Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green func...Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green function method are introduced to deal with the cryopreservation process of in vitro biomaterials. Exact solutions for the 3-D temperature transients of tissues under various boundary conditions, such as totally convective cooling, totally fixed temperature cooling and a hybrid between them on tissue surfaces, are obtained. Furthermore, the cryosurgical process in living tissues subject to freezing by a single or multiple cryoprobes is also analytically solved. A closed-form analytical solution to the bioheat phase change process is derived by considering contributions from blood perfusion heat transfer, metabolic heat generation, and heat sink of a cryoprobe. The present method is expected to have significant value for analytically solving complex bioheat transfer problems with phase change.展开更多
The present research explores the three-dimensional boundary layer flow of the Maxwell nanofluid. The flow is generated by a bidirectional stretching surface. The mathematical formulation is carried out through a boun...The present research explores the three-dimensional boundary layer flow of the Maxwell nanofluid. The flow is generated by a bidirectional stretching surface. The mathematical formulation is carried out through a boundary layer approach with the heat source/sink, the Brownian motion, and the thermophoresis effects. The newly developed boundary conditions requiring zero nanoparticle mass flux at the boundary are employed in the flow analysis for the Maxwell fluid. The governing nonlinear boundary layer equations through appropriate transformations are reduced to the coupled nonlin- ear ordinary differential system. The resulting nonlinear system is solved. Graphs are plotted to examine the effects of various interesting parameters on the non-dimensional velocities, temperature, and concentration fields. The values of the local Nusselt number are computed and examined numerically.展开更多
Based on constructal theory and entransy theory,the optimal designs of constant-and variable-cross-sectional cylindrical heat sources are carried out by taking dimensionless equivalent resistance minimization as optim...Based on constructal theory and entransy theory,the optimal designs of constant-and variable-cross-sectional cylindrical heat sources are carried out by taking dimensionless equivalent resistance minimization as optimization objective.The effects of the cylindrical height,the cylindrical shape and the ratio of thermal conductivity of the fin to that of the heat source are analyzed.The results show that when the volume of the heat source is fixed,there exists an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius which leads to the minimum dimensionless equivalent thermal resistance.With the increase in the height of the cylindrical heat source and the ratio of thermal conductivity,the minimum dimensionless equivalent thermal resistance decreases gradually.For the heat source model with inverted variable-cross-sectional cylinder,there exist an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius and an optimal radius ratio of the smaller and bigger circles of the cylindrical fin which lead to a double minimum dimensionless equivalent thermal resistance.Therefore,the heat transfer performance of the cylindrical heat source is improved by adopting the cylindrical model with variable-cross-section.The optimal constructs of the cylindrical heat source based on the minimizations of dimensionless maximum thermal resistance and dimensionless equivalent thermal resistance are different.When the thermal security is ensured,the optimal construct of the cylindrical heat source based on minimum equivalent thermal resistance can provide a new alternative scheme for the practical design of heat source.The results obtained herein enrich the work of constructal theory and entransy theory in the optimal design field of the heat sources,and they can provide some guidelines for the designs of practical heat source systems.展开更多
Spiral tube heat exchangers have been widely used in phase change energy storage due to the compact structure and large heat transfer area.Therefore,this study numerically analyzes the effects of spiral tube diameter,...Spiral tube heat exchangers have been widely used in phase change energy storage due to the compact structure and large heat transfer area.Therefore,this study numerically analyzes the effects of spiral tube diameter,number of rotations,and unsteady heat source on the melting process in conical spiral tube energy storage tanks using Fluent software.The results indicate that when the tube diameter is increased from 8 to 11 mm and the number of rotations is increased from 5 to 8,the melting time is extended by 15.74%and 17.83%,respectively.The energy storage capacity increases by 0.64%and 1.83%,respectively.The average energy storage rate decreases by 13.05%and 13.58%,respectively.Furthermore,the sinusoidal wave heat source with small heat source periods has little effect on the melting process,while large heat source periods can significantly accelerate the melting.And the influence of amplitudes on the thermal storage performance under large heat source periods is more obvious.When the heat source period is increased from 2 to 160 min and the amplitude is increased from 5 to 20 K,the melting time is reduced by 24.50%and 17.20%,respectively.The total energy storage capacity decreases by 6.36%and increases by 1.62%,respectively.The average energy storage rate increases by 24.03%and 22.74%,respectively.The study provides guidance for the performance optimization of spiral tube phase change systems.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 50776097)
文摘Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green function method are introduced to deal with the cryopreservation process of in vitro biomaterials. Exact solutions for the 3-D temperature transients of tissues under various boundary conditions, such as totally convective cooling, totally fixed temperature cooling and a hybrid between them on tissue surfaces, are obtained. Furthermore, the cryosurgical process in living tissues subject to freezing by a single or multiple cryoprobes is also analytically solved. A closed-form analytical solution to the bioheat phase change process is derived by considering contributions from blood perfusion heat transfer, metabolic heat generation, and heat sink of a cryoprobe. The present method is expected to have significant value for analytically solving complex bioheat transfer problems with phase change.
