The distributions of local structural units of calcium silicate melts were quantified by means of classical molecular dynamics simulation and a newly constructed structural thermodynamic model. The distribution of fiv...The distributions of local structural units of calcium silicate melts were quantified by means of classical molecular dynamics simulation and a newly constructed structural thermodynamic model. The distribution of five kinds of Si-O tetrahedra Qi from these two methods was compared with each other and also with the experimental Raman spectra, an excellent agreement was achieved. These not only displayed the panorama distribution of microstructural units in the whole composition range, but also proved that the thermodynamic model is suitable for the utilization as the subsequent application model of spectral experiments for the thermodynamic calculation. Meanwhile, the five refined regions mastered by different disproportionating reactions were obtained. Finally, the distributions of two kinds of connections between Qi were obtained, denoted as Qi-Ca-Qj and Qi-[Ob]-Qj, from the thermodynamic model, and a theoretical verification was given that the dominant connections for any composition are equivalent connections.展开更多
In order to explore the influence of welding parameters and to investigate the Al alloy (AA) nugget formation process, a comprehensive model involving electrical-thermal-mechanical and metallurgical analysis was estab...In order to explore the influence of welding parameters and to investigate the Al alloy (AA) nugget formation process, a comprehensive model involving electrical-thermal-mechanical and metallurgical analysis was established to numerically display the resistance spot welding (RSW) process within multiple fields and understand the AA-RSW physics. A multi-disciplinary finite element method (FEM) framework and a empirical sub-model were built to analyze the affecting factors on weld nugget and the underlying nature of welding physics with dynamic simulation procedure. Specifically, a counter-intuitive phenomenon of the resistance time-variation caused by the transient inverse virtual variation (TIVV) effect was highlighted and analyzed on the basis of welding current and temperature distribution simulation. The empirical model describing the TIVV phenomenon was used for modifying the dynamic resistance simulation during the AA spot welding process. The numerical and experimental results show that the proposed multi-field FEM model agrees with the measured AA welding feature, and the modified dynamic resistance model captures the physics of nugget growth and the electrical-thermal behavior under varying welding current and fluctuating heat input.展开更多
The tangentially fired utility boiler furnace is divided into several sections. The dynamic mathematical models for each section are presented. In the combustion zone, three dimensional model is used, while for the up...The tangentially fired utility boiler furnace is divided into several sections. The dynamic mathematical models for each section are presented. In the combustion zone, three dimensional model is used, while for the upper sections, lumped parameter model is used instead. With the combination of different models, we can get detailed distributions of gas velocity, temperature, chemical species, heat flux, etc. in the furnace, but with less CPU time. The radiation through the interfaces of each section is cons...展开更多
We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. S...We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.展开更多
By means of ISM (Interpretative Structural Modeling) and SD (System Dynamics) methods, this paper made a system dynamics model of urbanization and eco-environment coupling in Jiangsu Province according to the implicat...By means of ISM (Interpretative Structural Modeling) and SD (System Dynamics) methods, this paper made a system dynamics model of urbanization and eco-environment coupling in Jiangsu Province according to the implication and PSR (Pressure State Response) framework of urbanization and eco-environment coupling. Moreover, five typical scenarios during 2000-2015 have been simulated and analyzed based on the time serial statistical data during 1990-2003 in Jiangsu, which indicates: firstly, there are significant differences between the results and the scenarios, and the five coupling models all have comparative advantages and drawbacks; secondly, in terms of the characteristics and regional development disparities of Jiangsu and the general rule of world urbanization process, this paper reveals that only when either population urbanization model or social urbanization model to be correspondingly adopted, the sustainable development among population, economy, urbanization and eco-environment can be realized.展开更多
The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase s...The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently.展开更多
