Natural convection heat transfer from annular finned tubes was studied numerically. Effects of fin spacing, temperature difference and tube diameter on flow pathlines and local heat transfer were also studied. It was ...Natural convection heat transfer from annular finned tubes was studied numerically. Effects of fin spacing, temperature difference and tube diameter on flow pathlines and local heat transfer were also studied. It was shown that pathlines remain mostly circular for different geometries. Moreover, the contributions of fin periphery, fin side and bare tube to heat transfer were specified. It was shown that the heat transfer per unit area of fin periphery can be several times that of other parts. Moreover, in higher finspacing, the heat transfer from the bare tube can be more important than fin sides.展开更多
This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. Th...This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.展开更多
Thermal conductivity of frost is not only related to density, but also affected by its microstructure and environmental conditions, and it will continuously change with the formation and growth of frost. Images of fro...Thermal conductivity of frost is not only related to density, but also affected by its microstructure and environmental conditions, and it will continuously change with the formation and growth of frost. Images of frost formation and growth on the cryogenic surface in various shapes at different stages were obtained by experimental measurements, and a numerical simulation of frost formation and growth was carried out based on Diffusion Limited Aggregation (DLA) model of fractal theory in this paper. Based on the frost structure obtained by experiment, the fractal dimension of pore area distribution and porosity of frost layer on the cryogenic finned-tube?vaporizer were calculated by using fractal method, and combined with heat conduction model of frost layer obtained by thermal resistance method, the thermal conductivity of frost on the cryogenic surface was calculated. The result shows that the thermal conductivity calculated by the fractal model coincides with the range of the experimental data. Additionally, comparison with other heat conduction models indicated that it is feasible to introduce the fractal dimension of pore area distribution into heat conduction model to deduce the thermal conductivity of frost.展开更多
In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By vari...In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By variable transformation, the original 3-D problem is converted into a 2-D problem in spiral coordinates. The algorithm of SIMPLEC is used to study the fully developed fluid flow and heat transfer in the spiral finned tube at constant periphery temperature and constant axial heat flux. The computed results agree pretty well with the experimental data obtained from the industry. Further studies on the fluid flows and temperature profiles at different Reynolds numbers within straight and spiral finned tubes are conducted and the mechanisms involved are explored. It is found that with the spiral finned tube, pressure drop increases to a great extent whereas heat transfer tends to be decreased.展开更多
To improve heat-transfer performance, a novel integral three-dimensional fin-structure on the plat surface was presented to increase the evaporation efficiency. The three-dimensional fin-structure is composed of a spi...To improve heat-transfer performance, a novel integral three-dimensional fin-structure on the plat surface was presented to increase the evaporation efficiency. The three-dimensional fin-structure is composed of a spiral micro-groove and multi radial micro-grooves. Both ploughing-extrusion(P-E) and stamping were used to form the integral-fins with a connection between radial and circumferential directions. Based on the SEM results, the relationships among P-E speed v P-E, rotational speed np and feed fp, and among interference length Li, stamping feed angle θc and stamping depth ac were analyzed. The effects of processing parameters on the groove morphology and the matching relationship between parameters were also discussed. The integral finned surface with micro-grooves and cracks can be obtained under such processing conditions: P-E depth ap=0.3 mm, ac=0.3 mm, the interval of helical groove dp=1.24 mm, θc=2° and np=50 r/min.展开更多
In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanis...In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanisms, such as the acoustic and optical phonon scattering, the ionized impurity scattering, the impact ionization scattering and the surface roughness scattering are considered in our simulator. The effects of the substrate bias and the surface roughness scattering near the Si/SiO2 interface on the performance of bulk FinFET are mainly discussed in our work. Our results show that the on-current of bulk FinFET is sensitive to the surface roughness and that we can reduce the substrate leakage current by modulating the substrate bias voltage.展开更多
