●AIM:To determine the teaching effects of a real-time three dimensional(3D)visualization system in the operating room for early-stage phacoemulsification training.●METHODS:A total of 10 ophthalmology residents of th...●AIM:To determine the teaching effects of a real-time three dimensional(3D)visualization system in the operating room for early-stage phacoemulsification training.●METHODS:A total of 10 ophthalmology residents of the first-year postgraduate were included.All the residents were novices to cataract surgery.Real-time cataract surgical observations were performed using a custom-built 3D visualization system.The training lasted 4wk(32h)in all.A modified International Council of Ophthalmology’s Ophthalmology Surgical Competency Assessment Rubric(ICO-OSCAR)containing 4 specific steps of cataract surgery was applied.The self-assessment(self)and expert-assessment(expert)were performed through the microsurgical attempts in the wet lab for each participant.●RESULTS:Compared with pre-training assessments(self 3.2±0.8,expert 2.5±0.6),the overall mean scores of posttraining(self 5.2±0.4,expert 4.7±0.6)were significantly improved after real-time observation training of 3D visualization system(P<0.05).Scores of 4 surgical items were significantly improved both self and expert assessment after training(P<0.05).●CONCLUSION:The 3D observation training provides novice ophthalmic residents with a better understanding of intraocular microsurgical techniques.It is a useful tool to improve teaching efficiency of surgical education.展开更多
Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hy...The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hydrofracturing cracks within heterogeneous rocks is of particular use to the design and implementation of hydrofracturing stimulation of unconventional reservoirs. However, because of the difficulties involved in visually representing and quantitatively characterizing a 3D hydrofracturing crack-network, this issue remains a challenge. In this paper, a novel method is proposed for physically visualizing and quantitatively characterizing the 3D hydrofracturing crack-network distributed through a heterogeneous structure based on a natural glutenite sample. This method incorporates X-ray microfocus computed tomography (μCT), 3D printing models and hydrofracturing triaxial tests to represent visually the heterogeneous structure, and the 3D crack growth and distribution within a transparent rock model during hydrofracturing. The coupled effects of material heterogeneity and confining geostress on the 3D crack initiation and propagation were analyzed. The results indicate that the breakdown pressure of a heterogeneous rock model is significantly affected by material heterogeneity and confining geostress. The measured breakdown pressures of heterogeneous models are apparently different from those predicted by traditional theories. This study helps to elucidate the quantitative visualization and characterization of the mechanism and influencing factors that determine the hydrofracturing crack initiation and propagation in heterogeneous reservoir rocks.展开更多
An improved three-dimensional (3-D) experimental visualization methodology is presented tor evaluating the fracture mechanisms of ferritic stainless steels by in-situ tensile testing with an environmental scanning e...An improved three-dimensional (3-D) experimental visualization methodology is presented tor evaluating the fracture mechanisms of ferritic stainless steels by in-situ tensile testing with an environmental scanning electron microscope (ESEM). The samples were machined with a radial notched shape and a sloped surface. Both planar surface deformation and sloping surface deformation-induced microvoids were observed during dynamic tension experiments, where a greater amount of information could be obtained from the sloping surface. The results showed that microvoids formed at the grain boundaries of highly elongated large grains. The microvoids nucleated in the severely deformed regions grew nearly parallel to the tensile axis, predominantly along the grain boundaries. The microvoids nucleated at the interface of particles and the matrix did not propagate due to the high plasticity of the matrix. The large microvoids propagated and showed a zigzag shape along the grain boundaries,seemingly a consequence of the fracture of the slip bands caused by dislocation pile-ups. The final failure took place due to the reduction of the load-beating area.展开更多
In order to visualize the 3-D field of explosion and describe the complex physical phenomena of explosion, the 3-D data resulting from numerical simulation by 3-D multi-material in cell (MMIC), and the application of ...In order to visualize the 3-D field of explosion and describe the complex physical phenomena of explosion, the 3-D data resulting from numerical simulation by 3-D multi-material in cell (MMIC), and the application of volume visualization is explored, based on the characteristics of explosion and shock. Based on this, a visualization system for 3-D explosion--ViSC3D is designed. Approaches for the visualization of 3-D field of explosion are presented. The algorithm and the functions of ViSC3D are also presented. ViSC3D is thus a useful tool to observe and analyze either the full picture or the details of a 3-D field of explosion, that are difficult to observe and analyze directly. With ViSC3D, the field of explosion between the hill slopes is visualized. The cutaway views and 2-D slices are also given. The full picture and partial details of 3-D field of explosion can be observed clearly. Furthermore, ViSC3D can be used to visualize other similar 3-D data fields.展开更多