An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is bu...An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is built as a three-dimensional single-body model with six-degree-of-freedom. The track-terrain interaction is modeled by partitioning the track-terrain interface into a certain number of mesh elements with three mutually perpendicular forces, including the normal force, the longitudinal shear force and the lateral shear force, acting on the center point of each mesh element. The hydrodynamic force of the miner is considered and applied. By considering the operational safety and collection efficiency, two new mining paths for the miner on the seafloor are proposed, which can be simulated with the established single-body dynamic model of the miner. The pipeline subsystem is built as a three-dimensional multi-body discrete element model, which is divided into rigid elements linked by flexible connectors. The flexible connector without mass is represented by six spring-damper elements. The external hydrodynamic forces of the ocean current from the longitudinal and lateral directions are both considered and modeled based on the Morison formula and applied to the mass center of each corresponding discrete rigid element. The mining ship is simplified and represented by a general kinematic point, whose heave motion induced by the ocean waves and the longitudinal and lateral towing motions are considered and applied. By integrating the single-body dynamic model of the miner and the multi-body discrete element dynamic model of the pipeline, and defining the kinematic equations of the mining ship, the integrated dynamic model of the total deep ocean mining system is formed. The longitudinal reciprocating motion operation modes of the total mining system, which combine the active straight-line and turning motions of the miner and the ship, and the passive towed motions of the pipeline, are proposed and simulated with the developed 3D dynamic model. Some critical simulation results are obtained and analyzed, such as the motion trajectories of key subsystems, the velocities of the buoyancy modules and the interaction forces between subsystems, which in a way can provide important theoretical basis and useful technical reference for the practical deep ocean mining system analysis, operation and control.展开更多
The existence of clearance in the joints of mechanisms system is inevitable.The movements of the real mechanism are deflection from the ideal mechanism due to the clearances and the motion accuracy is decreased.The ef...The existence of clearance in the joints of mechanisms system is inevitable.The movements of the real mechanism are deflection from the ideal mechanism due to the clearances and the motion accuracy is decreased.The effects of the hinge clearance on the crank and rocker mechanism system are studied.The system dynamics equation with clearance is presented.The contact dynamics model is established using the nonlinear equivalent spring-damp model and the friction effect is considered by using Coulomb friction model.Then the models are incorporated into ADAMS,and based on the model,large numbers numeric simulations are made.The regularity of contact forces in clearance are studied in detail.And the effects of clearance size,clearance friction on the mechanism dynamics characteristic are analyzed.The simulation results can predict the effects of clearance on the mechanism dynamics characteristic preferably.展开更多
A 7 degree-of-freedom (DOF) 4 wheels vehicle dynamics model based on Matlab-Simulink is established,and 7 DOF vehicle dynamics equations in the form of nonlinear state-space standards are given.The characters of the...A 7 degree-of-freedom (DOF) 4 wheels vehicle dynamics model based on Matlab-Simulink is established,and 7 DOF vehicle dynamics equations in the form of nonlinear state-space standards are given.The characters of the electronic throttle and the active braking system have been analyzed.And the electronic throttle model and the active braking system model are built according to the test results respectively.Off-line simulation results indicate that the model is suitable for the vehicle adaptive cruise control system,and both of the electronic throttle and the active braking system work in a reasonable way.An adaptive cruise control (ACC) example illustrates that the model has a good performance in cruise and distance keeping.展开更多
A three-dimensional dynamic damage model that fits both small and large damage sizes is developed to predict impact damage initiation and propagation for each lamina of T300-carbon/epoxy laminations.First,13 specimens...A three-dimensional dynamic damage model that fits both small and large damage sizes is developed to predict impact damage initiation and propagation for each lamina of T300-carbon/epoxy laminations.First,13 specimens of the same lamination sequence are subjected to three different impact energies(10 J,15 J,and 20 J).After the impact,the laminates are inspected by the naked eye to observe the damage in the outer layers,and subsequently X-rayed to detect the inner damage.Next,the stress analysis of laminates subjected to impact loading is presented,based on the Hertz contact law and virtual displacement principle.Based on the analysis results,a three-dimensional dynamic damage model is proposed,including the Hou failure criteria and Camanho stiffness degradation model,to predict the impact damage shape and area.The numerical predictions of the damage shape and area show a relatively reasonable agreement with the experiments.Finally,the impact damage initiation and propagation for each lamina are investigated using this damage model,and the results improve the understanding of the impact process.展开更多
Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic metho...Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic method. Combining the way of elastic impact with the way of velocity replacement, the dynamics model of damping free vibration dynamics model with 3-degree of freedom(DOF) for lunar lander is obtained according to the vibration mechanics elementary theory. Based on Lagrange equations and the energy principle, the damping free vibration differential equations for the lunar lander with 3-DOF are derived and the equations are solved in simulation ways by means of ADAMS software. The conclusions obtained can be used for the design and manufacture of lunar lander.展开更多
Soft robots have become important members of the robot community with many potential applications owing to their unique flexibility and security embedded at the material level.An increasing number of researchers are i...Soft robots have become important members of the robot community with many potential applications owing to their unique flexibility and security embedded at the material level.An increasing number of researchers are interested in their designing,manufacturing,modeling,and control.However,the dynamic simulation of soft robots is difficult owing to their infinite degrees of freedom and nonlinear characteristics that are associated with soft materials and flexible geometric structures.In this study,a novel multi-flexible body dynamic modeling and simulation technique is introduced for soft robots.Various actuators for soft robots are modeled in a virtual environment,including soft cable-driven,spring actuation,and pneumatic driving.A pneumatic driving simulation was demonstrated by the bending modules with different materials.A cable-driven soft robot arm prototype and a cylindrical soft module actuated by shape memory alley springs inspired by an octopus were manufactured and used to validate the simulation model,and the experimental results demonstrated adequate accuracy.The proposed technique can be widely applied for the modeling and dynamic simulation of other soft robots,including hybrid actuated robots and rigid-flexible coupling robots.This study also provides a fundamental framework for simulating soft mobile robots and soft manipulators in contact with the environment.展开更多
System dynamics (SD) theory has long been deployed in modeling complex non-linear interrelationships but, so far it has not been common to do the kind of modeling in support of bringing environmental sustainability po...System dynamics (SD) theory has long been deployed in modeling complex non-linear interrelationships but, so far it has not been common to do the kind of modeling in support of bringing environmental sustainability policies to practice. This is largely because the challenge of including spatial data has not yet been well met. Potential for adoption of SD and GIS methods in combination is exemplified with the results of a decision-support exercise designed for simulation and prediction of the dynamic inter-relationships between socio-economic development and environmental quality for the "Wen, Pi, Du" county in Sichuan province, southwestern China.展开更多
In this paper,the process modeling and dynamic simulation for the EAST helium refrigerator has been completed.The cryogenic process model is described and the main components are customized in detail.The process model...In this paper,the process modeling and dynamic simulation for the EAST helium refrigerator has been completed.The cryogenic process model is described and the main components are customized in detail.The process model is controlled by the PLC simulator,and the realtime communication between the process model and the controllers is achieved by a customized interface.Validation of the process model has been confirmed based on EAST experimental data during the cool down process of 300-80 K.Simulation results indicate that this process simulator is able to reproduce dynamic behaviors of the EAST helium refrigerator very well for the operation of long pulsed plasma discharge.The cryogenic process simulator based on control architecture is available for operation optimization and control design of EAST cryogenic systems to cope with the long pulsed heat loads in the future.展开更多