文摘The present research explores the three-dimensional boundary layer flow of the Maxwell nanofluid. The flow is generated by a bidirectional stretching surface. The mathematical formulation is carried out through a boundary layer approach with the heat source/sink, the Brownian motion, and the thermophoresis effects. The newly developed boundary conditions requiring zero nanoparticle mass flux at the boundary are employed in the flow analysis for the Maxwell fluid. The governing nonlinear boundary layer equations through appropriate transformations are reduced to the coupled nonlin- ear ordinary differential system. The resulting nonlinear system is solved. Graphs are plotted to examine the effects of various interesting parameters on the non-dimensional velocities, temperature, and concentration fields. The values of the local Nusselt number are computed and examined numerically.
基金supported by the National Natural Science Foundation of China(Grant Nos.5120618451176203&51356001)
文摘Based on constructal theory and entransy theory,the optimal designs of constant-and variable-cross-sectional cylindrical heat sources are carried out by taking dimensionless equivalent resistance minimization as optimization objective.The effects of the cylindrical height,the cylindrical shape and the ratio of thermal conductivity of the fin to that of the heat source are analyzed.The results show that when the volume of the heat source is fixed,there exists an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius which leads to the minimum dimensionless equivalent thermal resistance.With the increase in the height of the cylindrical heat source and the ratio of thermal conductivity,the minimum dimensionless equivalent thermal resistance decreases gradually.For the heat source model with inverted variable-cross-sectional cylinder,there exist an optimal ratio of the center-to-centre distance of the fin and the heat source to the cylinder radius and an optimal radius ratio of the smaller and bigger circles of the cylindrical fin which lead to a double minimum dimensionless equivalent thermal resistance.Therefore,the heat transfer performance of the cylindrical heat source is improved by adopting the cylindrical model with variable-cross-section.The optimal constructs of the cylindrical heat source based on the minimizations of dimensionless maximum thermal resistance and dimensionless equivalent thermal resistance are different.When the thermal security is ensured,the optimal construct of the cylindrical heat source based on minimum equivalent thermal resistance can provide a new alternative scheme for the practical design of heat source.The results obtained herein enrich the work of constructal theory and entransy theory in the optimal design field of the heat sources,and they can provide some guidelines for the designs of practical heat source systems.
基金supported by the National Natural Science Foundation of China(Grant No.52376072)。
文摘Spiral tube heat exchangers have been widely used in phase change energy storage due to the compact structure and large heat transfer area.Therefore,this study numerically analyzes the effects of spiral tube diameter,number of rotations,and unsteady heat source on the melting process in conical spiral tube energy storage tanks using Fluent software.The results indicate that when the tube diameter is increased from 8 to 11 mm and the number of rotations is increased from 5 to 8,the melting time is extended by 15.74%and 17.83%,respectively.The energy storage capacity increases by 0.64%and 1.83%,respectively.The average energy storage rate decreases by 13.05%and 13.58%,respectively.Furthermore,the sinusoidal wave heat source with small heat source periods has little effect on the melting process,while large heat source periods can significantly accelerate the melting.And the influence of amplitudes on the thermal storage performance under large heat source periods is more obvious.When the heat source period is increased from 2 to 160 min and the amplitude is increased from 5 to 20 K,the melting time is reduced by 24.50%and 17.20%,respectively.The total energy storage capacity decreases by 6.36%and increases by 1.62%,respectively.The average energy storage rate increases by 24.03%and 22.74%,respectively.The study provides guidance for the performance optimization of spiral tube phase change systems.