The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical mod...The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical model was also established. Based on the volume of fin ploughed out is equal to the volume of the metal extruded up by the extruding face of the tool, the relations between fin height, pre roll ploughing feed and pre roll ploughing depth have been achieved. With the increase of pre roll ploughing depth which must be equal to groove depth, the fin height gradually becomes larger. There are different critical feeds with the various depths of pre roll ploughing. The pre roll ploughing feed is the critical one, the height of fin is largest. And when the feed is above the critical one, the fin height will reduce with the increase of feed. The theoretical analysis basically accords with experimental results.展开更多
In this study,thermo-fluid characteristics of elliptical annular finned tube heat exchanger were numerically studied in detail.Transition SST model was utilized to simulate turbulent flow.Effects of air velocities,hor...In this study,thermo-fluid characteristics of elliptical annular finned tube heat exchanger were numerically studied in detail.Transition SST model was utilized to simulate turbulent flow.Effects of air velocities,horizontal to vertical fin diameter ratios,and fin densities were examined in detail.The simulations indicate superior performance of elliptical fin layout.It was shown that pressure drop of annular elliptical fin can be only one half of that of a circular annular fin while containing comparable heat transfer performance.The vertical elliptical annular fin may even contain a higher heat transfer performance over circular fin.Correlations are proposed to estimate the Nu number and pressure drop based on the annular circular fin.The maximum deviations between the proposed correlations and simulations regarding pressure drop and heat transfer coefficient are 5.6%and 3.2%,respectively.For further elaboration of the superiority of the elliptical layout from the second law perspective,normalized entropy generation was also studied.In all cases,the entropy generation rate in circular fin was higher than that of an elliptical fin.展开更多
Using rolling-ploughing-extrusion compound processing methods,a 3D integral-fin structure on outside surface of red copper tube with diameter of 16.0 mm and wall thickness of 1.5 mm was obtained. When both rolling dep...Using rolling-ploughing-extrusion compound processing methods,a 3D integral-fin structure on outside surface of red copper tube with diameter of 16.0 mm and wall thickness of 1.5 mm was obtained. When both rolling depth and ploughing-extrusion(P-E) depth were 0.2 mm,rotating speed was 50 r/min,feed speed was 0.16 mm/r,3D fin structures with height of 0.25 mm were gotten. Two different fin structures were obtained in grooves formed with rolling-ploughing-extrusion compound forming technology and observed by scanning electron microscope(SEM). One is the compound structure with V-shaped groove and U-shaped groove,and the other is the single structure with V-shaped grooves. Two kinds of groove structures obtained by rolling processing and ploughing extrusion processing are restricted together by groove interval and rolling depth,and pitch and P-E depth,respectively. Based on the analysis of interaction of rolling and P-E processing,it is found from the result that the outside 3D integral-fin can be achieved by rolling-ploughing-extrusion compound processing when single V-shaped groove structures are formed by both rolling and P-E processing.展开更多
The outside serrated integral-fin tubes fabricated by rolling-plowing-extrusion processing were surface-treated through different processes of annealing in hydrogen atmosphere,electrochemical corrosion or sandblasting...The outside serrated integral-fin tubes fabricated by rolling-plowing-extrusion processing were surface-treated through different processes of annealing in hydrogen atmosphere,electrochemical corrosion or sandblasting.The purpose was to eliminate residual stress,clear secondary micro-fins and enhance heat transfer performance.By comparing the surface characteristics,it is found that the finned tubes treated by electrochemical corrosion have the most glabrous surfaces where the fins are almost perfectly reserved.Clear layer cracks can be observed on the top of the fins.These structures are effective in enhancing heat transfer performance when being applied to flow heat exchange.Therefore,the finned tubes treated by electrochemical corrosion are proper for the tubular exchanger with water coolant.The finned tubes treated by sandblasting have rougher surfaces with layer cracks and micro gaps removed.As these structures are useful to clearing adhesive feculence,the tubes are more suitable for the tubular heat exchanger with oil coolant.展开更多
Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with pre...Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.展开更多
Plowing-extruding tool was designed and plowing-extruding process was investigated.Then,a manufacturing method of integral serrated high-finned tube,plowing-extruding based on variational feed was proposed,in which pl...Plowing-extruding tool was designed and plowing-extruding process was investigated.Then,a manufacturing method of integral serrated high-finned tube,plowing-extruding based on variational feed was proposed,in which plowing-extruding tool moved forward at two different feeds,f1 and f2,in turn.In this method,overlaps that are usually avoided in practical application were utilized to manufacture high fins and average height of fins was up to 1.58 mm.The critical feed(fc) of overlaps forming and terms of high fins forming were analyzed.The main technical parameters that affect the fins height were discussed.The experimental results show that the fins height increases with extruding inclination angle and plowing-extruding depth,and the fins height increases with f1 increasing when f1 is smaller than fc,and decreases with f1 increasing if f1 is larger than fc.展开更多