A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the n...A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the naphtha feed and reaction scheme of the reaction model are given. The process model is composed of the reforming reaction model with catalyst deactivation, the furnace model and the separator model, which is capable of capturing the major dynamics that occurs in this process system. Dynamic simulations are performed based on Gear numerical algorithm and method of lines (MOL), a numerical technique dealing with partial differential equations (PDEs). The results of simulation are also presented. Dynamic responses caused by disturbances in the process system can be correctly predicted through simulations.展开更多
In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model ...In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects.展开更多
This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize t...This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.展开更多
This article aims to investigate the transient behavior of a planar direct internal reforming solid oxide fuel cell (DIR-SOFC) comprehensively. A one-dimensional dynamic model of a planar D1R-SOFC is first developed...This article aims to investigate the transient behavior of a planar direct internal reforming solid oxide fuel cell (DIR-SOFC) comprehensively. A one-dimensional dynamic model of a planar D1R-SOFC is first developed based on mass and energy balances, and electrochemical principles. Further, a solution strategy is presented to solve the model, and the International Energy Agency (IEA) benchmark test is used to validate the model. Then, through model-based simulations, the steady-state performance of a co-flow planar DIR-SOFC under specified initial operating conditions and its dynamic response to introduced operating parameter disturbances are studied. The dynamic responses of important SOFC variables, such as cell temperature, current density, and cell voltage are all investigated when the SOFC is subjected to the step-changes in various operating parameters including both the load current and the inlet fuel and air flow rates. The results indicate that the rapid dynamics of the current density and the cell voltage are mainly influenced by the gas composition, particularly the H2 molar fraction in anode gas channels, while their slow dynamics are both dominated by the SOLID (including the PEN and interconnects) temperature. As the load current increases, the SOLID temperature and the maximum SOLID temperature gradient both increase, and thereby, the cell breakdown is apt to occur because of excessive thermal stresses. Changing the inlet fuel flow rate might lead to the change in the anode gas composition and the consequent change in the current density distribution and cell voltage. The inlet air flow rate has a great impact on the cell temperature distribution along the cell, and thus, is a suitable manipulated variable to control the cell temperature.展开更多
High entropy alloys(HEAs)attract remarkable attention due to the excellent mechanical performance.However,the origins of their high strength and toughness compared with those of the traditional alloys are still hardly...High entropy alloys(HEAs)attract remarkable attention due to the excellent mechanical performance.However,the origins of their high strength and toughness compared with those of the traditional alloys are still hardly revealed.Here,using a microstructure-based constitutive model and molecular dynamics(MD)simulation,we investigate the unique mechanical behavior and microstructure evolution of FeCoCrNiCu HEAs during the indentation.Due to the interaction between the dislocation and solution,the high dislocation density in FeCoCrNiCu leads to strong work hardening.Plentiful slip systems are stimulated,leading to the good plasticity of FeCoCrNiCu.The plastic deformation of FeCoCrNiCu is basically affected by the motion of dislocation loops.The prismatic dislocation loops inside FeCoCrNiCu are formed by the dislocations with the Burgers vectors of a/6[112]and a/6[112],which interact with each other,and then emit along the<111>slip direction.In addition,the mechanical properties of FeCoCrNiCu HEA can be predicted by constructing the microstructure-based constitutive model,which is identified according to the evolution of the dislocation density and the stress-strain curve.Strong dislocation strengthening and remarkable lattice distortion strengthening occur in the deformation process of FeCoCrNiCu,and improve the strength.Therefore,the origins of high strength and high toughness in FeCoCrNiCu HEAs come from lattice distortion strengthening and the more activable slip systems compared with Cu.These results accelerate the discovery of HEAs with excellent mechanical properties,and provide a valuable reference for the industrial application of HEAs.展开更多