3D visualization was established for noninvasive evaluation of neurovascular compression syndromes. MR-CISS (constructive interference in the steady state) is the most potent image source to depict neurovascular detai...3D visualization was established for noninvasive evaluation of neurovascular compression syndromes. MR-CISS (constructive interference in the steady state) is the most potent image source to depict neurovascular details. The purpose of this article is the conceptual view over the established technique of 3D visualization in the topography of aneurysms in the posterior circulation in relation to surrounding cranial nerves and the brainstem.展开更多
Three-dimensional medical image visualization becomes an essential part for medical field, including computer aided diagnosis, surgery planning and simulation, artificial limb surgery, radiotherapy planning, and teach...Three-dimensional medical image visualization becomes an essential part for medical field, including computer aided diagnosis, surgery planning and simulation, artificial limb surgery, radiotherapy planning, and teaching etc. In this paper, marching cubes algorithm is adopted to reconstruct the 3-D images for the CT image sequence in DICOM format under theVC++6.0 and the visual package VTK platform. The relatively simple interactive operations such as rotation and transfer can be realized on the platform. Moreover, the normal vector and interior point are calculated to form the virtual clipping plane, which is then used to incise the 3-D object. Information of the virtual slice can be obtained, in the mean while the virtual slice images are displayed on the screen. The technique can realize the real time interaction extraction of virtual slice on 3-D CT image. The cuboids structured can be zoomed, moved and eircumrotated by operating mouse to incise the 3-D reconstruction object. Real time interaction can be realized by clipping the reconstruction object. The coordinates can be acquired by the mouse clicking in the 3D space, to realize the point mouse pick-up as well angle and distance interactive measurement. We can get quantitative information about 3-D images through measurement.展开更多
Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.Howev...Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.展开更多
The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of signi...The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.展开更多
According to the characteristics of bore data,a model of 3D geologic body with generalized tri-prism as the primitive modeling element is constructed while the modeling process and key algorithms of modeling are prese...According to the characteristics of bore data,a model of 3D geologic body with generalized tri-prism as the primitive modeling element is constructed while the modeling process and key algorithms of modeling are presented here in detail.Using this method,the original bore data go through Delaunay triangulation to generate irregular triangular network on the surface,and then links stratum segments on the adjoining bores in session to form tri-prisms which would be pinched out.Finally stratified 3D geologic body model is built by an iterated search which searches for consecutive layer of the same property.The result shows that this method can effectively simulate stratified stratum modeling.展开更多
Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese...Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.展开更多
Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lu...Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the puncture accuracy of elderly patients, shorten the puncture time, reduce the number of punctures, and increase the amount of puncture pathological tissue, without increasing pneumothorax and hemorrhage complications. We look forward to verifying this in a phase III randomized controlled clinical study. .展开更多
Data acquisition and modeling are the two important, difficult and costful aspects in a Cybercity project. 2D-GIS is mature and can manage a lot of spatial data. Thus 3D-GIS should make the best of data and technology...Data acquisition and modeling are the two important, difficult and costful aspects in a Cybercity project. 2D-GIS is mature and can manage a lot of spatial data. Thus 3D-GIS should make the best of data and technology of 2D-GIS. Construction of a useful synthetic environment requires integration of multiple types of information like DEM, texture images and 3D representation of objects such as buildings. In this paper, the method for 3D city landscape data model and visualization based on integrated databases is presented. Since the data volume of raster are very huge, special strategies(for example, pyramid gridded method) must be adopted in order to manage raster data efficiently. Three different methods of data acquisition, the proper data structure and a simple modeling method are presented as well. At last, a pilot project of Shanghai Cybercity is illustrated.展开更多
