期刊文献+
共找到1,039篇文章
< 1 2 52 >
每页显示 20 50 100
Development of Parallel Algorithm for Numerical Solution of Three-Dimensional Poisson Equation 被引量:1
1
作者 Alibek Issakhov 《通讯和计算机(中英文版)》 2012年第9期977-980,共4页
关键词 泊松方程 并行算法 三维 计算流体动力学 数值解 OPENMP 求解算法 湍流混合
下载PDF
Fast Solving the Cauchy Problems of Poisson Equation in an Arbitrary Three-Dimensional Domain
2
作者 Cheinshan Liu Fajie Wang Wenzheng Qu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第3期351-380,共30页
In this paper we propose a novel two-stage method to solve the threedimensional Poisson equation in an arbitrary bounded domain enclosed by a smooth boundary.The solution is decomposed into a particular solution and a... In this paper we propose a novel two-stage method to solve the threedimensional Poisson equation in an arbitrary bounded domain enclosed by a smooth boundary.The solution is decomposed into a particular solution and a homogeneous solution.In the first stage a multiple-scale polynomial method(MSPM)is used to approximate the forcing term and then the formula of Tsai et al.[Tsai,Cheng,and Chen(2009)]is used to obtain the corresponding closed-form solution for each polynomial term.Then in the second stage we use a multiple/scale/direction Trefftz method(MSDTM)to find the solution of Laplace equation,of which the directions are uniformly distributed on a unit circle 1,and the scales are determined a priori by the collocation points on boundary.Two examples of 3D data interpolation,and several numerical examples of direct and inverse Cauchy problems in complex domain confirm the efficiency of the MSPM and the MSDTM. 展开更多
关键词 poisson equation multiple/scale/direction Trefftz METHOD multiple-scale polynomial METHOD IRREGULAR DOMAIN inverse CAUCHY problem
下载PDF
ASYMPTOTIC BEHAVIOR NEAR THE BOUNDARY OF A LARGE SOLUTION TO SEMILINEAR POISSON EQUATION WITH DOUBLE-POWER NONLINEARITY
3
作者 Kazuhiro TAKIMOTO Yuxiao ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第6期2083-2098,共16页
We deal with a large solution to the semilinear Poisson equation with doublepower nonlinearityΔ^(u)=u^(p)+αu^(q)in a bounded smooth domain D■R^(n),where p>1,-1<q<p andα∈R.We obtain the asymptotic behavio... We deal with a large solution to the semilinear Poisson equation with doublepower nonlinearityΔ^(u)=u^(p)+αu^(q)in a bounded smooth domain D■R^(n),where p>1,-1<q<p andα∈R.We obtain the asymptotic behavior of a solution u near the boundary OD up to the third or higher term. 展开更多
关键词 large solution semilinear poisson equation double-power nonlinearity ASYMPTOTICBEHAVIOR
下载PDF
Helmholtz decomposition with a scalar Poisson equation in elastic anisotropic media
4
作者 Xin-Yu Fang Gang Yao +3 位作者 Qing-Qing Zheng Ping-Min Zhang Di Wu Feng-Lin Niu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1597-1610,共14页
P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation ca... P-and S-wave separation plays an important role in elastic reverse-time migration.It can reduce the artifacts caused by crosstalk between different modes and improve image quality.In addition,P-and Swave separation can also be used to better understand and distinguish wave types in complex media.At present,the methods for separating wave modes in anisotropic media mainly include spatial nonstationary filtering,low-rank approximation,and vector Poisson equation.Most of these methods require multiple Fourier transforms or the calculation of large matrices,which require high computational costs for problems with large scale.In this paper,an efficient method is proposed to separate the wave mode for anisotropic media by using a scalar anisotropic Poisson operator in the spatial domain.For 2D problems,the computational complexity required by this method is 1/2 of the methods based on solving a vector Poisson equation.Therefore,compared with existing methods based on pseudoHelmholtz decomposition operators,this method can significantly reduce the computational cost.Numerical examples also show that the P and S waves decomposed by this method not only have the correct amplitude and phase relative to the input wavefield but also can reduce the computational complexity significantly. 展开更多
关键词 Anisotropic media Scalar anisotropic poisson equation Improved elastic wavefield decomposition
下载PDF
Implementation of the Integrated Green’s Function Method for 3D Poisson’s Equation in a Large Aspect Ratio Computational Domain
5