The dynamics for multi-link spatial flexible manipulator arms consisting of n links and n rotary joints is investigated. Kinematics of both rotary-joint motion and link deformation is described by 4 - 4 homogenous tra...The dynamics for multi-link spatial flexible manipulator arms consisting of n links and n rotary joints is investigated. Kinematics of both rotary-joint motion and link deformation is described by 4 - 4 homogenous transformation matrices, and the Lagrangian equations are used to derive the governing equations of motion of the system. In the modeling the recursive strategy for kinematics is adopted to improve the computational efficiency. Both the bending and torsional flexibility of the link are taken into account. Based on the present method a general-purpose software package for dynamic simulation is developed. Dynamic simulation of a spatial flexible manipulator arm is given as an example to validate the algorithm.展开更多
基金Project(2012CB722805)supported by the National Basic Research Program of ChinaProjects(50504010,50974083,51174131,51374141)supported by the National Natural Science Foundation of China+1 种基金Project(50774112)supported by the Joint Fund of NSFC and Baosteel,ChinaProject(07QA4021)supported by the Shanghai"Phosphor"Science Foundation,China
文摘The distributions of local structural units of calcium silicate melts were quantified by means of classical molecular dynamics simulation and a newly constructed structural thermodynamic model. The distribution of five kinds of Si-O tetrahedra Qi from these two methods was compared with each other and also with the experimental Raman spectra, an excellent agreement was achieved. These not only displayed the panorama distribution of microstructural units in the whole composition range, but also proved that the thermodynamic model is suitable for the utilization as the subsequent application model of spectral experiments for the thermodynamic calculation. Meanwhile, the five refined regions mastered by different disproportionating reactions were obtained. Finally, the distributions of two kinds of connections between Qi were obtained, denoted as Qi-Ca-Qj and Qi-[Ob]-Qj, from the thermodynamic model, and a theoretical verification was given that the dominant connections for any composition are equivalent connections.
基金Projects (11202125, 61175038) supported by the National Natural Science Foundation of China
文摘In order to explore the influence of welding parameters and to investigate the Al alloy (AA) nugget formation process, a comprehensive model involving electrical-thermal-mechanical and metallurgical analysis was established to numerically display the resistance spot welding (RSW) process within multiple fields and understand the AA-RSW physics. A multi-disciplinary finite element method (FEM) framework and a empirical sub-model were built to analyze the affecting factors on weld nugget and the underlying nature of welding physics with dynamic simulation procedure. Specifically, a counter-intuitive phenomenon of the resistance time-variation caused by the transient inverse virtual variation (TIVV) effect was highlighted and analyzed on the basis of welding current and temperature distribution simulation. The empirical model describing the TIVV phenomenon was used for modifying the dynamic resistance simulation during the AA spot welding process. The numerical and experimental results show that the proposed multi-field FEM model agrees with the measured AA welding feature, and the modified dynamic resistance model captures the physics of nugget growth and the electrical-thermal behavior under varying welding current and fluctuating heat input.
文摘The tangentially fired utility boiler furnace is divided into several sections. The dynamic mathematical models for each section are presented. In the combustion zone, three dimensional model is used, while for the upper sections, lumped parameter model is used instead. With the combination of different models, we can get detailed distributions of gas velocity, temperature, chemical species, heat flux, etc. in the furnace, but with less CPU time. The radiation through the interfaces of each section is cons...
文摘We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.
文摘By means of ISM (Interpretative Structural Modeling) and SD (System Dynamics) methods, this paper made a system dynamics model of urbanization and eco-environment coupling in Jiangsu Province according to the implication and PSR (Pressure State Response) framework of urbanization and eco-environment coupling. Moreover, five typical scenarios during 2000-2015 have been simulated and analyzed based on the time serial statistical data during 1990-2003 in Jiangsu, which indicates: firstly, there are significant differences between the results and the scenarios, and the five coupling models all have comparative advantages and drawbacks; secondly, in terms of the characteristics and regional development disparities of Jiangsu and the general rule of world urbanization process, this paper reveals that only when either population urbanization model or social urbanization model to be correspondingly adopted, the sustainable development among population, economy, urbanization and eco-environment can be realized.
基金This project is supported by National Natural Science Foundation of China(No.10342003).
文摘The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently.
