In this paper we propose a novel two-stage method to solve the threedimensional Poisson equation in an arbitrary bounded domain enclosed by a smooth boundary.The solution is decomposed into a particular solution and a...In this paper we propose a novel two-stage method to solve the threedimensional Poisson equation in an arbitrary bounded domain enclosed by a smooth boundary.The solution is decomposed into a particular solution and a homogeneous solution.In the first stage a multiple-scale polynomial method(MSPM)is used to approximate the forcing term and then the formula of Tsai et al.[Tsai,Cheng,and Chen(2009)]is used to obtain the corresponding closed-form solution for each polynomial term.Then in the second stage we use a multiple/scale/direction Trefftz method(MSDTM)to find the solution of Laplace equation,of which the directions are uniformly distributed on a unit circle 1,and the scales are determined a priori by the collocation points on boundary.Two examples of 3D data interpolation,and several numerical examples of direct and inverse Cauchy problems in complex domain confirm the efficiency of the MSPM and the MSDTM.展开更多
We deal with a large solution to the semilinear Poisson equation with doublepower nonlinearityΔ^(u)=u^(p)+αu^(q)in a bounded smooth domain D■R^(n),where p>1,-1<q<p andα∈R.We obtain the asymptotic behavio...We deal with a large solution to the semilinear Poisson equation with doublepower nonlinearityΔ^(u)=u^(p)+αu^(q)in a bounded smooth domain D■R^(n),where p>1,-1<q<p andα∈R.We obtain the asymptotic behavior of a solution u near the boundary OD up to the third or higher term.展开更多
P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation ca...P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation can also be used to better understand and distinguish wave types in complex media.At present,the methods for separating wave modes in anisotropic media mainly include spatial nonstationary filtering,low-rank approximation,and vector Poisson equation.Most of these methods require multiple Fourier transforms or the calculation of large matrices,which require high computational costs for problems with large scale.In this paper,an efficient method is proposed to separate the wave mode for anisotropic media by using a scalar anisotropic Poisson operator in the spatial domain.For 2D problems,the computational complexity required by this method is 1/2 of the methods based on solving a vector Poisson equation.Therefore,compared with existing methods based on pseudoHelmholtz decomposition operators,this method can significantly reduce the computational cost.Numerical examples also show that the P and S waves decomposed by this method not only have the correct amplitude and phase relative to the input wavefield but also can reduce the computational complexity significantly.展开更多
The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, ...The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.展开更多
A three-dimensional(3D) parabolic equation(PE) model for sound propagation in a seismo-acoustic waveguide is developed in Cartesian coordinates, with x, y, and z representing the marching direction, the longitudin...A three-dimensional(3D) parabolic equation(PE) model for sound propagation in a seismo-acoustic waveguide is developed in Cartesian coordinates, with x, y, and z representing the marching direction, the longitudinal direction, and the depth direction, respectively. Two sets of 3D PEs for horizontally homogenous media are derived by rewriting the 3D elastic motion equations and simultaneously choosing proper dependent variables. The numerical scheme is for now restricted to the y-independent bathymetry. Accuracy of the numerical scheme is validated, and its azimuthal limitation is analyzed. In addition, effects of horizontal refraction in a wedge-shaped waveguide and another waveguide with a polyline bottom are illustrated. Great efforts should be made in future to provide this model with the ability to handle arbitrarily irregular fluid-elastic interfaces.展开更多
This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite differenc...This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods.展开更多
In this paper,Chebyshev pseudospectral-finite element schemes are proposed for solving three dimensional vorticity equation.Some approximation results in nonisotropic Sobolev spaces are given.The generalized stability...In this paper,Chebyshev pseudospectral-finite element schemes are proposed for solving three dimensional vorticity equation.Some approximation results in nonisotropic Sobolev spaces are given.The generalized stability and the convergence are proved strictly.The numerical results show the advantages of this method.The technique in this paper is also applicable to other three-dimensional nonlinear problems in fluid dynamics.展开更多
A Fourier-Chebyshev pseudospectral scheme is proposed for three-dimensionalvorticily equation with unilaterally periodic boundary condition. The generalized stability and convergence are analysed. The numerical result...A Fourier-Chebyshev pseudospectral scheme is proposed for three-dimensionalvorticily equation with unilaterally periodic boundary condition. The generalized stability and convergence are analysed. The numerical results are presented.展开更多