The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity i...The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity inversion method based on 3D U-Net++.Compared with two-dimensional gravity inversion,three-dimensional(3D)gravity inversion can more precisely describe the density distribution of underground space.However,conventional 3D gravity inversion method input is two-dimensional,the input and output of the network proposed in our method are three-dimensional.In the training stage,we design a large number of diversifi ed simulation model-data pairs by using the random walk method to improve the generalization ability of the network.In the test phase,we verify the network performance by using the model-data pairs generated by the simulation.To further illustrate the eff ectiveness of the algorithm,we apply the method to the inversion of the San Nicolas mining area,and the inversion results are basically consistent with the borehole measurement results.Moreover,the results of the 3D U-Net++inversion and the 3D U-Net inversion are compared.The density models of the 3D U-Net++inversion have higher resolution,more concentrated inversion results,and a clearer boundary of the density model.展开更多
We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3...We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mo- saicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.展开更多
The material flow in friction stir welded 2014 Al alloy has been investigated using a marker insert technique (MIT). Results of the flow visualization show that the material flow is asymmetrical during the friction ...The material flow in friction stir welded 2014 Al alloy has been investigated using a marker insert technique (MIT). Results of the flow visualization show that the material flow is asymmetrical during the friction stir welding (FSW) process and there are also significant differences in the flow patterns observed on advancing side and retreating side. On advancing side, some material transport forward and some move backward, but on retreating side, material only transport backward. At the top surface of the weld, significant material transport forward due to the action of the rotating tool shoulder. Combining the data from all the markers, a three-dituensional flow visualization, similar to the 3D image reconstruction technique, was obtained. The three-dimensional plot gives the tendency chart of material flow in friction stir welding process and from the plot it can be seen that there is a vertical, circular motion around the longitudinal axis of the weld. On the advancing side of the weld, the material is pushed downward but on the retreating side, the material is pushed toward the crown of the weld. The net result of the two relative motions in both side of the advancing and the retreating is that a circular motion comes into being. Comparatively, the material flow around the longitudinal axis is a secondary motion.展开更多
An approach for generating interactive 3D graphical visualization of the genetic architectures of complex traits in multiple environments is described. 3D graphical visualization is utilized for making improvements on...An approach for generating interactive 3D graphical visualization of the genetic architectures of complex traits in multiple environments is described. 3D graphical visualization is utilized for making improvements on traditional plots in quan- titative trait locus (QTL) mapping analysis. Interactive 3D graphical visualization for abstract expression of QTL, epistasis and their environmental interactions for experimental populations was developed in framework of user-friendly software QTLNetwork (http://ibi.zju.edu.cn/software/qtlnetwork). Novel definition of graphical meta system and computation of virtual coordinates are used to achieve explicit but meaningful visualization. Interactive 3D graphical visualization for QTL analysis provides geneticists and breeders a powerful and easy-to-use tool to analyze and publish their research results.展开更多
Adhesions between different cells and extracellular matrix have been studied extensively in vitro, but little is known about their functions in testicular tissue counterparts. Spermatogonia and their companion somatic...Adhesions between different cells and extracellular matrix have been studied extensively in vitro, but little is known about their functions in testicular tissue counterparts. Spermatogonia and their companion somatic cells maintain a close association throughout spermatogenesis and this association is necessary for normal spermatogenesis. In order to keep the relative integrity of the testicular tissues, and to detect the development in vitro, culture testicular tissues in a three- dimensional (3D) agarose matrix was examined. Testicular tissues isolated from 6.5 d postpartum (dpp) mouse were cultured on the top of the matrix for 26 d with a medium height up to 4/5 of the 3D agarose matrix. The results showed that in this 3D culture environment, each type of testicular cells kept the same structure, localization and function as in vivo and might be more biologically relevant to living organisms. After culture, germ cell marker VASA and meiosis markers DAZL and SCP3 showed typical positive analysed by immunofluorescence staining and RT-PCR. It demonstrated that this 3D culture system was able to maintain the number of germ cells and promote the meiosis initiation of male germ cells.展开更多
