Based on computer graphics principle, technology and 3D graphics software, this paper deals with the 3D part design, assembly and animation of shearer in longwall integrated mechanized coal mining. The matixes of kine...Based on computer graphics principle, technology and 3D graphics software, this paper deals with the 3D part design, assembly and animation of shearer in longwall integrated mechanized coal mining. The matixes of kinetic and geometry relationships and 3 dimension space coordinate systems are built for the cut drums, arms and shearer body. The methods of 3D modeling, dynamic simulation and relative technique problems are discussed.展开更多
Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation ...Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation of maize production.The computer graphics algorithms,virtual reality technology,animation design and information integration technology are applied to maize production by this system.establishment of dynamic simulation system of maize growth is conducive to raise level of precise operation in maize production.The system also can assist the relevant production research and testing,to reduce cost and improve efficiency.展开更多
To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models...To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models were recons- tructed based on processed tomography images collected from normal people. The airflow fields in nasal cavities were simulated by fluid dynamics with finite element software ANSYS. The results showed that the difference of human nasal cavity structure led to different airflow distribution in the nasal cavities and variation of the main airstream passing through the common nasal meatus. The nasal resistance in the regions of nasal valve and nasal vestibule accounted for more than half of the overall resistance. The characteristic model of nasal cavity was extracted on the basis of characteristic points and dimensions deduced from the original models. It showed that either the geometric structure or the airflow field of the two kinds of models was similar. The characteristic dimensions were the characteristic parameters of nasal cavity that could properly represent the original model in model studies on nasal cavity.展开更多
Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture....Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture.The numerical simulation by computational fluid dynamics(CFD)is believed as a promising tool to study CO2 adsorption process in CFBR.Although three-dimensional(3D)simulations were proved to have better predicting performance with the experimental results,two-dimensional(2D)simulations have been widely reported for qualitative and quantitative studies on gas-solid behavior in CFBR for its higher computational efficiency recently.However,the discrepancies between 2D and 3D simulations have rarely been evaluated by detailed study.Considering that the differences between the 2D and 3D simulations will vary substantially with the changes of independent operating conditions,it is beneficial to lower computational costs to clarify the effects of dimensionality on the numerical CO2 adsorption runs under various operating conditions.In this work,the comparative analysis for CO2 adsorption in 2D and 3D simulations was conducted to enlighten the effects of dimensionality on the hydrodynamics and reaction behaviors,in which the separation rate,species distribution and hydrodynamic characteristics were comparatively studied for both model frames.With both accuracy and computational costs considered,the viable suggestions were provided in selecting appropriate model frame for the studies on optimization of operating conditions,which directly affect the capture and energy efficiencies of cyclic CO2 capture process in CFBR.展开更多
A computational particle fluid-dynamics model coupled with an energy-minimization multi-scale(EMMS)drag model was applied to investigate the influence of particle-size distribution on the hydrodynamics of a three-dime...A computational particle fluid-dynamics model coupled with an energy-minimization multi-scale(EMMS)drag model was applied to investigate the influence of particle-size distribution on the hydrodynamics of a three-dimensional full-loop circulating fluidized bed.Different particle systems,including one monodisperse and two polydisperse cases,were investigated.The numerical model was validated by comparing its results with the experimental axial voidage distribution and solid mass flux.The EMMS drag model had a high accuracy in the computational particle fluid-dynamics simulation of the three-dimensional full-loop circulating fluidized bed.The total number of parcels in the system(Np)influenced the axial voidage distribution in the riser,especially at the lower part of the riser.Additional numerical simulation results showed that axial segregation by size was predicted in the two polydisperse cases and the segregation size increased with an increase in the number of size classes.The axial voidage distribution at the lower portion of the riser was significantly influenced by particle-size distribution.However,radial segregation could only be correctly predicted in the upper region of the riser in the polydisperse case of three solid species.展开更多
Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actu...Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actual parameters of production line were taken into account. Static and dynamic procedures were used to study the continuous rolling process with the aid of the thermo-mechanical coupled FEM of elastic-plasticity. The properties of billets, such as deformation, temperature field and rolling force, were mainly discussed. The simulation results of temperature agree well with the measured values. Comparisons of the analysis results obtained using static implicit method and dynamic implicit method were presented. It is shown that static implicit procedure is more accurate than dynamic implicit procedure and is able to simulate the rolling process with a lower speed, such as a roughing mill. Whereas, dynamic analysis shows a higher efficiency than static analysis and is fit for simulating the rolling process with a higher speed, such as a finishing mill.展开更多
A comprehensive understanding of the sediment behavior at the entrance of diversion channels requires complete knowledge of threedimensional(3 D) flow behavior around such structures. Dikes and submerged vanes are typ...A comprehensive understanding of the sediment behavior at the entrance of diversion channels requires complete knowledge of threedimensional(3 D) flow behavior around such structures. Dikes and submerged vanes are typical structures used to control sediment entrainment in the diversion channel. In this study, a 3 D computational fluid dynamic(CFD) code was calibrated with experimental data and used to evaluate flow patterns, the diversion ratio of discharge, the strength of secondary flow, and dimensions of the vortex inside the channel in various dike and submerged vane installation scenarios. Results show that the diversion ratio of discharge in the diversion channel is dependent on the width of the flow separation plate in the main channel. A dike perpendicular to the flow with a narrowing ratio of 0.20 doubles the ratio of diverted discharge in addition to reducing suspended sediment input to the basin, compared with a no-dike situation, by creating the outer arch conditions. A further increase in the narrowing ratio decreases the diverted discharge. In addition, increasing the longitudinal distance between consecutive vanes(Ls) increases the velocity gradient between the vanes and leads to a more severe erosion of the bed, near the vanes.展开更多
Hydroelectric facilities impact water temperature; low velocities in a reservoir increase residence time and enhance heat exchange in surface layers. In this study, an unsteady three-dimensional model was developed to...Hydroelectric facilities impact water temperature; low velocities in a reservoir increase residence time and enhance heat exchange in surface layers. In this study, an unsteady three-dimensional model was developed to predict the temperatm'e dynamics in the McNary Dam forebay. The model is based on the open-source code OpenFOAM. RANS equations with the Boussinesq approximation were used to solve the flow field. A: realizable k-ε model that accounts for the production of wind turbulence was developed. Solar radiation and convective heat transfer at the free surface were included. The result of the model was compared with the field data collected on August 18, 2004. Changes in diurnal stratification were adequately predicted by the model. Observed vertical and lateral temperature distributions were accurately captured. Results indicate that the model can be used as a numerical tool to assess structural and operational alternatives to reduce the forebay temperature.展开更多
This paper introduces the method of developing a simulation package with expert systemfor a flexible manufacturing system(FMS)in Windows environment and presents some sim-ulation results for real examples.
Deformation of skin and muscle is essential for bringing an animated character to life. This deformation is difficult to animate in a realistic fashion using traditional techniques because of the subtlety of the skin ...Deformation of skin and muscle is essential for bringing an animated character to life. This deformation is difficult to animate in a realistic fashion using traditional techniques because of the subtlety of the skin deformations that must move appropriately for the character design. In this paper, we present an algorithm that generates natural, dynamic, and detailed skin deformation(movement and jiggle) from joint angle data sequences. The algorithm has two steps: identification of parameters for a quasi-static muscle deformation model, and simulation of skin deformation. In the identification step, we identify the model parameters using a musculoskeletal model and a short sequence of skin deformation data captured via a dense marker set. The simulation step first uses the quasi-static muscle deformation model to obtain the quasi-static muscle shape at each frame of the given motion sequence(slow jump). Dynamic skin deformation is then computed by simulating the passive muscle and soft tissue dynamics modeled as a mass–spring–damper system. Having obtained the model parameters, we can simulate dynamic skin deformations for subjects with similar body types from new motion data. We demonstrate our method by creating skin deformations for muscle co-contraction and external impacts from four different behaviors captured as skeletal motion capture data. Experimental results show that the simulated skin deformations are quantitatively and qualitatively similar to measured actual skin deformations.展开更多
文摘Based on computer graphics principle, technology and 3D graphics software, this paper deals with the 3D part design, assembly and animation of shearer in longwall integrated mechanized coal mining. The matixes of kinetic and geometry relationships and 3 dimension space coordinate systems are built for the cut drums, arms and shearer body. The methods of 3D modeling, dynamic simulation and relative technique problems are discussed.
