期刊文献+
共找到2,809篇文章
< 1 2 141 >
每页显示 20 50 100
Three-dimensional turbulent model of heat transfer and fluid flow in GTAW process 被引量:1
1
作者 董志波 徐艳利 +3 位作者 魏艳红 马瑞 王淑娟 翟国富 《China Welding》 EI CAS 2010年第2期23-27,共5页
A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy f... A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy force, lorentz force and marangni force as the driving forces of thefluidflow in the weld pool. The material properties are functions of temperature in this model. The simulated results show that the molten metal flowing outward is mainly caused by the marangoni convection, which makes the weld pool become wider and shallower. The comparison of the weld pool shape of SUS310 and SUS316 shows that the slight differences of the value of thermal conductivity mainly attributes to the difference of the weld pool shape and the distinction of heat transport in laminar and turbulent model makes large diversity in the simulated results. 展开更多
关键词 heat transfer fluid flow GTAW K-ε turbulent fluid flow model
下载PDF
Radiative heat transfer analysis of a concave porous fin under the local thermal non-equilibrium condition:application of the clique polynomial method and physics-informed neural networks
2
作者 K.CHANDAN K.KARTHIK +3 位作者 K.V.NAGARAJA B.C.PRASANNAKUMARA R.S.VARUN KUMAR T.MUHAMMAD 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1613-1632,共20页
The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surfa... The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surface are modeled,and then are nondimensionalized by suitable dimensionless terms.Further,the obtained nondimensional equations are solved by the clique polynomial method(CPM).The effects of several dimensionless parameters on the fin's thermal profiles are shown by graphical illustrations.Additionally,the current study implements deep neural structures to solve physics-governed coupled equations,and the best-suited hyperparameters are attained by comparison with various network combinations.The results of the CPM and physicsinformed neural network(PINN)exhibit good agreement,signifying that both methods effectively solve the thermal modeling problem. 展开更多
关键词 heat transfer FIN porous fin local thermal non-equilibrium(LTNE)model physics-informed neural network(PINN)
下载PDF
Numerical Analysis on Temperature Distribution in a Single Cell of PEFC Operated at Higher Temperature by1D Heat Transfer Model and 3D Multi-Physics Simulation Model
3
作者 Akira Nishimura Kyohei Toyoda +1 位作者 Daiki Mishima Eric Hu 《Energy and Power Engineering》 CAS 2023年第5期205-227,共23页
This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interf... This study is to understand the impact of operating conditions, especially initial operation temperature (T<sub>ini</sub>) which is set in a high temperature range, on the temperature profile of the interface between the polymer electrolyte membrane (PEM) and the catalyst layer at the cathode (i.e., the reaction surface) in a single cell of polymer electrolyte fuel cell (PEFC). A 1D multi-plate heat transfer model based on the temperature data of the separator measured using the thermograph in a power generation experiment was developed to evaluate the reaction surface temperature (T<sub>react</sub>). In addition, to validate the proposed heat transfer model, T<sub>react</sub> obtained from the model was compared with that from the 3D numerical simulation using CFD software COMSOL Multiphysics which solves the continuity equation, Brinkman equation, Maxwell-Stefan equation, Butler-Volmer equation as well as heat transfer equation. As a result, the temperature gap between the results obtained by 1D heat transfer model and those obtained by 3D numerical simulation is below approximately 0.5 K. The simulation results show the change in the molar concentration of O<sub>2</sub> and H<sub>2</sub>O from the inlet to the outlet is more even with the increase in T<sub>ini</sub> due to the lower performance of O<sub>2</sub> reduction reaction. The change in the current density from the inlet to the outlet is more even with the increase in T<sub>ini</sub> and the value of current density is smaller with the increase in T<sub>ini </sub>due to the increase in ohmic over-potential and concentration over-potential. It is revealed that the change in T<sub>react</sub> from the inlet to the outlet is more even with the increase in T<sub>ini</sub> irrespective of heat transfer model. This is because the generated heat from the power generation is lower with the increase in T<sub>ini </sub>due to the lower performance of O<sub>2</sub> reduction reaction. 展开更多
关键词 PEFC heat transfer model Temperature Distribution Numerical Simulation High Temperature Operation
下载PDF
Exact analytical solution to three-dimensional phase change heat transfer problems in biological tissues subject to freezing
4
作者 李方方 刘静 乐恺 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第1期63-72,共10页
Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green func... Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green function method are introduced to deal with the cryopreservation process of in vitro biomaterials. Exact solutions for the 3-D temperature transients of tissues under various boundary conditions, such as totally convective cooling, totally fixed temperature cooling and a hybrid between them on tissue surfaces, are obtained. Furthermore, the cryosurgical process in living tissues subject to freezing by a single or multiple cryoprobes is also analytically solved. A closed-form analytical solution to the bioheat phase change process is derived by considering contributions from blood perfusion heat transfer, metabolic heat generation, and heat sink of a cryoprobe. The present method is expected to have significant value for analytically solving complex bioheat transfer problems with phase change. 展开更多
关键词 three-dimensional phase change heat transfer problem CRYOSURGERY CRYOPRESERVATION moving heat source model bioheat transfer Green's function analytical solution
下载PDF
Heat transfer model for microwave hot in-place recycling of asphalt pavements 被引量:3
5
作者 孙铜生 史金飞 朱松青 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期59-63,共5页
In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of uns... In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements. 展开更多
关键词 asphalt pavements microwave hot in-place recycling heat transfer model boundary condition intensity of radiation electric field microwave heating experiment
下载PDF
HEAT TRANSFER MODEL OF A DROPLET IN AN IMMISCIBLE LIQUID 被引量:1
6
作者 张鹏 王一平 +1 位作者 张金利 王琨 《Transactions of Tianjin University》 EI CAS 2001年第1期52-55,共4页
The heat transfer of the dispersed droplets of a volatile liquid sprayed upward in an immiscible continuous-phase liquid in a vertical tube are analyzed for an n-pentane-water system.According to the definition of the... The heat transfer of the dispersed droplets of a volatile liquid sprayed upward in an immiscible continuous-phase liquid in a vertical tube are analyzed for an n-pentane-water system.According to the definition of the turbulent film heat transfer coefficient based on a surface area of a spherical two-phase droplet,a heat transfer model of a droplet in an immiscible liquid is developed.Making use of the volumetric heat transfer coefficient derived under taking into account the fragmentation of the two-phase droplet,the parameters in the model are determined by the theoretical analysis and the experimental research. 展开更多
关键词 direct-contact heat transfer heat transfer coefficient model
全文增补中
Modelling Study to Compare the Flow and Heat Transfer Characteristics of Low-Power Hydrogen,Nitrogen and Argon Arc-Heated Thrusters 被引量:5
7
作者 王海兴 陈熙 +3 位作者 潘文霞 A.B.MURPHY 耿金越 贾少霞 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第6期692-701,共10页
A modelling study is performed to compare the plasma flow and heat transfer characteristics of low-power arc-heated thrusters (arcjets) for three different propellants: hydrogen, nitrogen and argon. The all-speed S... A modelling study is performed to compare the plasma flow and heat transfer characteristics of low-power arc-heated thrusters (arcjets) for three different propellants: hydrogen, nitrogen and argon. The all-speed SIMPLE algorithm is employed to solve the governing equations, which take into account the effects of compressibility, Lorentz force and Joule heating, as well as the temperature- and pressure-dependence of the gas properties. The temperature, velocity and Mach number distributions calculated within the thruster nozzle obtained with different propellant gases are compared for the same thruster structure, dimensions, inlet-gas stagnant pressure and arc currents. The temperature distributions in the solid region of the anode-nozzle wall are also given. It is found that the flow and energy conversion processes in the thruster nozzle show many similar features for all three propellants. For example, the propellant is heated mainly in the near-cathode and constrictor region, with the highest plasma temperature appearing near the cathode tip; the flow transition from the subsonic to supersonic regime occurs within the constrictor region; the highest axial velocity appears inside the nozzle; and most of the input propellant flows towards the thruster exit through the cooler gas region near the anode-nozzle wall. However, since the properties of hydrogen, nitrogen and argon, especially their molecular weights, specific enthMpies and thermal conductivities, are different, there are appreciable differences in arcjet performance. For example, compared to the other two propellants, the hydrogen arcjet thruster shows a higher plasma temperature in the arc region, and higher axial velocity but lower temperature at the thruster exit. Correspondingly, the hydrogen arcjet thruster has the highest specific impulse and arc voltage for the same inlet stagnant pressure and arc current. The predictions of the modelling are compared favourably with available experimental results. 展开更多
关键词 low-power arcjet plasma flow and heat transfer numerical modelling propellant-type effects
下载PDF
Establishment and Application of UFC-ACC Heat Transfer Coefficient Model 被引量:3
8
作者 Tian-Liang Fu Zhao-Dong Wang +2 位作者 Yong Li Jia-Dong Li Guo-Dong Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第2期57-62,共6页