作者 Ji Qiang Chad Mitchell +1 位作者 Remi Lehe Arianna Formenti 《Journal of Software Engineering and Applications》 2024年第9期740-749,共10页
The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, ... The solution of Poisson’s Equation plays an important role in many areas, including modeling high-intensity and high-brightness beams in particle accelerators. For the computational domain with a large aspect ratio, the integrated Green’s function method has been adopted to solve the 3D Poisson equation subject to open boundary conditions. In this paper, we report on the efficient implementation of this method, which can save more than a factor of 50 computing time compared with the direct brute force implementation and its improvement under certain extreme conditions. 展开更多
关键词 Green’s Function poisson equation Particle Accelerator
下载PDF
Three-dimensional parabolic equation model for seismo-acoustic propagation: Theoretical development and preliminary numerical implementation 被引量:4
6
作者 唐骏 朴胜春 张海刚 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期269-278,共10页
A three-dimensional(3D) parabolic equation(PE) model for sound propagation in a seismo-acoustic waveguide is developed in Cartesian coordinates, with x, y, and z representing the marching direction, the longitudin... A three-dimensional(3D) parabolic equation(PE) model for sound propagation in a seismo-acoustic waveguide is developed in Cartesian coordinates, with x, y, and z representing the marching direction, the longitudinal direction, and the depth direction, respectively. Two sets of 3D PEs for horizontally homogenous media are derived by rewriting the 3D elastic motion equations and simultaneously choosing proper dependent variables. The numerical scheme is for now restricted to the y-independent bathymetry. Accuracy of the numerical scheme is validated, and its azimuthal limitation is analyzed. In addition, effects of horizontal refraction in a wedge-shaped waveguide and another waveguide with a polyline bottom are illustrated. Great efforts should be made in future to provide this model with the ability to handle arbitrarily irregular fluid-elastic interfaces. 展开更多
关键词 three-dimensional parabolic equation sound propagation seismo-acoustic waveguides
下载PDF
Alternating Direction Finite Volume Element Methods for Three-Dimensional Parabolic Equations 被引量:1
7
作者 Tongke Wang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第4期499-522,共24页
This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite differenc... This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods. 展开更多
关键词 three-dimensional parabolic equation alternating direction method finite volume element method error estimate
下载PDF
CHEBYSHEV PSEUDOSPECTRAL-HYBRID FINITE ELEMENT METHOD FOR THREE-DIMENSIONAL VORTICITY EQUATION
8
作者 郭本瑜 候镜宇 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1996年第2期161-196,共36页
In this paper,Chebyshev pseudospectral-finite element schemes are proposed for solving three dimensional vorticity equation.Some approximation results in nonisotropic Sobolev spaces are given.The generalized stability... In this paper,Chebyshev pseudospectral-finite element schemes are proposed for solving three dimensional vorticity equation.Some approximation results in nonisotropic Sobolev spaces are given.The generalized stability and the convergence are proved strictly.The numerical results show the advantages of this method.The technique in this paper is also applicable to other three-dimensional nonlinear problems in fluid dynamics. 展开更多
关键词 three-dimensional VORTICITY equation CHEBYSHEV pseudospectral-hybrid finite element
下载PDF
FOURIER-CHEBYSHEV PSEUDOSPECTRAL METHOD FOR THREE-DIMENSIONAL VORTICITY EQUATION WITH UNILATERALLY PERIODIC BOUNDARY CONDITION
9
作者 郭本瑜 李健 曹卫明 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1994年第2期216-242,共27页
A Fourier-Chebyshev pseudospectral scheme is proposed for three-dimensionalvorticily equation with unilaterally periodic boundary condition. The generalized stability and convergence are analysed. The numerical result... A Fourier-Chebyshev pseudospectral scheme is proposed for three-dimensionalvorticily equation with unilaterally periodic boundary condition. The generalized stability and convergence are analysed. The numerical results are presented. 展开更多
关键词 three-dimensional VORTICITY equation Fourier-Chebyshev PSEUDOSPECTRAL approximation.
