Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.Howev...Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.展开更多
Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affe...Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affected, and the environment for Qiang Culture was difficult to recover. It highlighted that three-dimensional reconstruction of Qiang Culture should stress the core task and timely and effectively rescue endangered cultural heritages of Qiang Nationality from the perspectives of material and spiritual life. It had explained focuses of three-dimensional pattern construction in detail. In terms of spatial reconstruction, it should reconstruct native culture and history while material culture was constructed, and reconstruct Qiang culture highland by depending on aborigines; in terms of cluster reconstruction, it should give support to large tourism enterprises and perfect tourism chain; in terms of ecological reconstruction, it should enhance construction and demonstration of "ecological protection pilot area of Qiang culture"; in terms of development reconstruction, it should realize coordinated unity between protection and development according to classification protection, characteristic protection and key protection, so as to form the virtuous circle of post-disaster recovery protection and sustainable development.展开更多
An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable...An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable or similar features of binocular images. In order to reduce the probability of mismatching and improve the measure precision, a four-camera measurement system which can add extra matching constraints and offer multiple measurements is applied in this work. Moreover, a series of different checkerboard patterns are projected onto the object to obtain dense feature points and remove mismatched points. Finally, the 3D model is generated by performing Delaunay triangulation and texture mapping on the point cloud obtained by four-view matching. This method was tested on the 3D reconstruction of a terracotta soldier sculpture and the Buddhas in the Mogao Grottoes. Their point clouds without mismatched points were obtained and less processing time was consumed in most cases relative to binocular matching. These good reconstructed models show the effectiveness of the method.展开更多
Urban landscape is directly perceived by residents and is a significant symbol of urbanization development.A comprehensive assessment of urban landscapes is crucial for guiding the development of inclusive,resilient,a...Urban landscape is directly perceived by residents and is a significant symbol of urbanization development.A comprehensive assessment of urban landscapes is crucial for guiding the development of inclusive,resilient,and sustainable cities and human settlements.Previous studies have primarily analyzed two-dimensional landscape indicators derived from satellite remote sensing,potentially overlooking the valuable insights provided by the three-dimensional configuration of landscapes.This limitation arises from the high cost of acquiring large-area three-dimensional data and the lack of effective assessment indicators.Here,we propose four urban landscapes indicators in three dimensions(UL3D):greenness,grayness,openness,and crowding.We construct the UL3D using 4.03 million street view images from 303 major cities in China,employing a deep learning approach.We combine urban background and two-dimensional urban landscape indicators with UL3D to predict the socioeconomic profiles of cities.The results show that UL3D indicators differs from two-dimensional landscape indicators,with a low average correlation coefficient of 0.31 between them.Urban landscapes had a changing point in2018–2019 due to new urbanization initiatives,with grayness and crowding rates slowing,while openness increased.The incorporation of UL3D indicators significantly enhances the explanatory power of the regression model for predicting socioeconomic profiles.Specifically,GDP per capita,urban population rate,built-up area per capita,and hospital count correspond to improvements of 25.0%,19.8%,35.5%,and 19.2%,respectively.These findings indicate that UL3D indicators have the potential to reflect the socioeconomic profiles of cities.展开更多