Based on medium plate runout table ultra-fast cooling( UFC)-accelerated cooling equipment( ACC) system,a heat transfer coefficient model was constructed. Firstly,according to the measured data,heat transfer coefficien... Based on medium plate runout table ultra-fast cooling( UFC)-accelerated cooling equipment( ACC) system,a heat transfer coefficient model was constructed. Firstly,according to the measured data,heat transfer coefficients under different roll speed and water volume were calculated by using an inverse heat conduction method. Secondly,a monofactorial heat transfer coefficient calculation formula was obtained. Finally,the heat transfer coefficient model based on medium plate runout table UFC-ACC system was constructed by intercept function,slope function,interaction influence function and linear or nonlinear influencing factors. The precision of these models was validated by comparing model prediction value with measured data,and the results were in good agreement with practical needs,and the average deviation was less than 5%. 展开更多
关键词 medium plate ultra-fast cooling heat transfer coefficient mathematical model
下载PDF
Coupled Transfer of Water and Heat in Red Soil: Experiment and Numerical Modelling 被引量:4
9
作者 HANXIAOFEI LUJUN 《Pedosphere》 SCIE CAS CSCD 2001年第2期123-130,共8页
Coupled transfer of soil water and heat in closed columns of homogeneous red soil was studied under laboratory conditions. A coupled model was constructed using soil physical theory, empirical equations and experiment... Coupled transfer of soil water and heat in closed columns of homogeneous red soil was studied under laboratory conditions. A coupled model was constructed using soil physical theory, empirical equations and experimental data to predict the coupled transfer. The results show that transport of soil water was affected by temperature gradient, and the largest net water transport was found in the soil column with initial water content of 0.148 m3 m-3. At the same time, temperature changes with the transport of soil water was in a nonlinear shape as heat parameters were function of water content, and the changes of temperature were positively correlated with the net amount of water transported. Numerical modelling results show that the predicted values of temperature distribution were close to the observed values, while the predicted values of water content exhibited limited deviation at both ends of the soil column due to the slight temperature changes at both ends. It was indicated that the model proposed here was applicable. 展开更多
关键词 coupled transfer of water and heat numerical modelling red soil
下载PDF
A coupled model on fluid flow,heat transfer and solidification in continuous casting mold 被引量:2
10
作者 Xu-bin Zhang Wei Chen Li-feng Zhang 《China Foundry》 SCIE 2017年第5期416-420,共5页
Fluid flow, heat transfer and solidification of steel in the mold are so complex but crucial, determining the surface quality of the continuous casting slab. In the current study, a 2D numerical model was established ... Fluid flow, heat transfer and solidification of steel in the mold are so complex but crucial, determining the surface quality of the continuous casting slab. In the current study, a 2D numerical model was established by Fluent software to simulate the fluid flow, heat transfer and solidification of the steel in the mold. The VOF model and k-ε model were applied to simulate the flow field of the three phases(steel, slag and air), and solidification model was used to simulate the solidification process. The phenomena at the meniscus were also explored through interfacial tension between the liquid steel and slag as well as the mold oscillation. The model included a 20 mm thick mold to clarify the heat transfer and the temperature distribution of the mold. The simulation results show that the liquid steel flows as upper backflow and lower backflow in the mold, and that a small circulation forms at the meniscus. The liquid slag flows away from the corner at the meniscus or infiltrates into the gap between the mold and the shell with the mold oscillating at the negative strip stage or at the positive strip stage. The simulated pitch and the depth of oscillation marks approximate to the theoretical pitch and measured depth on the slab. 展开更多
关键词 continuous casting heat transfer SOLIDIFICATION VOF model meniscus shape MOLD
下载PDF
Heat Transfer and Flow Characteristics Predictions with a Refined k-ε-f_u Turbulent Model in Impinging Jet 被引量:1
11
作者 Qinglin Niu Biao Chen +2 位作者 Zhihong He Jianfei Tong Shikui Dong 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第4期9-17,共9页
Local heat transfer and flow characteristics in a round turbulent impinging jet for Re≈23 000 is predicted numerically with the RANS approach and a k-ε-fu turbulence model. The heat transfer predictions and turbulen... Local heat transfer and flow characteristics in a round turbulent impinging jet for Re≈23 000 is predicted numerically with the RANS approach and a k-ε-fu turbulence model. The heat transfer predictions and turbulence parameters are verified against the axis-symmetric free jet impingement measurements and compared with previous other turbulence models, and results show the k-ε-fu model has a good performance in predictions of the local wall heat transfer coefficient, and in agreement with measurements in mean velocity profiles at different radial positions as well. The numerical model is further used to examine the effect of the fully confined impingement jet on the local Nusselt number. Local Nusselt profiles in x and y-centerlines for the target plate over three separation distances are predicted. Compared with the experimental data, the numerical results are accurate in the central domain around the stagnation region and present a consistent structure distribution. 展开更多