下载PDF
INTERFACIAL CRACK ANALYSIS IN THREE-DIMENSIONAL TRANSVERSELY ISOTROPIC BI-MATERIALS BY BOUNDARY INTEGRAL EQUATION METHOD
10
作者 赵明皞 李冬霞 沈亚鹏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第12期1539-1546,共8页
The integral-differential equations for three-dimensional planar interfacial cracks of arbitrary shape in transversely isotropic bimaterials were derived by virtue of the Somigliana identity and the fundamental soluti... The integral-differential equations for three-dimensional planar interfacial cracks of arbitrary shape in transversely isotropic bimaterials were derived by virtue of the Somigliana identity and the fundamental solutions, in which the displacement discontinuities across the crack faces are the unknowns to be determined. The interface is parallel to both the planes of isotropy. The singular behaviors of displacement and stress near the crack border were analyzed and the stress singularity indexes were obtained by integral equation method. The stress intensity factors were expressed in terms of the displacement discontinuities. In the non-oscillatory case, the hyper-singular boundary integral-differential equations were reduced to hyper-singular boundary integral equations similar to those of homogeneously isotropic materials. 展开更多
关键词 three-dimensional bi-material transversely isotropic interfacial crack stress intensity factor integral-differential equation
下载PDF
OpenMP-Based PCG Solver for Three-Dimensional Heat Equation
11
作者 Dandan Li Qun Wang 《Computer Technology and Application》 2011年第12期963-968,共6页
As one of the most important mathematics-physics equations, heat equation has been widely used in engineering area and computing science research. Large-scale heat problems are difficult to solve due to computational ... As one of the most important mathematics-physics equations, heat equation has been widely used in engineering area and computing science research. Large-scale heat problems are difficult to solve due to computational intractability. The parallelization of heat equation is available to improve the simulation model efficiency. In order to solve the three-dimensional heat problems more rapidly, the OpenMP was adopted to parallelize the preconditioned conjugate gradient (PCG) algorithm in this paper. A numerical experiment on the three-dimensional heat equation model was carried out on a computer with four cores. Based on the test results, it is found that the execution time of the original serial PCG program is about 1.71 to 2.81 times of the parallel PCG program executed with different number of threads. The experiment results also demonstrate the available performance of the parallel PCG algorithm based on OpenMP in terms of solution quality and computational performance. 展开更多
关键词 three-dimensional heat equation preconditioned conjugate gradient compiler directives OpenMP.