Three-dimensional(3D)imaging with structured light is crucial in diverse scenarios,ranging from intelligent manufacturing and medicine to entertainment.However,current structured light methods rely on projector-camera...Three-dimensional(3D)imaging with structured light is crucial in diverse scenarios,ranging from intelligent manufacturing and medicine to entertainment.However,current structured light methods rely on projector-camera synchronization,limiting the use of affordable imaging devices and their consumer applications.In this work,we introduce an asynchronous structured light imaging approach based on generative deep neural networks to relax the synchronization constraint,accomplishing the challenges of fringe pattern aliasing,without relying on any a priori constraint of the projection system.To overcome this need,we propose a generative deep neural network with U-Net-like encoder-decoder architecture to learn the underlying fringe features directly by exploring the intrinsic prior principles in the fringe pattern aliasing.We train within an adversarial learning framework and supervise the network training via a statisticsinformed loss function.We demonstrate that by evaluating the performance on fields of intensity,phase,and 3D reconstruction.It is shown that the trained network can separate aliased fringe patterns for producing comparable results with the synchronous one:the absolute error is no greater than 8μm,and the standard deviation does not exceed 3μm.Evaluation results on multiple objects and pattern types show it could be generalized for any asynchronous structured light scene.展开更多
近期研究发现,优化医院净化空调系统对提高医院的传染病防控能力起到了关键作用。为向新阶段医院净化空调系统的平疫结合设计提供参考,文章采用文献研究法、模拟法对A医院的净化空调系统改造情况进行分析。以对洁净度要求较高的重症监护...近期研究发现,优化医院净化空调系统对提高医院的传染病防控能力起到了关键作用。为向新阶段医院净化空调系统的平疫结合设计提供参考,文章采用文献研究法、模拟法对A医院的净化空调系统改造情况进行分析。以对洁净度要求较高的重症监护室(intensive care unit,ICU)为例,分析该区域净化空调系统在气流组织的平疫结合设计、空气处理措施及配套自动控制系统等方面的优化情况。利用广联达GQI软件建立优化系统的三维模型。研究结果能够为今后需要对净化空调系统进行平疫结合改造的医院提供有益参考,有助于提高医院对传染病的防控能力。展开更多
The fog occurs frequently over the Yellow Sea in spring(April–May), a climatical period of Asian monsoon transition. A comprehensive survey of the characteristic weather pattern and the air-sea condition is provide...The fog occurs frequently over the Yellow Sea in spring(April–May), a climatical period of Asian monsoon transition. A comprehensive survey of the characteristic weather pattern and the air-sea condition is provided associated with the fog for the period of 1960–2006. The sea fog is categorized by airflow pathways of backward trajectory cluster analysis with the surface observations derived from international comprehensive oceanatmosphere dataset(I_COADS) I_COADS datasets and contemporaneous wind fields from the National Centers for Environmental Prediction(NCEP)/National Center for Atmospheric Research(NCAR) reanalysis. On the basis of the airflow paths, the large-scale lower-tropospheric circulation patterns and the associated surface divergence,the distribution of a vertical humidity, the horizontal water vapor transportation and the air-sea temperature difference are investigated and the major findings are summarized as follows.(1) Four primary clusters of the airflow paths that lead to spring sea fog formation are identified. They are originated from the northwest, east,southeast and southwest of the Yellow Sea, respectively.(2) Springtime Yellow Sea fog occurs under two typical weather patterns: the Yellow Sea high(YSH) and cyclone and anticyclone couplet(CAC). Each pattern appears by about equal chance in April but the YSH occurrence drops to around one third and the CAC rises to around two third of chance in May.(3) The common feature in the two types of synoptic conditions is that surface divergence center is located over the Yellow Sea.(4) For the YSH type of fog, water vapor comes mainly from local evaporation with a well-defined dry layer present in the lower atmosphere; for the CAC type of fog, however, water vapor comes mainly from areas outside the Yellow Sea with a thick surface layer of high humidity.(5) With the differences in weather patterns and its associated vertical distribution of the humidity and the transportation of water vapor, there are two types of sea fogs. Most fogs of the CAC types are "warm" fog, while fogs of YSH type have nearly equal chance to be "warm" and "cold" fog.展开更多
A numerical simulation of a patient’s nasal airflow was developed via computational fluid dynamics.Accordingly,computerized tomography scans of a patient with septal deviation and allergic rhinitis were obtained.The ...A numerical simulation of a patient’s nasal airflow was developed via computational fluid dynamics.Accordingly,computerized tomography scans of a patient with septal deviation and allergic rhinitis were obtained.The three-dimensional(3D)nasal model was designed using InVesalius 3.0,which was then imported to(computer aided 3D interactive application)CATIA V5 for modification,and finally to analysis system(ANSYS)flow oriented logistics upgrade for enterprise networks(FLUENT)to obtain the numerical solution.The velocity contours of the cross-sectional area were analyzed on four main surfaces:the vestibule,nasal valve,middle turbinate,and nasopharynx.The pressure and velocity characteristics were assessed at both laminar and turbulent mass flow rates for both the standardized and the patient’s model nasal cavity.The developed model of the patient is approximately half the size of the standardized model;hence,its velocity was approximately two times more than that of the standardized model.展开更多