The integral-differential equations for three-dimensional planar interfacial cracks of arbitrary shape in transversely isotropic bimaterials were derived by virtue of the Somigliana identity and the fundamental soluti...The integral-differential equations for three-dimensional planar interfacial cracks of arbitrary shape in transversely isotropic bimaterials were derived by virtue of the Somigliana identity and the fundamental solutions, in which the displacement discontinuities across the crack faces are the unknowns to be determined. The interface is parallel to both the planes of isotropy. The singular behaviors of displacement and stress near the crack border were analyzed and the stress singularity indexes were obtained by integral equation method. The stress intensity factors were expressed in terms of the displacement discontinuities. In the non-oscillatory case, the hyper-singular boundary integral-differential equations were reduced to hyper-singular boundary integral equations similar to those of homogeneously isotropic materials.展开更多
As one of the most important mathematics-physics equations, heat equation has been widely used in engineering area and computing science research. Large-scale heat problems are difficult to solve due to computational ...As one of the most important mathematics-physics equations, heat equation has been widely used in engineering area and computing science research. Large-scale heat problems are difficult to solve due to computational intractability. The parallelization of heat equation is available to improve the simulation model efficiency. In order to solve the three-dimensional heat problems more rapidly, the OpenMP was adopted to parallelize the preconditioned conjugate gradient (PCG) algorithm in this paper. A numerical experiment on the three-dimensional heat equation model was carried out on a computer with four cores. Based on the test results, it is found that the execution time of the original serial PCG program is about 1.71 to 2.81 times of the parallel PCG program executed with different number of threads. The experiment results also demonstrate the available performance of the parallel PCG algorithm based on OpenMP in terms of solution quality and computational performance.展开更多
In this paper, we found the numerical solution of three-dimensional coupled Burgers’ Equations by using more efficient methods: Laplace Adomian decomposition method, Laplace transform homotopy perturbation method, va...In this paper, we found the numerical solution of three-dimensional coupled Burgers’ Equations by using more efficient methods: Laplace Adomian decomposition method, Laplace transform homotopy perturbation method, variational iteration method, variational iteration decomposition method and variational iteration homotopy perturbation method. Example is examined to validate the efficiency and accuracy of these methods and they reduce the size of computation without the restrictive assumption to handle nonlinear terms and it gives the solutions rapidly.展开更多
This paper deals with a new higher order compact difference scheme, which is, O(h4) using coupled approach on the 19-point 3D stencil for the solution of three dimensional nonlinear biharmonic equations. At each inter...This paper deals with a new higher order compact difference scheme, which is, O(h4) using coupled approach on the 19-point 3D stencil for the solution of three dimensional nonlinear biharmonic equations. At each internal grid point, the solution u(x,y,z) and its Laplacian Δ4u are obtained. The resulting stencil algo-rithm is presented and hence this new algorithm can be easily incorporated to solve many problems. The present discretization allows us to use the Dirichlet boundary conditions only and there is no need to discretize the derivative boundary conditions near the boundary. We also show that special treatment is required to handle the boundary conditions. Convergence analysis for a model problem is briefly discussed. The method is tested on three problems and compares very favourably with the corresponding second order approximation which we also discuss using coupled approach.展开更多
In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gam...In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gamma(2) = Delta t/Delta z(2) less than or equal to 1/4, and the truncation error is O(Delta t(2) + Delta x(4)).展开更多
This paper presents a Poisson theory of the generalized Birkhoff equations, including the algebraic structure of the equations, the sufficient and necessary condition on the integral and the conditions under which a n...This paper presents a Poisson theory of the generalized Birkhoff equations, including the algebraic structure of the equations, the sufficient and necessary condition on the integral and the conditions under which a new integral can be deduced by a known integral as well as the form of the new integral.展开更多