In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat trans...In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat transfer can be significantly reduced.Based on previous research,traditional methods for enhancing pure steam condensation may not be applicable to steam–air condensation.In the present study,new methods of enhancing condensation heat transfer were adopted and several potentially enhanced heat transfer tubes,including corrugated tubes,spiral fin tubes,and ring fin tubes were designed.STAR-CCM+was used to determine the effect of enhanced heat transfer tubes on the steam condensation heat transfer.According to the calculations,the gas pressure ranged from 0.2 to 1.6 MPa,and air mass fraction ranged from 0.1 to 0.9.The effective perturbation of the high-concentration air layer was identified as the key factor for enhancing steam–air condensation heat transfer.Further,the designed corrugated tube performed well at atmospheric pressure,with a maximum enhancement of 27.4%,and performed poorly at high pressures.In the design of spiral fin tubes,special attention should be paid to the locations that may accumulate high-concentration air.Nonetheless,the ring-fin tubes generally displayed good performance under all conditions of interest,with a maximum enhancement of 24.2%.展开更多
Stresses and axial loads acting on the mandrel in the copper rifled tube drawing process were analysed,and factors affecting on the axial loads on mandrel were discussed.Results show that the depth of the mandrel drag...Stresses and axial loads acting on the mandrel in the copper rifled tube drawing process were analysed,and factors affecting on the axial loads on mandrel were discussed.Results show that the depth of the mandrel dragged into sizing zone and lubrication have major influence on drawing loads and fin shapes.展开更多
文摘Natural convection heat transfer from annular finned tubes was studied numerically. Effects of fin spacing, temperature difference and tube diameter on flow pathlines and local heat transfer were also studied. It was shown that pathlines remain mostly circular for different geometries. Moreover, the contributions of fin periphery, fin side and bare tube to heat transfer were specified. It was shown that the heat transfer per unit area of fin periphery can be several times that of other parts. Moreover, in higher finspacing, the heat transfer from the bare tube can be more important than fin sides.
文摘This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.
基金Projects (50436010, 50375055) supported by the National Natural Science Foundation of China Project (04105942) supported by the Natural Science Foundation of Guangdong Province, China
文摘Thermal conductivity of frost is not only related to density, but also affected by its microstructure and environmental conditions, and it will continuously change with the formation and growth of frost. Images of frost formation and growth on the cryogenic surface in various shapes at different stages were obtained by experimental measurements, and a numerical simulation of frost formation and growth was carried out based on Diffusion Limited Aggregation (DLA) model of fractal theory in this paper. Based on the frost structure obtained by experiment, the fractal dimension of pore area distribution and porosity of frost layer on the cryogenic finned-tube?vaporizer were calculated by using fractal method, and combined with heat conduction model of frost layer obtained by thermal resistance method, the thermal conductivity of frost on the cryogenic surface was calculated. The result shows that the thermal conductivity calculated by the fractal model coincides with the range of the experimental data. Additionally, comparison with other heat conduction models indicated that it is feasible to introduce the fractal dimension of pore area distribution into heat conduction model to deduce the thermal conductivity of frost.
文摘In this paper, the standard k-ε two-equation model is adopted to numerically simulate fully developed fluid flow and heat transfer in a spiral finned tube within a cracking furnace for ethylene manufacturing. By variable transformation, the original 3-D problem is converted into a 2-D problem in spiral coordinates. The algorithm of SIMPLEC is used to study the fully developed fluid flow and heat transfer in the spiral finned tube at constant periphery temperature and constant axial heat flux. The computed results agree pretty well with the experimental data obtained from the industry. Further studies on the fluid flows and temperature profiles at different Reynolds numbers within straight and spiral finned tubes are conducted and the mechanisms involved are explored. It is found that with the spiral finned tube, pressure drop increases to a great extent whereas heat transfer tends to be decreased.
