear potential theory is conducted. The performances of three geometries of the oscillating body including the cone, the cylinder and the hemisphere have been compared, and the results show that the hemisphere is more suitable for the 3-DOF WEC.Subsequently, the relationship among the parameters of the hemisphere is established based on the equal natural frequencies of the heave and pitch(or roll) motions, and the results show that lowering the center of gravity leads to the better power absorption in the pitch(or roll) motion. In the end, the power matrixes of different sizes of the hemispheres under different irregular waves are obtained, which can give a size design reference for engineers.展开更多
Quadrotor helicopter is emerging as a popular platform for unmanned aerial vehicle re- search, due to its simplicity of structure and maintenance as well as the capability of hovering and vertical take-off and landing...Quadrotor helicopter is emerging as a popular platform for unmanned aerial vehicle re- search, due to its simplicity of structure and maintenance as well as the capability of hovering and vertical take-off and landing. The attitude controller is an important feature of quadrotor helicopter since it allows the vehicle to keep balance and perform the desired maneuver. In this paper, nonlin- ear control strategies including active disturbance rejection control (ADRC), sliding mode control (SMC) and backstepping method are studied and implemented to stabilize the attitude of a 3-DOF hover system. ADRC is an error-driven control law, with extended state observer (ESO) estimating the unmodeled inner dynamics and external disturbance to dynamically compensate their impacts. Meanwhile; both backstepping technique and SMC are developed based on the mathematical model, whose stability is ensured by Lyapunov global stability theorem. Furthermore, the performance of each control algorithm is evaluated by experiments. The results validate effectiveness of the strate- gies for attitude regulation. Finally, the respective characteristics of the three controllers are high- lighted by-comparison, and conclusions are drawn on the basis of the theoretical and experimental a- nalysis.展开更多
基金supported by the Chinese Scholarship Council(CSC)for his Ph D study and research at LARM in the University of Cassino and South Latium,Italy,during 2013-2015
文摘Three-degree of freedom(3-DOF) translational parallel manipulators(TPMs) have been widely studied both in industry and academia in the past decades. However, most architectures of 3-DOF TPMs are created mainly on designers' intuition, empirical knowledge, or associative reasoning and the topology synthesis researches of 3-DOF TPMs are still limited. In order to find out the atlas of designs for 3-DOF TPMs, a topology search is presented for enumeration of 3-DOF TPMs whose limbs can be modeled as 5-DOF serial chains. The proposed topology search of 3-DOF TPMs is aimed to overcome the sensitivities of the design solution of a 3-DOF TPM for a LARM leg mechanism in a biped robot. The topology search, which is based on the concept of generation and specialization in graph theory, is reported as a step-by-step procedure with desired specifications, principle and rules of generalization, design requirements and constraints, and algorithm of number synthesis. In order to obtain new feasible designs for a chosen example and to limit the search domain under general considerations, one topological generalized kinematic chain is chosen to be specialized. An atlas of new feasible designs is obtained and analyzed for a specific solution as leg mechanisms. The proposed methodology provides a topology search for 3-DOF TPMs for leg mechanisms, but it can be also expanded for other applications and tasks.
基金supported by the National Natural Science Foundation of China(No. 51405229)the Natural Science Foundation of Jiangsu Province of China(Nos. BK20151470,BK20171416)
文摘The pneumatic muscle actuator(PMA)has many advantages,such as good flexibility,high power/weight ratio,but its nonlinearity makes it difficult to build a static mathematical model with high precision.A new method is proposed to establish the model of PMA.The concept of hybrid elastic modulus which is related to the static characteristic of PMA is put forward,and the energy conservation law is used to achieve the expression of the hybrid elastic modulus,which can be fitted out based on experimental data,and the model of PMA can be derived from this expression.At the same time,a 3-DOF parallel mechanism(a new bionic shoulder joint)driven by five PMAs is designed.This bionic shoulder joint adopts the structure of two antagonistic PMAs actualizing a rotation control and three PMAs controlling another two rotations to get better rotation characteristics.The kinematic and dynamic characteristics of the mechanism are analyzed and a new static model of PMA is used to control it.Experimental results demonstrate the effectiveness of this new static model.
基金financially supported by China Postdoctoral Science Foundation(Grant No.2017M611554)the National Natural Science Foundation of China(Grant No.51335007)
文摘Ocean wave energy converters(WECs) are obtaining more and more attentions in the world. So far, many types of converters have been invented. Oscillating body systems are a major class of WECs, which typically have one degree of freedom(DOF), and the power absorption efficiency is not quite satisfactory. In this paper, a 3-DOF WEC is proposed and a simplified frequency-domain dynamic model of the WEC depending on the linear potential theory is conducted. The performances of three geometries of the oscillating body including the cone, the cylinder and the hemisphere have been compared, and the results show that the hemisphere is more suitable for the 3-DOF WEC.Subsequently, the relationship among the parameters of the hemisphere is established based on the equal natural frequencies of the heave and pitch(or roll) motions, and the results show that lowering the center of gravity leads to the better power absorption in the pitch(or roll) motion. In the end, the power matrixes of different sizes of the hemispheres under different irregular waves are obtained, which can give a size design reference for engineers.
基金Supported by the National Key Technology R&D Program of China(201011080)
文摘Quadrotor helicopter is emerging as a popular platform for unmanned aerial vehicle re- search, due to its simplicity of structure and maintenance as well as the capability of hovering and vertical take-off and landing. The attitude controller is an important feature of quadrotor helicopter since it allows the vehicle to keep balance and perform the desired maneuver. In this paper, nonlin- ear control strategies including active disturbance rejection control (ADRC), sliding mode control (SMC) and backstepping method are studied and implemented to stabilize the attitude of a 3-DOF hover system. ADRC is an error-driven control law, with extended state observer (ESO) estimating the unmodeled inner dynamics and external disturbance to dynamically compensate their impacts. Meanwhile; both backstepping technique and SMC are developed based on the mathematical model, whose stability is ensured by Lyapunov global stability theorem. Furthermore, the performance of each control algorithm is evaluated by experiments. The results validate effectiveness of the strate- gies for attitude regulation. Finally, the respective characteristics of the three controllers are high- lighted by-comparison, and conclusions are drawn on the basis of the theoretical and experimental a- nalysis.