Background With the rapid development of Web3D technologies, the online Web3D visualization, particularly for complex models or scenes, has been in a great demand. Owing to the major conflict between the Web3D system ...Background With the rapid development of Web3D technologies, the online Web3D visualization, particularly for complex models or scenes, has been in a great demand. Owing to the major conflict between the Web3D system load and resource consumption in the processing of these huge models, the huge 3D model lightweighting methods for online Web3D visualization are reviewed in this paper. Methods By observing the geometry redundancy introduced by man-made operations in the modeling procedure, several categories of light-weighting related work that aim at reducing the amount of data and resource consumption are elaborated for Web3D visualization. Results By comparing perspectives, the characteristics of each method are summarized, and among the reviewed methods, the geometric redundancy removal that achieves the lightweight goal by detecting and removing the repeated components is an appropriate method for current online Web3D visualization. Meanwhile, the learning algorithm, still in improvement period at present, is our expected future research topic. Conclusions Various aspects should be considered in an efficient lightweight method for online Web3D visualization, such as characteristics of original data, combination or extension of existing methods, scheduling strategy, cache man-agement, and rendering mechanism. Meanwhile, innovation methods, particularly the learning algorithm, are worth exploring.展开更多
The mining loss rate and dilution rate are the key indicators for the mining technology and management level of mining enterprises. Aiming at the practical problems such as the large workload but inaccurate data of th...The mining loss rate and dilution rate are the key indicators for the mining technology and management level of mining enterprises. Aiming at the practical problems such as the large workload but inaccurate data of the traditional loss and dilution calculation method, this thesis introduces the operating principle and process of calculating the loss rate and dilution rate at the mining fields by adopting geological models. As an example, authors establishes 3D models of orebody units in the exhausted area and mining fields in Yangshu Gold Mine in Liaoning Province, and conduct Boolean calculation among the models to obtain the calculation parameters of loss and dilution, and thereby calculate out the dilution rate and loss rate of the mining fields more quickly and accurately.展开更多
基金Supported by research grants from the National Key Research and Development Program of China(No.2020YFE0204400)the National Natural Science Foundation of China(No.82271042+1 种基金No.52203191)the Zhejiang Province Key Research and Development Program(No.2023C03090).
文摘●AIM:To determine the teaching effects of a real-time three dimensional(3D)visualization system in the operating room for early-stage phacoemulsification training.●METHODS:A total of 10 ophthalmology residents of the first-year postgraduate were included.All the residents were novices to cataract surgery.Real-time cataract surgical observations were performed using a custom-built 3D visualization system.The training lasted 4wk(32h)in all.A modified International Council of Ophthalmology’s Ophthalmology Surgical Competency Assessment Rubric(ICO-OSCAR)containing 4 specific steps of cataract surgery was applied.The self-assessment(self)and expert-assessment(expert)were performed through the microsurgical attempts in the wet lab for each participant.●RESULTS:Compared with pre-training assessments(self 3.2±0.8,expert 2.5±0.6),the overall mean scores of posttraining(self 5.2±0.4,expert 4.7±0.6)were significantly improved after real-time observation training of 3D visualization system(P<0.05).Scores of 4 surgical items were significantly improved both self and expert assessment after training(P<0.05).●CONCLUSION:The 3D observation training provides novice ophthalmic residents with a better understanding of intraocular microsurgical techniques.It is a useful tool to improve teaching efficiency of surgical education.
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
基金We gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grants 51374213 and 51674251), National Natural Science Fund for Distinguished Young Scholars of China (Grant 51125017), Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant 51421003), Fund for Innovative Research and Development Group Program of Jiangsu Province (Grant 2014-27), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant PAPD 2014).