The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the po...The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the possibility of sudden price variations (jumps) resulting of market crashes. A solution is to use stochastic processes with jumps, that will account for sudden variations of the asset prices. On the other hand, such jump models are generally based on the Poisson random measure. Many popular economic and financial models described by stochastic differential equations with Poisson jumps. This paper deals with the approximate controllability of a class of second-order neutral stochastic differential equations with infinite delay and Poisson jumps. By using the cosine family of operators, stochastic analysis techniques, a new set of sufficient conditions are derived for the approximate controllability of the above control system. An example is provided to illustrate the obtained theory.展开更多
A new method for solving the 1D Poisson equation is presented using the finite difference method. This method is based on the exact formulation of the inverse of the tridiagonal matrix associated with the Laplacian. T...A new method for solving the 1D Poisson equation is presented using the finite difference method. This method is based on the exact formulation of the inverse of the tridiagonal matrix associated with the Laplacian. This is the first time that the inverse of this remarkable matrix is determined directly and exactly. Thus, solving 1D Poisson equation becomes very accurate and extremely fast. This method is a very important tool for physics and engineering where the Poisson equation appears very often in the description of certain phenomena.展开更多
The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for...The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for some velocity fields and entropy functions that solve the conservation of mass and energy. Under different restriction to the strength of velocity field, we get the existence and multiplicity of the stationary solutions of Euler-Poisson system.展开更多
In this work, the three dimensional Poisson’s equation in Cartesian coordinates with the Dirichlet’s boundary conditions in a cube is solved directly, by extending the method of Hockney. The Poisson equation is appr...In this work, the three dimensional Poisson’s equation in Cartesian coordinates with the Dirichlet’s boundary conditions in a cube is solved directly, by extending the method of Hockney. The Poisson equation is approximated by 19-points and 27-points fourth order finite difference approximation schemes and the resulting large algebraic system of linear equations is treated systematically in order to get a block tri-diagonal system. The efficiency of this method is tested for some Poisson’s equations with known analytical solutions and the numerical results obtained show that the method produces accurate results. It is shown that 19-point formula produces comparable results with 27-point formula, though computational efforts are more in 27-point formula.展开更多
In this paper, the uniqueness of stationary solutions with vacuum of Euler-Poisson equations is considered. Through a nonlinear transformation which is a function of density and entropy, the corresponding problem can ...In this paper, the uniqueness of stationary solutions with vacuum of Euler-Poisson equations is considered. Through a nonlinear transformation which is a function of density and entropy, the corresponding problem can be reduced to a semilinear elliptic equation with a nonlinear source term consisting of a power function, for which the classical theory of the elliptic equations leads the authors to the uniqueness result under some assumptions on the entropy function S(x). As an example, the authors get the uniqueness of stationary solutions with vacuum of Euler-Poisson equations for S(x) =|x|θandθ∈{0}∪[2(N-2),+∞).展开更多
基金The work described in this paper was supported by the Thousand Talents Plan of China(Grant No.A1211010)the Fundamental Research Funds for the Central Universities(Grant nos.2017B656X14,2017B05714)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX17_0487)the Natural Science Foundation of Shandong Province of China(Grant No.ZR2017BA003).
文摘In this paper we propose a novel two-stage method to solve the threedimensional Poisson equation in an arbitrary bounded domain enclosed by a smooth boundary.The solution is decomposed into a particular solution and a homogeneous solution.In the first stage a multiple-scale polynomial method(MSPM)is used to approximate the forcing term and then the formula of Tsai et al.[Tsai,Cheng,and Chen(2009)]is used to obtain the corresponding closed-form solution for each polynomial term.Then in the second stage we use a multiple/scale/direction Trefftz method(MSDTM)to find the solution of Laplace equation,of which the directions are uniformly distributed on a unit circle 1,and the scales are determined a priori by the collocation points on boundary.Two examples of 3D data interpolation,and several numerical examples of direct and inverse Cauchy problems in complex domain confirm the efficiency of the MSPM and the MSDTM.
基金supported by the JSPS KAKENHI(JP22K03386)supported by the JST SPRING(JPMJSP2132)。
文摘We deal with a large solution to the semilinear Poisson equation with doublepower nonlinearityΔ^(u)=u^(p)+αu^(q)in a bounded smooth domain D■R^(n),where p>1,-1<q<p andα∈R.We obtain the asymptotic behavior of a solution u near the boundary OD up to the third or higher term.
