Preliminary characterization of bound extracellular polymeric substances(bEPS) of cyanobacteria is crucial to obtain a better understanding of the formation mechanism of cyanobacterial bloom. However,the characteriz...Preliminary characterization of bound extracellular polymeric substances(bEPS) of cyanobacteria is crucial to obtain a better understanding of the formation mechanism of cyanobacterial bloom. However,the characterization of bEPS can be affected by extraction methods. Five sets(including the control) of bEPS from Microcystis extracted by different methods were characterized using three-dimensional excitation and emission matrix(3DEEM) fluorescence spectroscopy combined chemical spectrophotometry; and the characterization results of bEPS samples were further compared. The agents used for extraction were NaOH,pure water and phosphate buffered saline(PBS) containing cationic exchange resins,and hot water. Extraction methods affected the fluorescence signals and intensities in the bEPS. Five fluorescence peaks were observed in the excitation and emission matrix fluorescence spectra of bEPS samples. Two peaks(peaks T1 and T2) present in all extractions were identified as protein-like fluorophores,two(peaks A and C) as humic-like fluorophores,and one(peak E) as a fulvic-like substance.Among these substances,the humic-like and fulvic-like fluorescences were only seen in the bEPS extracted with hot water. Also,NaOH solution extraction could result in strong fluorescence intensities compared to the other extraction methods. It was suggested that NaOH at pH 10.0 was the most appropriate method to extract bEPS from Microcystis. In addition,dialysis could affect the yields and characteristics of extracted bEPS during the determination process. These results will help us to explore the issues of cyanobacterial blooms.展开更多
As the biggest inter-basin water transfer scheme in the world,the South-to-North Water Diversion Project(SNWD) was designed to alleviate the water crisis in North China.The main channel of the middle route of the SNWD...As the biggest inter-basin water transfer scheme in the world,the South-to-North Water Diversion Project(SNWD) was designed to alleviate the water crisis in North China.The main channel of the middle route of the SNWD is of great concern in terms of the drinking water quality.In this study,we tested the hypothesis that the dissolved organic matter(DOM) derived from the planktonic algae causes the rising levels of COD_(Mn) along the middle route by monitoring data on water quality(2015-2019,monthly resolution).The results showed that algal density in the main channel increased along the channel and was significantly correlated with COD_(Mn)(p <0.01).Five fluorescent components of DOM,including tyrosine-like(14.85%),tryptophan-like(22.48%),microbial byproduct-like(26.34%),fulvic acid-like(11.41%),and humic acid-like(24.92%) components,were detected.The level of tyrosine-like components increased along the channel and was significantly correlated with algal density(p<0.01),indicating that algae significantly changed the level of DOM in the channel.Algal decomposition and metabolism were found to be the main mechanisms that drive the changes in COD_(Mn).Therefore,controlling algal density would be an important measure to prevent further increase in CODMn and for the guarantee of excellent water quality.展开更多
基金supported by the Natural Scientific Foundation of China (Nos.40825004,40971252,41301544)the Water Pollution Control and Management Project (No.2012ZX07101-010)the Shandong Province Natural Science Foundation of China (No.ZR2012DQ003)
文摘Preliminary characterization of bound extracellular polymeric substances(bEPS) of cyanobacteria is crucial to obtain a better understanding of the formation mechanism of cyanobacterial bloom. However,the characterization of bEPS can be affected by extraction methods. Five sets(including the control) of bEPS from Microcystis extracted by different methods were characterized using three-dimensional excitation and emission matrix(3DEEM) fluorescence spectroscopy combined chemical spectrophotometry; and the characterization results of bEPS samples were further compared. The agents used for extraction were NaOH,pure water and phosphate buffered saline(PBS) containing cationic exchange resins,and hot water. Extraction methods affected the fluorescence signals and intensities in the bEPS. Five fluorescence peaks were observed in the excitation and emission matrix fluorescence spectra of bEPS samples. Two peaks(peaks T1 and T2) present in all extractions were identified as protein-like fluorophores,two(peaks A and C) as humic-like fluorophores,and one(peak E) as a fulvic-like substance.Among these substances,the humic-like and fulvic-like fluorescences were only seen in the bEPS extracted with hot water. Also,NaOH solution extraction could result in strong fluorescence intensities compared to the other extraction methods. It was suggested that NaOH at pH 10.0 was the most appropriate method to extract bEPS from Microcystis. In addition,dialysis could affect the yields and characteristics of extracted bEPS during the determination process. These results will help us to explore the issues of cyanobacterial blooms.
基金This research was financially supported by the National Natural Science Foundation of China(No.U2040210)the National Key R&D Program(Nos.2019YFC0408904,2019YFC0408901).
文摘As the biggest inter-basin water transfer scheme in the world,the South-to-North Water Diversion Project(SNWD) was designed to alleviate the water crisis in North China.The main channel of the middle route of the SNWD is of great concern in terms of the drinking water quality.In this study,we tested the hypothesis that the dissolved organic matter(DOM) derived from the planktonic algae causes the rising levels of COD_(Mn) along the middle route by monitoring data on water quality(2015-2019,monthly resolution).The results showed that algal density in the main channel increased along the channel and was significantly correlated with COD_(Mn)(p <0.01).Five fluorescent components of DOM,including tyrosine-like(14.85%),tryptophan-like(22.48%),microbial byproduct-like(26.34%),fulvic acid-like(11.41%),and humic acid-like(24.92%) components,were detected.The level of tyrosine-like components increased along the channel and was significantly correlated with algal density(p<0.01),indicating that algae significantly changed the level of DOM in the channel.Algal decomposition and metabolism were found to be the main mechanisms that drive the changes in COD_(Mn).Therefore,controlling algal density would be an important measure to prevent further increase in CODMn and for the guarantee of excellent water quality.