基金supported by the National Natural Science Foundation of China(Grant No.51105386)the National Deep-Sea Technology Project of Development and Research(Grant No.DYXM-115-04-02-01)the Fundamental Research Funds for the Central Universities(Grant No.2011QNZT058)
文摘An integrated dynamic model of China's deep ocean mining system is developed and the fast simulation analysis of its longitudinal reciprocating motion operation processes is achieved. The seafloor tracked miner is built as a three-dimensional single-body model with six-degree-of-freedom. The track-terrain interaction is modeled by partitioning the track-terrain interface into a certain number of mesh elements with three mutually perpendicular forces, including the normal force, the longitudinal shear force and the lateral shear force, acting on the center point of each mesh element. The hydrodynamic force of the miner is considered and applied. By considering the operational safety and collection efficiency, two new mining paths for the miner on the seafloor are proposed, which can be simulated with the established single-body dynamic model of the miner. The pipeline subsystem is built as a three-dimensional multi-body discrete element model, which is divided into rigid elements linked by flexible connectors. The flexible connector without mass is represented by six spring-damper elements. The external hydrodynamic forces of the ocean current from the longitudinal and lateral directions are both considered and modeled based on the Morison formula and applied to the mass center of each corresponding discrete rigid element. The mining ship is simplified and represented by a general kinematic point, whose heave motion induced by the ocean waves and the longitudinal and lateral towing motions are considered and applied. By integrating the single-body dynamic model of the miner and the multi-body discrete element dynamic model of the pipeline, and defining the kinematic equations of the mining ship, the integrated dynamic model of the total deep ocean mining system is formed. The longitudinal reciprocating motion operation modes of the total mining system, which combine the active straight-line and turning motions of the miner and the ship, and the passive towed motions of the pipeline, are proposed and simulated with the developed 3D dynamic model. Some critical simulation results are obtained and analyzed, such as the motion trajectories of key subsystems, the velocities of the buoyancy modules and the interaction forces between subsystems, which in a way can provide important theoretical basis and useful technical reference for the practical deep ocean mining system analysis, operation and control.
基金Sponsored by Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT0520)
文摘The existence of clearance in the joints of mechanisms system is inevitable.The movements of the real mechanism are deflection from the ideal mechanism due to the clearances and the motion accuracy is decreased.The effects of the hinge clearance on the crank and rocker mechanism system are studied.The system dynamics equation with clearance is presented.The contact dynamics model is established using the nonlinear equivalent spring-damp model and the friction effect is considered by using Coulomb friction model.Then the models are incorporated into ADAMS,and based on the model,large numbers numeric simulations are made.The regularity of contact forces in clearance are studied in detail.And the effects of clearance size,clearance friction on the mechanism dynamics characteristic are analyzed.The simulation results can predict the effects of clearance on the mechanism dynamics characteristic preferably.
基金Sponsored by the National Natural Science Foundation of China (501222155)
文摘A 7 degree-of-freedom (DOF) 4 wheels vehicle dynamics model based on Matlab-Simulink is established,and 7 DOF vehicle dynamics equations in the form of nonlinear state-space standards are given.The characters of the electronic throttle and the active braking system have been analyzed.And the electronic throttle model and the active braking system model are built according to the test results respectively.Off-line simulation results indicate that the model is suitable for the vehicle adaptive cruise control system,and both of the electronic throttle and the active braking system work in a reasonable way.An adaptive cruise control (ACC) example illustrates that the model has a good performance in cruise and distance keeping.
文摘A three-dimensional dynamic damage model that fits both small and large damage sizes is developed to predict impact damage initiation and propagation for each lamina of T300-carbon/epoxy laminations.First,13 specimens of the same lamination sequence are subjected to three different impact energies(10 J,15 J,and 20 J).After the impact,the laminates are inspected by the naked eye to observe the damage in the outer layers,and subsequently X-rayed to detect the inner damage.Next,the stress analysis of laminates subjected to impact loading is presented,based on the Hertz contact law and virtual displacement principle.Based on the analysis results,a three-dimensional dynamic damage model is proposed,including the Hou failure criteria and Camanho stiffness degradation model,to predict the impact damage shape and area.The numerical predictions of the damage shape and area show a relatively reasonable agreement with the experiments.Finally,the impact damage initiation and propagation for each lamina are investigated using this damage model,and the results improve the understanding of the impact process.