基金supported by the National Key R&D Program of China(No.2018YFA0702505)the project of CNOOC Limited(Grant No.CNOOC-KJ GJHXJSGG YF 2022-01)+1 种基金R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting application,2022DQ0604-02)NSFC(Grant Nos.U23B20159,41974142,42074129,12001311)。
文摘P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation can also be used to better understand and distinguish wave types in complex media.At present,the methods for separating wave modes in anisotropic media mainly include spatial nonstationary filtering,low-rank approximation,and vector Poisson equation.Most of these methods require multiple Fourier transforms or the calculation of large matrices,which require high computational costs for problems with large scale.In this paper,an efficient method is proposed to separate the wave mode for anisotropic media by using a scalar anisotropic Poisson operator in the spatial domain.For 2D problems,the computational complexity required by this method is 1/2 of the methods based on solving a vector Poisson equation.Therefore,compared with existing methods based on pseudoHelmholtz decomposition operators,this method can significantly reduce the computational cost.Numerical examples also show that the P and S waves decomposed by this method not only have the correct amplitude and phase relative to the input wavefield but also can reduce the computational complexity significantly.
文摘The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions.
基金Project supported by the National Nature Science Foundation of China(Grant Nos.11234002 and 11704337)the National Key Research Program of China(Grant No.2016YFC1400100)
文摘A three-dimensional(3D) parabolic equation(PE) model for sound propagation in a seismo-acoustic waveguide is developed in Cartesian coordinates, with x, y, and z representing the marching direction, the longitudinal direction, and the depth direction, respectively. Two sets of 3D PEs for horizontally homogenous media are derived by rewriting the 3D elastic motion equations and simultaneously choosing proper dependent variables. The numerical scheme is for now restricted to the y-independent bathymetry. Accuracy of the numerical scheme is validated, and its azimuthal limitation is analyzed. In addition, effects of horizontal refraction in a wedge-shaped waveguide and another waveguide with a polyline bottom are illustrated. Great efforts should be made in future to provide this model with the ability to handle arbitrarily irregular fluid-elastic interfaces.
文摘This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods.
文摘In this paper,Chebyshev pseudospectral-finite element schemes are proposed for solving three dimensional vorticity equation.Some approximation results in nonisotropic Sobolev spaces are given.The generalized stability and the convergence are proved strictly.The numerical results show the advantages of this method.The technique in this paper is also applicable to other three-dimensional nonlinear problems in fluid dynamics.
文摘A Fourier-Chebyshev pseudospectral scheme is proposed for three-dimensionalvorticily equation with unilaterally periodic boundary condition. The generalized stability and convergence are analysed. The numerical results are presented.
基金Project supported by the Program for New Century Excellent Talents in University of Henan Province (HANCET)
文摘The integral-differential equations for three-dimensional planar interfacial cracks of arbitrary shape in transversely isotropic bimaterials were derived by virtue of the Somigliana identity and the fundamental solutions, in which the displacement discontinuities across the crack faces are the unknowns to be determined. The interface is parallel to both the planes of isotropy. The singular behaviors of displacement and stress near the crack border were analyzed and the stress singularity indexes were obtained by integral equation method. The stress intensity factors were expressed in terms of the displacement discontinuities. In the non-oscillatory case, the hyper-singular boundary integral-differential equations were reduced to hyper-singular boundary integral equations similar to those of homogeneously isotropic materials.
文摘As one of the most important mathematics-physics equations, heat equation has been widely used in engineering area and computing science research. Large-scale heat problems are difficult to solve due to computational intractability. The parallelization of heat equation is available to improve the simulation model efficiency. In order to solve the three-dimensional heat problems more rapidly, the OpenMP was adopted to parallelize the preconditioned conjugate gradient (PCG) algorithm in this paper. A numerical experiment on the three-dimensional heat equation model was carried out on a computer with four cores. Based on the test results, it is found that the execution time of the original serial PCG program is about 1.71 to 2.81 times of the parallel PCG program executed with different number of threads. The experiment results also demonstrate the available performance of the parallel PCG algorithm based on OpenMP in terms of solution quality and computational performance.