It has been widely accepted that the most effective way to mitigate airborne disease transmission in an indoor space is to increase the ventilation airflow,measured in air change per hour(ACH).However,increasing ACH d...It has been widely accepted that the most effective way to mitigate airborne disease transmission in an indoor space is to increase the ventilation airflow,measured in air change per hour(ACH).However,increasing ACH did not effectively prevent the spread of COVID-19.To better understand the role of ACH and airflow large-scale patterns,a comprehensive fully transient computational fluid dynamics(CFD)simulation of two-phase flows based on a discrete phase model(DPM)was performed in a university classroom setting with people present.The investigations encompass various particle sizes,ventilation layouts,and flow rates.The findings demonstrated that the particle size threshold at which particles are deemed airborne is highly influenced by the background flow strength and large-scale flow pattern,ranging from 5µm to 10µm in the cases investigated.The effects of occupants are significant and must be precisely accounted for in respiratory particle transport studies.An enhanced ventilation design(UFAD-CDR)for university classrooms is introduced that places a premium on mitigating airborne disease spread.Compared to the baseline design at the same ACH,this design successfully reduced the maximum number density of respiratory particles by up to 85%.A novel airflow-related parameter,Horizontality,is introduced to quantify and connect the large-scale airflow pattern with indoor aerosol transport.This underscores that ACH alone cannot ensure or regulate air quality.In addition to the necessary ACH for air exchange,minimizing horizontal bulk motion is essential for reducing aerosol transmissibility within the room.展开更多
从N av ier-S tokes方程出发,运用CFX软件对外界风向与屋脊平行和相夹45°两种情形下温室内气流场进行了稳态模拟研究。结果显示,对于前者,气流从山墙门和侧窗的上部进入,从侧窗的下部流出,气流在温室内沿中心纵截面分布的对称性较...从N av ier-S tokes方程出发,运用CFX软件对外界风向与屋脊平行和相夹45°两种情形下温室内气流场进行了稳态模拟研究。结果显示,对于前者,气流从山墙门和侧窗的上部进入,从侧窗的下部流出,气流在温室内沿中心纵截面分布的对称性较好,在温室的后半部气流逐渐扩散,紊流加强;对于后者,气流从山墙门和迎风侧窗处进入,两股气流相遇后受棚面形状及作物的影响而形成各种涡流,最后从背风侧窗处流出。气流在接触到栽培作物时流速迅速减小,作物冠层边界受到周围空间气流的影响,但在作物冠层内受周围空间气流影响不大。展开更多
文摘Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.
文摘Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affected, and the environment for Qiang Culture was difficult to recover. It highlighted that three-dimensional reconstruction of Qiang Culture should stress the core task and timely and effectively rescue endangered cultural heritages of Qiang Nationality from the perspectives of material and spiritual life. It had explained focuses of three-dimensional pattern construction in detail. In terms of spatial reconstruction, it should reconstruct native culture and history while material culture was constructed, and reconstruct Qiang culture highland by depending on aborigines; in terms of cluster reconstruction, it should give support to large tourism enterprises and perfect tourism chain; in terms of ecological reconstruction, it should enhance construction and demonstration of "ecological protection pilot area of Qiang culture"; in terms of development reconstruction, it should realize coordinated unity between protection and development according to classification protection, characteristic protection and key protection, so as to form the virtuous circle of post-disaster recovery protection and sustainable development.
基金Project(2012CB725301)supported by the National Basic Research Program of ChinaProject(201412015)supported by the National Special Fund for Surveying and Mapping Geographic Information Scientific Research in the Public Welfare of ChinaProject(212000168)supported by the Basic Survey-Mapping Program of National Administration of Surveying,Mapping and Geoinformation of China
文摘An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable or similar features of binocular images. In order to reduce the probability of mismatching and improve the measure precision, a four-camera measurement system which can add extra matching constraints and offer multiple measurements is applied in this work. Moreover, a series of different checkerboard patterns are projected onto the object to obtain dense feature points and remove mismatched points. Finally, the 3D model is generated by performing Delaunay triangulation and texture mapping on the point cloud obtained by four-view matching. This method was tested on the 3D reconstruction of a terracotta soldier sculpture and the Buddhas in the Mogao Grottoes. Their point clouds without mismatched points were obtained and less processing time was consumed in most cases relative to binocular matching. These good reconstructed models show the effectiveness of the method.