下载PDF
Numerical Solutions of Three-Dimensional Coupled Burgers’ Equations by Using Some Numerical Methods
12
作者 Fatheah Ahmad Alhendi Aisha Abdullah Alderremy 《Journal of Applied Mathematics and Physics》 2016年第11期2011-2030,共21页
In this paper, we found the numerical solution of three-dimensional coupled Burgers’ Equations by using more efficient methods: Laplace Adomian decomposition method, Laplace transform homotopy perturbation method, va... In this paper, we found the numerical solution of three-dimensional coupled Burgers’ Equations by using more efficient methods: Laplace Adomian decomposition method, Laplace transform homotopy perturbation method, variational iteration method, variational iteration decomposition method and variational iteration homotopy perturbation method. Example is examined to validate the efficiency and accuracy of these methods and they reduce the size of computation without the restrictive assumption to handle nonlinear terms and it gives the solutions rapidly. 展开更多
关键词 three-dimensional Coupled Burgers’ equations Laplace Transform Adomian Decomposition Homotopy Perturbation Variational Iteration Method
下载PDF
A New Fourth Order Difference Approximation for the Solution of Three-dimensional Non-linear Biharmonic Equations Using Coupled Approach
13
作者 Ranjan Kumar Mohanty Mahinder Kumar Jain Biranchi Narayan Mishra 《American Journal of Computational Mathematics》 2011年第4期318-327,共10页
This paper deals with a new higher order compact difference scheme, which is, O(h4) using coupled approach on the 19-point 3D stencil for the solution of three dimensional nonlinear biharmonic equations. At each inter... This paper deals with a new higher order compact difference scheme, which is, O(h4) using coupled approach on the 19-point 3D stencil for the solution of three dimensional nonlinear biharmonic equations. At each internal grid point, the solution u(x,y,z) and its Laplacian Δ4u are obtained. The resulting stencil algo-rithm is presented and hence this new algorithm can be easily incorporated to solve many problems. The present discretization allows us to use the Dirichlet boundary conditions only and there is no need to discretize the derivative boundary conditions near the boundary. We also show that special treatment is required to handle the boundary conditions. Convergence analysis for a model problem is briefly discussed. The method is tested on three problems and compares very favourably with the corresponding second order approximation which we also discuss using coupled approach. 展开更多
关键词 three-dimensional NON-LINEAR BIHARMONIC equation Finite Differences Fourth Order Accuracy Compact Discretization Block-Block-Tridiagonal Tangential Derivatives Laplacian Stream Function REYNOLDS Number
下载PDF
A NEW HIGH-ORDER ACCURACY EXPLICIT DIFFERENCE SCHEME FOR SOLVING THREE-DIMENSIONAL PARABOLIC EQUATIONS
14
作者 马明书 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第5期497-501,共5页
In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gam... In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gamma(2) = Delta t/Delta z(2) less than or equal to 1/4, and the truncation error is O(Delta t(2) + Delta x(4)). 展开更多
关键词 high-order accuracy explicit difference scheme three-dimensional parabolic equation
全文增补中
Poisson theory of generalized Bikhoff equations 被引量:4
15
作者 尚玫 梅凤翔 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第8期3155-3157,共3页
This paper presents a Poisson theory of the generalized Birkhoff equations, including the algebraic structure of the equations, the sufficient and necessary condition on the integral and the conditions under which a n... This paper presents a Poisson theory of the generalized Birkhoff equations, including the algebraic structure of the equations, the sufficient and necessary condition on the integral and the conditions under which a new integral can be deduced by a known integral as well as the form of the new integral. 展开更多
关键词 generalized Birkhoff equations poisson theory INTEGRALS
下载PDF
Approximate Controllability of Second-Order Neutral Stochastic Differential Equations with Infinite Delay and Poisson Jumps 被引量:4
16
作者 PALANISAMY Muthukumar CHINNATHAMBI Rajivganthi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第5期1033-1048,共16页
The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the po... The modelling of risky asset by stochastic processes with continuous paths, based on Brow- nian motions, suffers from several defects. First, the path continuity assumption does not seem reason- able in view of the possibility of sudden price variations (jumps) resulting of market crashes. A solution is to use stochastic processes with jumps, that will account for sudden variations of the asset prices. On the other hand, such jump models are generally based on the Poisson random measure. Many popular economic and financial models described by stochastic differential equations with Poisson jumps. This paper deals with the approximate controllability of a class of second-order neutral stochastic differential equations with infinite delay and Poisson jumps. By using the cosine family of operators, stochastic analysis techniques, a new set of sufficient conditions are derived for the approximate controllability of the above control system. An example is provided to illustrate the obtained theory. 展开更多
关键词 Approximate controllability Hilbert space poisson jumps second-order neutral stochas-tic differential equations semigroup theory.