文摘The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hydrofracturing cracks within heterogeneous rocks is of particular use to the design and implementation of hydrofracturing stimulation of unconventional reservoirs. However, because of the difficulties involved in visually representing and quantitatively characterizing a 3D hydrofracturing crack-network, this issue remains a challenge. In this paper, a novel method is proposed for physically visualizing and quantitatively characterizing the 3D hydrofracturing crack-network distributed through a heterogeneous structure based on a natural glutenite sample. This method incorporates X-ray microfocus computed tomography (μCT), 3D printing models and hydrofracturing triaxial tests to represent visually the heterogeneous structure, and the 3D crack growth and distribution within a transparent rock model during hydrofracturing. The coupled effects of material heterogeneity and confining geostress on the 3D crack initiation and propagation were analyzed. The results indicate that the breakdown pressure of a heterogeneous rock model is significantly affected by material heterogeneity and confining geostress. The measured breakdown pressures of heterogeneous models are apparently different from those predicted by traditional theories. This study helps to elucidate the quantitative visualization and characterization of the mechanism and influencing factors that determine the hydrofracturing crack initiation and propagation in heterogeneous reservoir rocks.
文摘An improved three-dimensional (3-D) experimental visualization methodology is presented tor evaluating the fracture mechanisms of ferritic stainless steels by in-situ tensile testing with an environmental scanning electron microscope (ESEM). The samples were machined with a radial notched shape and a sloped surface. Both planar surface deformation and sloping surface deformation-induced microvoids were observed during dynamic tension experiments, where a greater amount of information could be obtained from the sloping surface. The results showed that microvoids formed at the grain boundaries of highly elongated large grains. The microvoids nucleated in the severely deformed regions grew nearly parallel to the tensile axis, predominantly along the grain boundaries. The microvoids nucleated at the interface of particles and the matrix did not propagate due to the high plasticity of the matrix. The large microvoids propagated and showed a zigzag shape along the grain boundaries,seemingly a consequence of the fracture of the slip bands caused by dislocation pile-ups. The final failure took place due to the reduction of the load-beating area.
文摘In order to visualize the 3-D field of explosion and describe the complex physical phenomena of explosion, the 3-D data resulting from numerical simulation by 3-D multi-material in cell (MMIC), and the application of volume visualization is explored, based on the characteristics of explosion and shock. Based on this, a visualization system for 3-D explosion--ViSC3D is designed. Approaches for the visualization of 3-D field of explosion are presented. The algorithm and the functions of ViSC3D are also presented. ViSC3D is thus a useful tool to observe and analyze either the full picture or the details of a 3-D field of explosion, that are difficult to observe and analyze directly. With ViSC3D, the field of explosion between the hill slopes is visualized. The cutaway views and 2-D slices are also given. The full picture and partial details of 3-D field of explosion can be observed clearly. Furthermore, ViSC3D can be used to visualize other similar 3-D data fields.
文摘3D visualization was established for noninvasive evaluation of neurovascular compression syndromes. MR-CISS (constructive interference in the steady state) is the most potent image source to depict neurovascular details. The purpose of this article is the conceptual view over the established technique of 3D visualization in the topography of aneurysms in the posterior circulation in relation to surrounding cranial nerves and the brainstem.
基金National 973 Basic Research Program of Chinagrant number:2010CB732600+4 种基金Major Research Equipment Fund of the Chinese Academy of Sciences and Knowledge Innovation Project of the Chinese Academy of Sciences,2008 Shenzhen Controversial Technology Innovation Research Projectsgrant number:FG200805230224AConcentration plan of innovation sources of Shenzhen-R&D projects of international cooperation on science and technologygrant number:ZYA200903260065ANatural Science Foundation of Guangdong Province,China 8478922035-X0007007
文摘Three-dimensional medical image visualization becomes an essential part for medical field, including computer aided diagnosis, surgery planning and simulation, artificial limb surgery, radiotherapy planning, and teaching etc. In this paper, marching cubes algorithm is adopted to reconstruct the 3-D images for the CT image sequence in DICOM format under theVC++6.0 and the visual package VTK platform. The relatively simple interactive operations such as rotation and transfer can be realized on the platform. Moreover, the normal vector and interior point are calculated to form the virtual clipping plane, which is then used to incise the 3-D object. Information of the virtual slice can be obtained, in the mean while the virtual slice images are displayed on the screen. The technique can realize the real time interaction extraction of virtual slice on 3-D CT image. The cuboids structured can be zoomed, moved and eircumrotated by operating mouse to incise the 3-D reconstruction object. Real time interaction can be realized by clipping the reconstruction object. The coordinates can be acquired by the mouse clicking in the 3D space, to realize the point mouse pick-up as well angle and distance interactive measurement. We can get quantitative information about 3-D images through measurement.