基金Supported by Supported by National High Technology Research and Development Program of China(2006AA10A039)Special Funding Projects for Research in Agricultural Public Service Sectors (200803037)Technology Development Program of Jilin Province (2006BAD02A10-6-6)~~
文摘Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation of maize production.The computer graphics algorithms,virtual reality technology,animation design and information integration technology are applied to maize production by this system.establishment of dynamic simulation system of maize growth is conducive to raise level of precise operation in maize production.The system also can assist the relevant production research and testing,to reduce cost and improve efficiency.
基金the National Natural Science Foundation of China (1047202510672036)the Natural Science Foundation of Liaoning Province,China (20032109)
文摘To study the airflow distribution in human nasal cavity during respiration and the characteristic parameters of nasal structure, three-dimensional, anatomically accurate representations of 30 adult nasal cavity models were recons- tructed based on processed tomography images collected from normal people. The airflow fields in nasal cavities were simulated by fluid dynamics with finite element software ANSYS. The results showed that the difference of human nasal cavity structure led to different airflow distribution in the nasal cavities and variation of the main airstream passing through the common nasal meatus. The nasal resistance in the regions of nasal valve and nasal vestibule accounted for more than half of the overall resistance. The characteristic model of nasal cavity was extracted on the basis of characteristic points and dimensions deduced from the original models. It showed that either the geometric structure or the airflow field of the two kinds of models was similar. The characteristic dimensions were the characteristic parameters of nasal cavity that could properly represent the original model in model studies on nasal cavity.
基金supported by the National Natural Science Foundation of China(21506181,21506179)Natural Science Foundation of Hunan Province(2020JJ3033,2019JJ40281,2018SK2027,2018RS3088,2019SK2112)+1 种基金Research Foundation of Education Bureau of Hunan Province(18B088)Hunan Key Laboratory of Environment Friendly Chemical Process Integration and Hunan 2011 Collaborative Innovation Center of Chemical Engineering&Technology with Environmental Benignity and Effective Resource Utilization,State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2020-KF-11).
文摘Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture.The numerical simulation by computational fluid dynamics(CFD)is believed as a promising tool to study CO2 adsorption process in CFBR.Although three-dimensional(3D)simulations were proved to have better predicting performance with the experimental results,two-dimensional(2D)simulations have been widely reported for qualitative and quantitative studies on gas-solid behavior in CFBR for its higher computational efficiency recently.However,the discrepancies between 2D and 3D simulations have rarely been evaluated by detailed study.Considering that the differences between the 2D and 3D simulations will vary substantially with the changes of independent operating conditions,it is beneficial to lower computational costs to clarify the effects of dimensionality on the numerical CO2 adsorption runs under various operating conditions.In this work,the comparative analysis for CO2 adsorption in 2D and 3D simulations was conducted to enlighten the effects of dimensionality on the hydrodynamics and reaction behaviors,in which the separation rate,species distribution and hydrodynamic characteristics were comparatively studied for both model frames.With both accuracy and computational costs considered,the viable suggestions were provided in selecting appropriate model frame for the studies on optimization of operating conditions,which directly affect the capture and energy efficiencies of cyclic CO2 capture process in CFBR.
基金This work was financially supported by the National Natural Science Foundation of China through contract No.91634109 and No.51676158the National Key Research and Development Program of China(2016YFB0600102).
文摘A computational particle fluid-dynamics model coupled with an energy-minimization multi-scale(EMMS)drag model was applied to investigate the influence of particle-size distribution on the hydrodynamics of a three-dimensional full-loop circulating fluidized bed.Different particle systems,including one monodisperse and two polydisperse cases,were investigated.The numerical model was validated by comparing its results with the experimental axial voidage distribution and solid mass flux.The EMMS drag model had a high accuracy in the computational particle fluid-dynamics simulation of the three-dimensional full-loop circulating fluidized bed.The total number of parcels in the system(Np)influenced the axial voidage distribution in the riser,especially at the lower part of the riser.Additional numerical simulation results showed that axial segregation by size was predicted in the two polydisperse cases and the segregation size increased with an increase in the number of size classes.The axial voidage distribution at the lower portion of the riser was significantly influenced by particle-size distribution.However,radial segregation could only be correctly predicted in the upper region of the riser in the polydisperse case of three solid species.