关键词 heat transfer IMPINGEMENT flow k-ε-fu TURBULENCE model Nusselt NUMBER
下载PDF
Heat-transfer model on the improvement of continuous casting slab temperature 被引量:1
12
作者 HongmingWang GuirongLi JunjieWang 《Journal of University of Science and Technology Beijing》 CSCD 2004年第1期18-22,共5页
A heat transfer model on the solidification process has been established onthe basis of the technical conditions of the slab caster in No.3 steel works of Wuhan Iron & SteelCorporation, and the temperature field i... A heat transfer model on the solidification process has been established onthe basis of the technical conditions of the slab caster in No.3 steel works of Wuhan Iron & SteelCorporation, and the temperature field in the solidifying slab was calculated which was verified bythe measured slab surface temperature. The influences of the main operating factors includingcasting speed, spray cooling patterns, superheat of melt and slab size on the solidification processwere analyzed and the means of enhancing the slab temperature was brought forward. Raising thecasting speed to 1.3 m/min, controlling the flowrate of secondary cooling water and improving thecooling pattern at the lower segments of secondary cooling zone could improve the slab temperatureeffectively. And the increasing the superheat is adverse to the production of high temperature slab. 展开更多
关键词 heat transfer continuous casting SLAB SOLIDIFICATION mathematical model
下载PDF
Modelling Study on the Plasma Flow and Heat Transfer in a Laminar Arc Plasma Torch Operating at Atmospheric and Reduced Pressure 被引量:1
13
作者 王海兴 陈熙 潘文霞 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第2期163-170,共8页
A modelling study is performed to investigate the characteristics of both plasma flow and heat transfer of a laminar non-transferred arc argon plasma torch operated at atmospheric and reduced pressure. It is found tha... A modelling study is performed to investigate the characteristics of both plasma flow and heat transfer of a laminar non-transferred arc argon plasma torch operated at atmospheric and reduced pressure. It is found that the calculated flow fields and temperature distributions are quite similar for both cases at a chamber pressure of 1.0 atm and 0.1 atm. A fully developed flow regime could be achieved in the arc constrictor-tube between the cathode and the anode of the plasma torch at 1.0 atm for all the flow rates covered in this study. However the flow field could not reach the fully developed regime at 0.1 atm with a higher flow rate. The arc-root is always attached to the torch anode surface near the upstream end of the anode, i.e. the abruptly expanded part of the torch channel, which is in consistence with experimental observation. The surrounding gas would be entrained from the torch exit into the torch interior due to a comparatively large inner diameter of the anode channel compared to that of the arc constrictor-tube. 展开更多
关键词 non-transferred arc torch plasma flow and heat transfer numerical modelling
下载PDF
A Two-Layer Model for Superposed Electrified Maxwell Fluids in Presence of Heat Transfer 被引量:1
14
作者 Kadry Zakaria Magdy A. Sirwah Sameh A. Alkharashi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第6期1077-1094,共18页
Based on a modified-Darcy-Maxwell model, two-dimensional, incompressible and heat transfer flow of two bounded layers, through electrified Maxwell fluids in porous media is performed. The driving force for the instabi... Based on a modified-Darcy-Maxwell model, two-dimensional, incompressible and heat transfer flow of two bounded layers, through electrified Maxwell fluids in porous media is performed. The driving force for the instability under an electric field, is an electrostatic force exerted on the free charges accumulated at the dividing interface. Normal mode analysis is considered to study the linear stability of the disturbances layers. The solutions of the linearized equations of motion with the boundary conditions lead to an implicit dispersion relation between the growth rate and wave number. These equations are parameterized by Weber number, Reynolds number, Marangoni number, dimensionless conductivities, and dimensionless electric potentials. The case of long waves interfaciaJ stability has been studied. The stability criteria are performed theoreticaily in which stability diagrams are obtained. In the limiting cases, some previously published results can be considered as particular cases of our results. It is found that the Reynolds number plays a destabilizing role in the stability criteria, while the damping influence is observed for the increasing of Marangoni number and Maxwell relaxation time. 展开更多
关键词 modified-Darcy-Maxwell model two layers stability heat transfer surface charges porous media
下载PDF
Surface-particle-emulsion heat transfer model between fluidized bed and horizontal immersed tube 被引量:1
15
作者 PingWu XuFeng 《Journal of University of Science and Technology Beijing》 CSCD 2002年第2期99-103,共5页