文摘Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.
基金supported by the National Natural Science Foundation of China (No.52374124)National Youth Science Foundation of China (No.52204135)+3 种基金Xing Liao Talent Plan (No.XLYC2202004)Young Elite Scientists Sponsorship Program by CAST (No.2023QNRC001)Liaoning Province International Science and Technology Cooperation Plan (No.2022JH2/1070004)Liaoning Natural Science Foundation Program (No.2022-BS-327)。
文摘The 2D limit equilibrium method is widely used for slope stability analysis.However,with the advancement of dump engineering,composite slopes often exhibit significant 3D mechanical effects.Consequently,it is of significant importance to develop an effective 3D stability calculation method for composite slopes to enhance the design and stability control of open-pit slope engineering.Using the composite slope formed by the mining stope and inner dump in Baiyinhua No.1 and No.2 open-pit coal mine as a case study,this research investigates the failure mode of composite slopes and establishes spatial shape equations for the sliding mass.By integrating the shear resistance and sliding force of each row of microstrip columns onto the bottom surface of the strip corresponding to the main sliding surface,a novel 2D equivalent physical and mechanical parameters analysis method for the strips on the main sliding surface of 3D sliding masses is proposed.Subsequently,a comprehensive 3D stability calculation method for composite slopes is developed,and the quantitative relationship between the coordinated development distance and its 3D stability coefficients is examined.The analysis reveals that the failure mode of the composite slope is characterized by cutting-bedding sliding,with the arc serving as the side interface and the weak layer as the bottom interface,while the destabilization mechanism primarily involves shear failure.The spatial form equation of the sliding mass comprises an ellipsoid and weak plane equation.The analysis revealed that when the coordinated development distance is 1500 m,the error rate between the 3D stability calculation result and the 2D stability calculation result of the composite slope is less than 8%,thereby verifying the proposed analytical method of equivalent physical and mechanical parameters and the 3D stability calculation method for composite slopes.Furthermore,the3D stability coefficient of the composite slope exhibits an exponential correlation with the coordinated development distance,with the coefficient gradually decreasing as the coordinated development distance increases.These findings provide a theoretical guideline for designing similar slope shape parameters and conducting stability analysis.
文摘According to the characteristics of bore data,a model of 3D geologic body with generalized tri-prism as the primitive modeling element is constructed while the modeling process and key algorithms of modeling are presented here in detail.Using this method,the original bore data go through Delaunay triangulation to generate irregular triangular network on the surface,and then links stratum segments on the adjoining bores in session to form tri-prisms which would be pinched out.Finally stratified 3D geologic body model is built by an iterated search which searches for consecutive layer of the same property.The result shows that this method can effectively simulate stratified stratum modeling.
文摘Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.