下载PDF
The Exact Formulation of the Inverse of the Tridiagonal Matrix for Solving the 1D Poisson Equation with the Finite Difference Method 被引量:2
17
作者 Serigne Bira Gueye 《Journal of Electromagnetic Analysis and Applications》 2014年第10期303-308,共6页
A new method for solving the 1D Poisson equation is presented using the finite difference method. This method is based on the exact formulation of the inverse of the tridiagonal matrix associated with the Laplacian. T... A new method for solving the 1D Poisson equation is presented using the finite difference method. This method is based on the exact formulation of the inverse of the tridiagonal matrix associated with the Laplacian. This is the first time that the inverse of this remarkable matrix is determined directly and exactly. Thus, solving 1D Poisson equation becomes very accurate and extremely fast. This method is a very important tool for physics and engineering where the Poisson equation appears very often in the description of certain phenomena. 展开更多
关键词 1D poisson equation Finite Difference Method TRIDIAGONAL Matrix INVERSION Thomas Algorithm GAUSSIAN ELIMINATION Potential Problem
下载PDF
MULTIPLE STATIONARY SOLUTIONS OF EULER-POISSON EQUATIONS FOR NON-ISENTROPIC GASEOUS STARS 被引量:8
18
作者 邓引斌 谢华朝 《Acta Mathematica Scientia》 SCIE CSCD 2010年第6期2077-2088,共12页
The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for... The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for some velocity fields and entropy functions that solve the conservation of mass and energy. Under different restriction to the strength of velocity field, we get the existence and multiplicity of the stationary solutions of Euler-Poisson system. 展开更多
关键词 Euler-poisson equations non-isentropic stationary solutions
下载PDF
An Efficient Direct Method to Solve the Three Dimensional Poisson’s Equation 被引量:2
19
作者 Alemayehu Shiferaw Ramesh Chand Mittal 《American Journal of Computational Mathematics》 2011年第4期285-293,共9页
In this work, the three dimensional Poisson’s equation in Cartesian coordinates with the Dirichlet’s boundary conditions in a cube is solved directly, by extending the method of Hockney. The Poisson equation is appr... In this work, the three dimensional Poisson’s equation in Cartesian coordinates with the Dirichlet’s boundary conditions in a cube is solved directly, by extending the method of Hockney. The Poisson equation is approximated by 19-points and 27-points fourth order finite difference approximation schemes and the resulting large algebraic system of linear equations is treated systematically in order to get a block tri-diagonal system. The efficiency of this method is tested for some Poisson’s equations with known analytical solutions and the numerical results obtained show that the method produces accurate results. It is shown that 19-point formula produces comparable results with 27-point formula, though computational efforts are more in 27-point formula. 展开更多
关键词 poisson’s equation Finite DIFFERENCE METHOD Tri-diagonal Matrix Hockney’s METHOD Thomas Algorithm
下载PDF
UNIQUENESS OF STATIONARY SOLUTIONS WITH VACUUM OF EULER-POISSON EQUATIONS 被引量:3
20
作者 邓引斌 郭玉劲 《Acta Mathematica Scientia》 SCIE CSCD 2003年第3期405-412,共8页
In this paper, the uniqueness of stationary solutions with vacuum of Euler-Poisson equations is considered. Through a nonlinear transformation which is a function of density and entropy, the corresponding problem can ... In this paper, the uniqueness of stationary solutions with vacuum of Euler-Poisson equations is considered. Through a nonlinear transformation which is a function of density and entropy, the corresponding problem can be reduced to a semilinear elliptic equation with a nonlinear source term consisting of a power function, for which the classical theory of the elliptic equations leads the authors to the uniqueness result under some assumptions on the entropy function S(x). As an example, the authors get the uniqueness of stationary solutions with vacuum of Euler-Poisson equations for S(x) =|x|θandθ∈{0}∪[2(N-2),+∞). 展开更多
关键词 UNIQUENESS stationary solution Euler-poisson equation
下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部