基金Projects(51205072,51275099)supported by the National Natural Science Foundation of ChinaProjects(S2013010013469,S2011040004110)supported by the Natural Science Foundation of Guangdong Province,China+1 种基金Projects(Yq2013127,2013KJCX0143)supported by Research Program of Guangdong Province UniversityProject(2012A083)supported by Guangzhou Prefecture University Research Program,China
文摘To improve heat-transfer performance, a novel integral three-dimensional fin-structure on the plat surface was presented to increase the evaporation efficiency. The three-dimensional fin-structure is composed of a spiral micro-groove and multi radial micro-grooves. Both ploughing-extrusion(P-E) and stamping were used to form the integral-fins with a connection between radial and circumferential directions. Based on the SEM results, the relationships among P-E speed v P-E, rotational speed np and feed fp, and among interference length Li, stamping feed angle θc and stamping depth ac were analyzed. The effects of processing parameters on the groove morphology and the matching relationship between parameters were also discussed. The integral finned surface with micro-grooves and cracks can be obtained under such processing conditions: P-E depth ap=0.3 mm, ac=0.3 mm, the interval of helical groove dp=1.24 mm, θc=2° and np=50 r/min.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CBA00604)
文摘In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanisms, such as the acoustic and optical phonon scattering, the ionized impurity scattering, the impact ionization scattering and the surface roughness scattering are considered in our simulator. The effects of the substrate bias and the surface roughness scattering near the Si/SiO2 interface on the performance of bulk FinFET are mainly discussed in our work. Our results show that the on-current of bulk FinFET is sensitive to the surface roughness and that we can reduce the substrate leakage current by modulating the substrate bias voltage.
文摘The mechanism of pre roll ploughing for 3D fins on the outside surface of copper tube was studied systematically, and especially the process and conditions of 3D fin formation were analyzed. The right mathematical model was also established. Based on the volume of fin ploughed out is equal to the volume of the metal extruded up by the extruding face of the tool, the relations between fin height, pre roll ploughing feed and pre roll ploughing depth have been achieved. With the increase of pre roll ploughing depth which must be equal to groove depth, the fin height gradually becomes larger. There are different critical feeds with the various depths of pre roll ploughing. The pre roll ploughing feed is the critical one, the height of fin is largest. And when the feed is above the critical one, the fin height will reduce with the increase of feed. The theoretical analysis basically accords with experimental results.
文摘In this study,thermo-fluid characteristics of elliptical annular finned tube heat exchanger were numerically studied in detail.Transition SST model was utilized to simulate turbulent flow.Effects of air velocities,horizontal to vertical fin diameter ratios,and fin densities were examined in detail.The simulations indicate superior performance of elliptical fin layout.It was shown that pressure drop of annular elliptical fin can be only one half of that of a circular annular fin while containing comparable heat transfer performance.The vertical elliptical annular fin may even contain a higher heat transfer performance over circular fin.Correlations are proposed to estimate the Nu number and pressure drop based on the annular circular fin.The maximum deviations between the proposed correlations and simulations regarding pressure drop and heat transfer coefficient are 5.6%and 3.2%,respectively.For further elaboration of the superiority of the elliptical layout from the second law perspective,normalized entropy generation was also studied.In all cases,the entropy generation rate in circular fin was higher than that of an elliptical fin.
基金Projects(50436010, 50675070) supported by the National Natural Science Foundation of ChinaProject(07118064) supported by the Natural Science Foundation of Guangdong Province, China
文摘Using rolling-ploughing-extrusion compound processing methods,a 3D integral-fin structure on outside surface of red copper tube with diameter of 16.0 mm and wall thickness of 1.5 mm was obtained. When both rolling depth and ploughing-extrusion(P-E) depth were 0.2 mm,rotating speed was 50 r/min,feed speed was 0.16 mm/r,3D fin structures with height of 0.25 mm were gotten. Two different fin structures were obtained in grooves formed with rolling-ploughing-extrusion compound forming technology and observed by scanning electron microscope(SEM). One is the compound structure with V-shaped groove and U-shaped groove,and the other is the single structure with V-shaped grooves. Two kinds of groove structures obtained by rolling processing and ploughing extrusion processing are restricted together by groove interval and rolling depth,and pitch and P-E depth,respectively. Based on the analysis of interaction of rolling and P-E processing,it is found from the result that the outside 3D integral-fin can be achieved by rolling-ploughing-extrusion compound processing when single V-shaped groove structures are formed by both rolling and P-E processing.