文摘Background: As the population age structure gradually ages, more and more elderly people were found to have pulmonary nodules during physical examinations. Most elderly people had underlying diseases such as heart, lung, brain and blood vessels and cannot tolerate surgery. Computed tomography (CT)-guided percutaneous core needle biopsy (CNB) was the first choice for pathological diagnosis and subsequent targeted drugs, immune drugs or ablation treatment. CT-guided percutaneous CNB requires clinicians with rich CNB experience to ensure high CNB accuracy, but it was easy to cause complications such as pneumothorax and hemorrhage. Three-dimensional (3D) printing coplanar template (PCT) combined with CT-guided percutaneous pulmonary CNB biopsy has been used in clinical practice, but there was no prospective, randomized controlled study. Methods: Elderly patients with lung nodules admitted to the Department of Oncology of our hospital from January 2019 to January 2023 were selected. A total of 225 elderly patients were screened, and 30 patients were included after screening. They were randomly divided into experimental group (Group A: 30 cases) and control group (Group B: 30 cases). Group A was given 3D-PCT combined with CT-guided percutaneous pulmonary CNB biopsy, Group B underwent CT-guided percutaneous pulmonary CNB. The primary outcome measure of this study was the accuracy of diagnostic CNB, and the secondary outcome measures were CNB time, number of CNB needles, number of pathological tissues and complications. Results: The diagnostic accuracy of group A and group B was 96.67% and 76.67%, respectively (P = 0.026). There were statistical differences between group A and group B in average CNB time (P = 0.001), number of CNB (1 vs more than 1, P = 0.029), and pathological tissue obtained by CNB (3 vs 1, P = 0.040). There was no statistical difference in the incidence of pneumothorax and hemorrhage between the two groups (P > 0.05). Conclusions: 3D-PCT combined with CT-guided percutaneous CNB can improve the puncture accuracy of elderly patients, shorten the puncture time, reduce the number of punctures, and increase the amount of puncture pathological tissue, without increasing pneumothorax and hemorrhage complications. We look forward to verifying this in a phase III randomized controlled clinical study. .
文摘Data acquisition and modeling are the two important, difficult and costful aspects in a Cybercity project. 2D-GIS is mature and can manage a lot of spatial data. Thus 3D-GIS should make the best of data and technology of 2D-GIS. Construction of a useful synthetic environment requires integration of multiple types of information like DEM, texture images and 3D representation of objects such as buildings. In this paper, the method for 3D city landscape data model and visualization based on integrated databases is presented. Since the data volume of raster are very huge, special strategies(for example, pyramid gridded method) must be adopted in order to manage raster data efficiently. Three different methods of data acquisition, the proper data structure and a simple modeling method are presented as well. At last, a pilot project of Shanghai Cybercity is illustrated.
基金supported by the Key Laboratory of Geological Survey and Evaluation of Ministry of Education (China University of Geosciences)(No. GLAB2020ZR13)
文摘The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity inversion method based on 3D U-Net++.Compared with two-dimensional gravity inversion,three-dimensional(3D)gravity inversion can more precisely describe the density distribution of underground space.However,conventional 3D gravity inversion method input is two-dimensional,the input and output of the network proposed in our method are three-dimensional.In the training stage,we design a large number of diversifi ed simulation model-data pairs by using the random walk method to improve the generalization ability of the network.In the test phase,we verify the network performance by using the model-data pairs generated by the simulation.To further illustrate the eff ectiveness of the algorithm,we apply the method to the inversion of the San Nicolas mining area,and the inversion results are basically consistent with the borehole measurement results.Moreover,the results of the 3D U-Net++inversion and the 3D U-Net inversion are compared.The density models of the 3D U-Net++inversion have higher resolution,more concentrated inversion results,and a clearer boundary of the density model.
文摘We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mo- saicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.
文摘The material flow in friction stir welded 2014 Al alloy has been investigated using a marker insert technique (MIT). Results of the flow visualization show that the material flow is asymmetrical during the friction stir welding (FSW) process and there are also significant differences in the flow patterns observed on advancing side and retreating side. On advancing side, some material transport forward and some move backward, but on retreating side, material only transport backward. At the top surface of the weld, significant material transport forward due to the action of the rotating tool shoulder. Combining the data from all the markers, a three-dituensional flow visualization, similar to the 3D image reconstruction technique, was obtained. The three-dimensional plot gives the tendency chart of material flow in friction stir welding process and from the plot it can be seen that there is a vertical, circular motion around the longitudinal axis of the weld. On the advancing side of the weld, the material is pushed downward but on the retreating side, the material is pushed toward the crown of the weld. The net result of the two relative motions in both side of the advancing and the retreating is that a circular motion comes into being. Comparatively, the material flow around the longitudinal axis is a secondary motion.