文摘In this paper, we found the numerical solution of three-dimensional coupled Burgers’ Equations by using more efficient methods: Laplace Adomian decomposition method, Laplace transform homotopy perturbation method, variational iteration method, variational iteration decomposition method and variational iteration homotopy perturbation method. Example is examined to validate the efficiency and accuracy of these methods and they reduce the size of computation without the restrictive assumption to handle nonlinear terms and it gives the solutions rapidly.
文摘This paper deals with a new higher order compact difference scheme, which is, O(h4) using coupled approach on the 19-point 3D stencil for the solution of three dimensional nonlinear biharmonic equations. At each internal grid point, the solution u(x,y,z) and its Laplacian Δ4u are obtained. The resulting stencil algo-rithm is presented and hence this new algorithm can be easily incorporated to solve many problems. The present discretization allows us to use the Dirichlet boundary conditions only and there is no need to discretize the derivative boundary conditions near the boundary. We also show that special treatment is required to handle the boundary conditions. Convergence analysis for a model problem is briefly discussed. The method is tested on three problems and compares very favourably with the corresponding second order approximation which we also discuss using coupled approach.
文摘In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gamma(2) = Delta t/Delta z(2) less than or equal to 1/4, and the truncation error is O(Delta t(2) + Delta x(4)).
基金supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025)
文摘This paper presents a Poisson theory of the generalized Birkhoff equations, including the algebraic structure of the equations, the sufficient and necessary condition on the integral and the conditions under which a new integral can be deduced by a known integral as well as the form of the new integral.
基金supported by the National Board for Higher Mathematics,Mumbai,India under Grant No.2/48(5)/2013/NBHM(R.P.)/RD-II/688 dt 16.01.2014
文摘The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the possibility of sudden price variations (jumps) resulting of market crashes. A solution is to use stochastic processes with jumps, that will account for sudden variations of the asset prices. On the other hand, such jump models are generally based on the Poisson random measure. Many popular economic and financial models described by stochastic differential equations with Poisson jumps. This paper deals with the approximate controllability of a class of second-order neutral stochastic differential equations with infinite delay and Poisson jumps. By using the cosine family of operators, stochastic analysis techniques, a new set of sufficient conditions are derived for the approximate controllability of the above control system. An example is provided to illustrate the obtained theory.
文摘A new method for solving the 1D Poisson equation is presented using the finite difference method. This method is based on the exact formulation of the inverse of the tridiagonal matrix associated with the Laplacian. This is the first time that the inverse of this remarkable matrix is determined directly and exactly. Thus, solving 1D Poisson equation becomes very accurate and extremely fast. This method is a very important tool for physics and engineering where the Poisson equation appears very often in the description of certain phenomena.
基金supported by NSFC (10631030, 11071094)the fund of CCNU for Ph.D students (2009021)
文摘The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for some velocity fields and entropy functions that solve the conservation of mass and energy. Under different restriction to the strength of velocity field, we get the existence and multiplicity of the stationary solutions of Euler-Poisson system.
文摘In this work, the three dimensional Poisson’s equation in Cartesian coordinates with the Dirichlet’s boundary conditions in a cube is solved directly, by extending the method of Hockney. The Poisson equation is approximated by 19-points and 27-points fourth order finite difference approximation schemes and the resulting large algebraic system of linear equations is treated systematically in order to get a block tri-diagonal system. The efficiency of this method is tested for some Poisson’s equations with known analytical solutions and the numerical results obtained show that the method produces accurate results. It is shown that 19-point formula produces comparable results with 27-point formula, though computational efforts are more in 27-point formula.
基金the Natural Science Foundation of China and the Excellent Teachers Foundation of Ministry of Education of China.
文摘In this paper, the uniqueness of stationary solutions with vacuum of Euler-Poisson equations is considered. Through a nonlinear transformation which is a function of density and entropy, the corresponding problem can be reduced to a semilinear elliptic equation with a nonlinear source term consisting of a power function, for which the classical theory of the elliptic equations leads the authors to the uniqueness result under some assumptions on the entropy function S(x). As an example, the authors get the uniqueness of stationary solutions with vacuum of Euler-Poisson equations for S(x) =|x|θandθ∈{0}∪[2(N-2),+∞).