基金supported by the National Key R&D Program of China(2022YFF1303101)。
文摘Urban landscape is directly perceived by residents and is a significant symbol of urbanization development.A comprehensive assessment of urban landscapes is crucial for guiding the development of inclusive,resilient,and sustainable cities and human settlements.Previous studies have primarily analyzed two-dimensional landscape indicators derived from satellite remote sensing,potentially overlooking the valuable insights provided by the three-dimensional configuration of landscapes.This limitation arises from the high cost of acquiring large-area three-dimensional data and the lack of effective assessment indicators.Here,we propose four urban landscapes indicators in three dimensions(UL3D):greenness,grayness,openness,and crowding.We construct the UL3D using 4.03 million street view images from 303 major cities in China,employing a deep learning approach.We combine urban background and two-dimensional urban landscape indicators with UL3D to predict the socioeconomic profiles of cities.The results show that UL3D indicators differs from two-dimensional landscape indicators,with a low average correlation coefficient of 0.31 between them.Urban landscapes had a changing point in2018–2019 due to new urbanization initiatives,with grayness and crowding rates slowing,while openness increased.The incorporation of UL3D indicators significantly enhances the explanatory power of the regression model for predicting socioeconomic profiles.Specifically,GDP per capita,urban population rate,built-up area per capita,and hospital count correspond to improvements of 25.0%,19.8%,35.5%,and 19.2%,respectively.These findings indicate that UL3D indicators have the potential to reflect the socioeconomic profiles of cities.
基金funding from the National Natural Science Foundation of China(Grant Nos.62375078 and 12002197)the Youth Talent Launching Program of Shanghai University+2 种基金the General Science Foundation of Henan Province(Grant No.222300420427)the Key Research Project Plan for Higher Education Institutions in Henan Province(Grant No.24ZX011)the National Key Laboratory of Ship Structural Safety
文摘Three-dimensional(3D)imaging with structured light is crucial in diverse scenarios,ranging from intelligent manufacturing and medicine to entertainment.However,current structured light methods rely on projector-camera synchronization,limiting the use of affordable imaging devices and their consumer applications.In this work,we introduce an asynchronous structured light imaging approach based on generative deep neural networks to relax the synchronization constraint,accomplishing the challenges of fringe pattern aliasing,without relying on any a priori constraint of the projection system.To overcome this need,we propose a generative deep neural network with U-Net-like encoder-decoder architecture to learn the underlying fringe features directly by exploring the intrinsic prior principles in the fringe pattern aliasing.We train within an adversarial learning framework and supervise the network training via a statisticsinformed loss function.We demonstrate that by evaluating the performance on fields of intensity,phase,and 3D reconstruction.It is shown that the trained network can separate aliased fringe patterns for producing comparable results with the synchronous one:the absolute error is no greater than 8μm,and the standard deviation does not exceed 3μm.Evaluation results on multiple objects and pattern types show it could be generalized for any asynchronous structured light scene.
文摘近期研究发现,优化医院净化空调系统对提高医院的传染病防控能力起到了关键作用。为向新阶段医院净化空调系统的平疫结合设计提供参考,文章采用文献研究法、模拟法对A医院的净化空调系统改造情况进行分析。以对洁净度要求较高的重症监护室(intensive care unit,ICU)为例,分析该区域净化空调系统在气流组织的平疫结合设计、空气处理措施及配套自动控制系统等方面的优化情况。利用广联达GQI软件建立优化系统的三维模型。研究结果能够为今后需要对净化空调系统进行平疫结合改造的医院提供有益参考,有助于提高医院对传染病的防控能力。
基金The National Natural Science Foundation of China under contract No.41275025the Special Fund for Strategic Pilot Technology of Chinese Academy of Sciences under contract No.XDA11010403the National Key Basic Research Program(973 Progrom)of China under controut No.2014CB953903
文摘The fog occurs frequently over the Yellow Sea in spring(April–May), a climatical period of Asian monsoon transition. A comprehensive survey of the characteristic weather pattern and the air-sea condition is provided associated with the fog for the period of 1960–2006. The sea fog is categorized by airflow pathways of backward trajectory cluster analysis with the surface observations derived from international comprehensive oceanatmosphere dataset(I_COADS) I_COADS datasets and contemporaneous wind fields from the National Centers for Environmental Prediction(NCEP)/National Center for Atmospheric Research(NCAR) reanalysis. On the basis of the airflow paths, the large-scale lower-tropospheric circulation patterns and the associated surface divergence,the distribution of a vertical humidity, the horizontal water vapor transportation and the air-sea temperature difference are investigated and the major findings are summarized as follows.(1) Four primary clusters of the airflow paths that lead to spring sea fog formation are identified. They are originated from the northwest, east,southeast and southwest of the Yellow Sea, respectively.(2) Springtime Yellow Sea fog occurs under two typical weather patterns: the Yellow Sea high(YSH) and cyclone and anticyclone couplet(CAC). Each pattern appears by about equal chance in April but the YSH occurrence drops to around one third and the CAC rises to around two third of chance in May.(3) The common feature in the two types of synoptic conditions is that surface divergence center is located over the Yellow Sea.(4) For the YSH type of fog, water vapor comes mainly from local evaporation with a well-defined dry layer present in the lower atmosphere; for the CAC type of fog, however, water vapor comes mainly from areas outside the Yellow Sea with a thick surface layer of high humidity.(5) With the differences in weather patterns and its associated vertical distribution of the humidity and the transportation of water vapor, there are two types of sea fogs. Most fogs of the CAC types are "warm" fog, while fogs of YSH type have nearly equal chance to be "warm" and "cold" fog.