基金Project supported by the National Natural Science Foundation of China (Nos. 60473106, 60273060 and 60333010)and the Ph.D. Programs Foundation of Ministry of Education,China (Nos.20030335064 and 20060335114 )
文摘An approach for generating interactive 3D graphical visualization of the genetic architectures of complex traits in multiple environments is described. 3D graphical visualization is utilized for making improvements on traditional plots in quan- titative trait locus (QTL) mapping analysis. Interactive 3D graphical visualization for abstract expression of QTL, epistasis and their environmental interactions for experimental populations was developed in framework of user-friendly software QTLNetwork (http://ibi.zju.edu.cn/software/qtlnetwork). Novel definition of graphical meta system and computation of virtual coordinates are used to achieve explicit but meaningful visualization. Interactive 3D graphical visualization for QTL analysis provides geneticists and breeders a powerful and easy-to-use tool to analyze and publish their research results.
基金supported by the National Natural Science Foundation of China(31272518)the program for the New Century Excellent Talents of Ministry of Education of China(NCET-09-0654)+1 种基金the Doctoral Fund of Ministry of Education of P.R.China(RFDP,20120204110030)the Fundamental Research Funds for the Central Universities,China(QN2011012)
文摘Adhesions between different cells and extracellular matrix have been studied extensively in vitro, but little is known about their functions in testicular tissue counterparts. Spermatogonia and their companion somatic cells maintain a close association throughout spermatogenesis and this association is necessary for normal spermatogenesis. In order to keep the relative integrity of the testicular tissues, and to detect the development in vitro, culture testicular tissues in a three- dimensional (3D) agarose matrix was examined. Testicular tissues isolated from 6.5 d postpartum (dpp) mouse were cultured on the top of the matrix for 26 d with a medium height up to 4/5 of the 3D agarose matrix. The results showed that in this 3D culture environment, each type of testicular cells kept the same structure, localization and function as in vivo and might be more biologically relevant to living organisms. After culture, germ cell marker VASA and meiosis markers DAZL and SCP3 showed typical positive analysed by immunofluorescence staining and RT-PCR. It demonstrated that this 3D culture system was able to maintain the number of germ cells and promote the meiosis initiation of male germ cells.
文摘Background With the rapid development of Web3D technologies, the online Web3D visualization, particularly for complex models or scenes, has been in a great demand. Owing to the major conflict between the Web3D system load and resource consumption in the processing of these huge models, the huge 3D model lightweighting methods for online Web3D visualization are reviewed in this paper. Methods By observing the geometry redundancy introduced by man-made operations in the modeling procedure, several categories of light-weighting related work that aim at reducing the amount of data and resource consumption are elaborated for Web3D visualization. Results By comparing perspectives, the characteristics of each method are summarized, and among the reviewed methods, the geometric redundancy removal that achieves the lightweight goal by detecting and removing the repeated components is an appropriate method for current online Web3D visualization. Meanwhile, the learning algorithm, still in improvement period at present, is our expected future research topic. Conclusions Various aspects should be considered in an efficient lightweight method for online Web3D visualization, such as characteristics of original data, combination or extension of existing methods, scheduling strategy, cache man-agement, and rendering mechanism. Meanwhile, innovation methods, particularly the learning algorithm, are worth exploring.
文摘The mining loss rate and dilution rate are the key indicators for the mining technology and management level of mining enterprises. Aiming at the practical problems such as the large workload but inaccurate data of the traditional loss and dilution calculation method, this thesis introduces the operating principle and process of calculating the loss rate and dilution rate at the mining fields by adopting geological models. As an example, authors establishes 3D models of orebody units in the exhausted area and mining fields in Yangshu Gold Mine in Liaoning Province, and conduct Boolean calculation among the models to obtain the calculation parameters of loss and dilution, and thereby calculate out the dilution rate and loss rate of the mining fields more quickly and accurately.