基金Projects(50675070,50930005) supported by the National Natural Science Foundation of ChinaProject(U0834002) supported by the Natural Science Foundation of Guangdong Province,China
文摘The outside serrated integral-fin tubes fabricated by rolling-plowing-extrusion processing were surface-treated through different processes of annealing in hydrogen atmosphere,electrochemical corrosion or sandblasting.The purpose was to eliminate residual stress,clear secondary micro-fins and enhance heat transfer performance.By comparing the surface characteristics,it is found that the finned tubes treated by electrochemical corrosion have the most glabrous surfaces where the fins are almost perfectly reserved.Clear layer cracks can be observed on the top of the fins.These structures are effective in enhancing heat transfer performance when being applied to flow heat exchange.Therefore,the finned tubes treated by electrochemical corrosion are proper for the tubular exchanger with water coolant.The finned tubes treated by sandblasting have rougher surfaces with layer cracks and micro gaps removed.As these structures are useful to clearing adhesive feculence,the tubes are more suitable for the tubular heat exchanger with oil coolant.
基金supported by the National Natural Science Foundation of China(91963202,52072372,52372241,52232007,12325203)HFIPS Director’s Fund(BJPY2023A07,YZJJ-GGZX-2022-01).
文摘Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.
基金Project(50605023) supported by the National Natural Science Foundation of China
文摘Plowing-extruding tool was designed and plowing-extruding process was investigated.Then,a manufacturing method of integral serrated high-finned tube,plowing-extruding based on variational feed was proposed,in which plowing-extruding tool moved forward at two different feeds,f1 and f2,in turn.In this method,overlaps that are usually avoided in practical application were utilized to manufacture high fins and average height of fins was up to 1.58 mm.The critical feed(fc) of overlaps forming and terms of high fins forming were analyzed.The main technical parameters that affect the fins height were discussed.The experimental results show that the fins height increases with extruding inclination angle and plowing-extruding depth,and the fins height increases with f1 increasing when f1 is smaller than fc,and decreases with f1 increasing if f1 is larger than fc.
基金supported by the National Key R&D Program of China(No. 2020YFB1901405)
文摘In loss-of-coolant accidents,a passive containment heat removal system protects the integrity of the containment by condensing steam.As a large amount of air exists in the containment,the steam condensation heat transfer can be significantly reduced.Based on previous research,traditional methods for enhancing pure steam condensation may not be applicable to steam–air condensation.In the present study,new methods of enhancing condensation heat transfer were adopted and several potentially enhanced heat transfer tubes,including corrugated tubes,spiral fin tubes,and ring fin tubes were designed.STAR-CCM+was used to determine the effect of enhanced heat transfer tubes on the steam condensation heat transfer.According to the calculations,the gas pressure ranged from 0.2 to 1.6 MPa,and air mass fraction ranged from 0.1 to 0.9.The effective perturbation of the high-concentration air layer was identified as the key factor for enhancing steam–air condensation heat transfer.Further,the designed corrugated tube performed well at atmospheric pressure,with a maximum enhancement of 27.4%,and performed poorly at high pressures.In the design of spiral fin tubes,special attention should be paid to the locations that may accumulate high-concentration air.Nonetheless,the ring-fin tubes generally displayed good performance under all conditions of interest,with a maximum enhancement of 24.2%.
文摘Stresses and axial loads acting on the mandrel in the copper rifled tube drawing process were analysed,and factors affecting on the axial loads on mandrel were discussed.Results show that the depth of the mandrel dragged into sizing zone and lubrication have major influence on drawing loads and fin shapes.