文摘Focused on the dynamics problems of a lunar lander during landing process, the whole process was analysed in detail, and the linear elastic model of the moon soil was established by means of experiments-analogic method. Combining the way of elastic impact with the way of velocity replacement, the dynamics model of damping free vibration dynamics model with 3-degree of freedom(DOF) for lunar lander is obtained according to the vibration mechanics elementary theory. Based on Lagrange equations and the energy principle, the damping free vibration differential equations for the lunar lander with 3-DOF are derived and the equations are solved in simulation ways by means of ADAMS software. The conclusions obtained can be used for the design and manufacture of lunar lander.
基金Supported by the National Natural Science Foundation of China(Grant Nos.51822502 and 91948202)the National Key Research and Development Program of China(No.2019YFB1309500)the“111 Project”(Grant No.B07018).
文摘Soft robots have become important members of the robot community with many potential applications owing to their unique flexibility and security embedded at the material level.An increasing number of researchers are interested in their designing,manufacturing,modeling,and control.However,the dynamic simulation of soft robots is difficult owing to their infinite degrees of freedom and nonlinear characteristics that are associated with soft materials and flexible geometric structures.In this study,a novel multi-flexible body dynamic modeling and simulation technique is introduced for soft robots.Various actuators for soft robots are modeled in a virtual environment,including soft cable-driven,spring actuation,and pneumatic driving.A pneumatic driving simulation was demonstrated by the bending modules with different materials.A cable-driven soft robot arm prototype and a cylindrical soft module actuated by shape memory alley springs inspired by an octopus were manufactured and used to validate the simulation model,and the experimental results demonstrated adequate accuracy.The proposed technique can be widely applied for the modeling and dynamic simulation of other soft robots,including hybrid actuated robots and rigid-flexible coupling robots.This study also provides a fundamental framework for simulating soft mobile robots and soft manipulators in contact with the environment.
文摘System dynamics (SD) theory has long been deployed in modeling complex non-linear interrelationships but, so far it has not been common to do the kind of modeling in support of bringing environmental sustainability policies to practice. This is largely because the challenge of including spatial data has not yet been well met. Potential for adoption of SD and GIS methods in combination is exemplified with the results of a decision-support exercise designed for simulation and prediction of the dynamic inter-relationships between socio-economic development and environmental quality for the "Wen, Pi, Du" county in Sichuan province, southwestern China.
基金supported by National Natural Science Foundation of China(No.51306195)Key Laboratory of Cryogenics,Technical Institute of Physics and Chemistry,CAS(No.CRYO201408)
文摘In this paper,the process modeling and dynamic simulation for the EAST helium refrigerator has been completed.The cryogenic process model is described and the main components are customized in detail.The process model is controlled by the PLC simulator,and the realtime communication between the process model and the controllers is achieved by a customized interface.Validation of the process model has been confirmed based on EAST experimental data during the cool down process of 300-80 K.Simulation results indicate that this process simulator is able to reproduce dynamic behaviors of the EAST helium refrigerator very well for the operation of long pulsed plasma discharge.The cryogenic process simulator based on control architecture is available for operation optimization and control design of EAST cryogenic systems to cope with the long pulsed heat loads in the future.
文摘A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the naphtha feed and reaction scheme of the reaction model are given. The process model is composed of the reforming reaction model with catalyst deactivation, the furnace model and the separator model, which is capable of capturing the major dynamics that occurs in this process system. Dynamic simulations are performed based on Gear numerical algorithm and method of lines (MOL), a numerical technique dealing with partial differential equations (PDEs). The results of simulation are also presented. Dynamic responses caused by disturbances in the process system can be correctly predicted through simulations.
基金supported by the National Natural Science Foundation of China (10732030) and the 111 Project (B07009)
文摘In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects.
基金Postdoctoral Fund of China (No. 2003034518), Fund of Health Bureau of Zhejiang Province (No. 2004B042), China
文摘This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.