文摘Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actual parameters of production line were taken into account. Static and dynamic procedures were used to study the continuous rolling process with the aid of the thermo-mechanical coupled FEM of elastic-plasticity. The properties of billets, such as deformation, temperature field and rolling force, were mainly discussed. The simulation results of temperature agree well with the measured values. Comparisons of the analysis results obtained using static implicit method and dynamic implicit method were presented. It is shown that static implicit procedure is more accurate than dynamic implicit procedure and is able to simulate the rolling process with a lower speed, such as a roughing mill. Whereas, dynamic analysis shows a higher efficiency than static analysis and is fit for simulating the rolling process with a higher speed, such as a finishing mill.
文摘A comprehensive understanding of the sediment behavior at the entrance of diversion channels requires complete knowledge of threedimensional(3 D) flow behavior around such structures. Dikes and submerged vanes are typical structures used to control sediment entrainment in the diversion channel. In this study, a 3 D computational fluid dynamic(CFD) code was calibrated with experimental data and used to evaluate flow patterns, the diversion ratio of discharge, the strength of secondary flow, and dimensions of the vortex inside the channel in various dike and submerged vane installation scenarios. Results show that the diversion ratio of discharge in the diversion channel is dependent on the width of the flow separation plate in the main channel. A dike perpendicular to the flow with a narrowing ratio of 0.20 doubles the ratio of diverted discharge in addition to reducing suspended sediment input to the basin, compared with a no-dike situation, by creating the outer arch conditions. A further increase in the narrowing ratio decreases the diverted discharge. In addition, increasing the longitudinal distance between consecutive vanes(Ls) increases the velocity gradient between the vanes and leads to a more severe erosion of the bed, near the vanes.
基金supported by Hydro Research Foundation (Grant No. DE-EE0002668)
文摘Hydroelectric facilities impact water temperature; low velocities in a reservoir increase residence time and enhance heat exchange in surface layers. In this study, an unsteady three-dimensional model was developed to predict the temperatm'e dynamics in the McNary Dam forebay. The model is based on the open-source code OpenFOAM. RANS equations with the Boussinesq approximation were used to solve the flow field. A: realizable k-ε model that accounts for the production of wind turbulence was developed. Solar radiation and convective heat transfer at the free surface were included. The result of the model was compared with the field data collected on August 18, 2004. Changes in diurnal stratification were adequately predicted by the model. Observed vertical and lateral temperature distributions were accurately captured. Results indicate that the model can be used as a numerical tool to assess structural and operational alternatives to reduce the forebay temperature.
基金Supported by the High Technology Research and Development Programme of China.
文摘This paper introduces the method of developing a simulation package with expert systemfor a flexible manufacturing system(FMS)in Windows environment and presents some sim-ulation results for real examples.
文摘Deformation of skin and muscle is essential for bringing an animated character to life. This deformation is difficult to animate in a realistic fashion using traditional techniques because of the subtlety of the skin deformations that must move appropriately for the character design. In this paper, we present an algorithm that generates natural, dynamic, and detailed skin deformation(movement and jiggle) from joint angle data sequences. The algorithm has two steps: identification of parameters for a quasi-static muscle deformation model, and simulation of skin deformation. In the identification step, we identify the model parameters using a musculoskeletal model and a short sequence of skin deformation data captured via a dense marker set. The simulation step first uses the quasi-static muscle deformation model to obtain the quasi-static muscle shape at each frame of the given motion sequence(slow jump). Dynamic skin deformation is then computed by simulating the passive muscle and soft tissue dynamics modeled as a mass–spring–damper system. Having obtained the model parameters, we can simulate dynamic skin deformations for subjects with similar body types from new motion data. We demonstrate our method by creating skin deformations for muscle co-contraction and external impacts from four different behaviors captured as skeletal motion capture data. Experimental results show that the simulated skin deformations are quantitatively and qualitatively similar to measured actual skin deformations.