基金This research was funded by the Universiti Sains Malaysia,No.1001/PAERO/814276.
文摘A numerical simulation of a patient’s nasal airflow was developed via computational fluid dynamics.Accordingly,computerized tomography scans of a patient with septal deviation and allergic rhinitis were obtained.The three-dimensional(3D)nasal model was designed using InVesalius 3.0,which was then imported to(computer aided 3D interactive application)CATIA V5 for modification,and finally to analysis system(ANSYS)flow oriented logistics upgrade for enterprise networks(FLUENT)to obtain the numerical solution.The velocity contours of the cross-sectional area were analyzed on four main surfaces:the vestibule,nasal valve,middle turbinate,and nasopharynx.The pressure and velocity characteristics were assessed at both laminar and turbulent mass flow rates for both the standardized and the patient’s model nasal cavity.The developed model of the patient is approximately half the size of the standardized model;hence,its velocity was approximately two times more than that of the standardized model.
基金This research was supported by the Airborne Disease Transmission Research Cluster(ADTRC),which is funded by the UBC Eminence program.The authors gratefully acknowledge the use of Digital Research Alliance of Canada resources for CFD simulations.
文摘It has been widely accepted that the most effective way to mitigate airborne disease transmission in an indoor space is to increase the ventilation airflow,measured in air change per hour(ACH).However,increasing ACH did not effectively prevent the spread of COVID-19.To better understand the role of ACH and airflow large-scale patterns,a comprehensive fully transient computational fluid dynamics(CFD)simulation of two-phase flows based on a discrete phase model(DPM)was performed in a university classroom setting with people present.The investigations encompass various particle sizes,ventilation layouts,and flow rates.The findings demonstrated that the particle size threshold at which particles are deemed airborne is highly influenced by the background flow strength and large-scale flow pattern,ranging from 5µm to 10µm in the cases investigated.The effects of occupants are significant and must be precisely accounted for in respiratory particle transport studies.An enhanced ventilation design(UFAD-CDR)for university classrooms is introduced that places a premium on mitigating airborne disease spread.Compared to the baseline design at the same ACH,this design successfully reduced the maximum number density of respiratory particles by up to 85%.A novel airflow-related parameter,Horizontality,is introduced to quantify and connect the large-scale airflow pattern with indoor aerosol transport.This underscores that ACH alone cannot ensure or regulate air quality.In addition to the necessary ACH for air exchange,minimizing horizontal bulk motion is essential for reducing aerosol transmissibility within the room.
文摘从N av ier-S tokes方程出发,运用CFX软件对外界风向与屋脊平行和相夹45°两种情形下温室内气流场进行了稳态模拟研究。结果显示,对于前者,气流从山墙门和侧窗的上部进入,从侧窗的下部流出,气流在温室内沿中心纵截面分布的对称性较好,在温室的后半部气流逐渐扩散,紊流加强;对于后者,气流从山墙门和迎风侧窗处进入,两股气流相遇后受棚面形状及作物的影响而形成各种涡流,最后从背风侧窗处流出。气流在接触到栽培作物时流速迅速减小,作物冠层边界受到周围空间气流的影响,但在作物冠层内受周围空间气流影响不大。