基金Supported by the National High Technology Research and Development Program of China (2006AA05Z148)
文摘This article aims to investigate the transient behavior of a planar direct internal reforming solid oxide fuel cell (DIR-SOFC) comprehensively. A one-dimensional dynamic model of a planar D1R-SOFC is first developed based on mass and energy balances, and electrochemical principles. Further, a solution strategy is presented to solve the model, and the International Energy Agency (IEA) benchmark test is used to validate the model. Then, through model-based simulations, the steady-state performance of a co-flow planar DIR-SOFC under specified initial operating conditions and its dynamic response to introduced operating parameter disturbances are studied. The dynamic responses of important SOFC variables, such as cell temperature, current density, and cell voltage are all investigated when the SOFC is subjected to the step-changes in various operating parameters including both the load current and the inlet fuel and air flow rates. The results indicate that the rapid dynamics of the current density and the cell voltage are mainly influenced by the gas composition, particularly the H2 molar fraction in anode gas channels, while their slow dynamics are both dominated by the SOLID (including the PEN and interconnects) temperature. As the load current increases, the SOLID temperature and the maximum SOLID temperature gradient both increase, and thereby, the cell breakdown is apt to occur because of excessive thermal stresses. Changing the inlet fuel flow rate might lead to the change in the anode gas composition and the consequent change in the current density distribution and cell voltage. The inlet air flow rate has a great impact on the cell temperature distribution along the cell, and thus, is a suitable manipulated variable to control the cell temperature.
基金the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.51621004)the National Natural Science Foundation of China(Nos.12072109,51871092,and 11772122)。
文摘High entropy alloys(HEAs)attract remarkable attention due to the excellent mechanical performance.However,the origins of their high strength and toughness compared with those of the traditional alloys are still hardly revealed.Here,using a microstructure-based constitutive model and molecular dynamics(MD)simulation,we investigate the unique mechanical behavior and microstructure evolution of FeCoCrNiCu HEAs during the indentation.Due to the interaction between the dislocation and solution,the high dislocation density in FeCoCrNiCu leads to strong work hardening.Plentiful slip systems are stimulated,leading to the good plasticity of FeCoCrNiCu.The plastic deformation of FeCoCrNiCu is basically affected by the motion of dislocation loops.The prismatic dislocation loops inside FeCoCrNiCu are formed by the dislocations with the Burgers vectors of a/6[112]and a/6[112],which interact with each other,and then emit along the<111>slip direction.In addition,the mechanical properties of FeCoCrNiCu HEA can be predicted by constructing the microstructure-based constitutive model,which is identified according to the evolution of the dislocation density and the stress-strain curve.Strong dislocation strengthening and remarkable lattice distortion strengthening occur in the deformation process of FeCoCrNiCu,and improve the strength.Therefore,the origins of high strength and high toughness in FeCoCrNiCu HEAs come from lattice distortion strengthening and the more activable slip systems compared with Cu.These results accelerate the discovery of HEAs with excellent mechanical properties,and provide a valuable reference for the industrial application of HEAs.
基金supported by the National Natural Science Foundation of China (No. 10772085)the Natural Science Foundation of Jiangsu Province (No. BK2007205)+1 种基金the Young Scholar Foundation of Nanjing University of Science and Technology (No. NJUST200504)the Qing Lan Project of Jiangsu Province
文摘The dynamics for multi-link spatial flexible manipulator arms consisting of n links and n rotary joints is investigated. Kinematics of both rotary-joint motion and link deformation is described by 4 - 4 homogenous transformation matrices, and the Lagrangian equations are used to derive the governing equations of motion of the system. In the modeling the recursive strategy for kinematics is adopted to improve the computational efficiency. Both the bending and torsional flexibility of the link are taken into account. Based on the present method a general-purpose software package for dynamic simulation is developed. Dynamic simulation of a spatial flexible manipulator arm is given as an example to validate the algorithm.