A mathematical model, surface-particle-emulsion heat transfer model, ispresented by considering voidage variance in emulsion in the vicinity of an immersed surface. Heattransfer near the surface is treated by disperse... A mathematical model, surface-particle-emulsion heat transfer model, ispresented by considering voidage variance in emulsion in the vicinity of an immersed surface. Heattransfer near the surface is treated by dispersed particles touching the surface and through theemulsion when the distance from the surface is greater than the diameter of a particle. A film withan adjustable thickness which separates particles from the surface is not introduced in this model.The coverage ratio of particles on the surface is calculated by a stochastic model of particlepacking density on a surface. By comparison of theoretical solutions with experimental data fromsome references, the mathematical model shows better qualitative and quantitative prediction forlocal heat transfer coefficients around a horizontal immersed tube in a fluidized bed. 展开更多
关键词 fluidized bed heat transfer two-phase flow mathematical model
下载PDF
Heat transfer model of two-phase flow across tube bundle in submerged combustion vaporizer 被引量:1
16
作者 Jiajun Song Dongyan Han +2 位作者 Qinqin Xu Dan Zhou Jianzhong Yin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第3期613-619,共7页
In order to optimize the design of the submerged combustion vaporizer(SCV), an experimental apparatus was set up to investigate the heat transfer character outside the tube bundle in SCV. Several experiments were cond... In order to optimize the design of the submerged combustion vaporizer(SCV), an experimental apparatus was set up to investigate the heat transfer character outside the tube bundle in SCV. Several experiments were conducted using water and CO_2 as the heat transfer media in the tubes, respectively. The results indicated that hot air flux, the initial liquid level height and the tube pitch ratio had great influence on the heat transfer coefficient outside the tube bundle(ho). Finally, the air flux associated factor β and height associated factor γ were introduced to propose a new hocorrelation. After verified by experiments using cold water, high pressure CO_2 and liquid N_2 as heat transfer media, respectively, it was found that the biggest deviation between the predicted and the experimental values was less than 25%. 展开更多
关键词 Submerged combustion vaporizer Fluid sweeping tube bundle Two-phase flow heat transfer coefficient modeling
下载PDF
Heat Transfer Investigation and Modeling of Heat Integrated Distillation Column 被引量:1
17
作者 Fang Jing Wang Yijing +2 位作者 Su Weiyi Xuan Bihan Li Chunli 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2018年第3期96-105,共10页
The high degree of reversibility of heat integrated distillation column(HIDiC) has been thermodynamically interpreted by the entropy method. In this paper, a heat transfer model and a more universal method were propos... The high degree of reversibility of heat integrated distillation column(HIDiC) has been thermodynamically interpreted by the entropy method. In this paper, a heat transfer model and a more universal method were proposed, through which the overall heat transfer coefficient at different height of column under different operating conditions could be obtained before the experiment. Then the separation of a binary ethanol-water system was carried out experimentally as a case study to verify the heat transfer model and the aforementioned calculation method. The close results between the calculation, the simulation, and the experiments suggested that the proposed model and the calculation method in this paper were accurate and applicable. Meanwhile, it was demonstrated that the HIDiC shows obvious effect of reducing entropy increase and improving thermodynamic efficiency as compared to conventional distillation column. 展开更多
关键词 heat integrated distillation column heat transfer model separation process
下载PDF
Modeling and Simulation of Heat Transfer in Loaded Continuous Heat Treatment Furnace 被引量:2
18
作者 KANGJin-wu HUANGTian-you PURUSHOTHAMANRadhakrishnan 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第05B期764-768,共5页
Continuous furnaces are widely used in the heat treatment of mass-produced parts. However, the heating up process of parts in continuous furnace is still decided by experience. In this paper the heat transfer in the c... Continuous furnaces are widely used in the heat treatment of mass-produced parts. However, the heating up process of parts in continuous furnace is still decided by experience. In this paper the heat transfer in the continuous furnace is formulated firstly. The heat balance in each zone is discussed and equations are given. Coupled with the model for heat transfer between workpieces and furnace and the heat transfer in the workload as well presented in the former developed CHT-6/ for batch furnaces, a program CHT- for continuous furnaces was developed. The model deals with two typical movements of parts: continuous or step by step. The moving speed of parts and load pattern can be optimized based on the calculated temperature distributions and curves, especially, the fastest heated and slowest-heated temperature-distance profiles. A case study is carried out for the heat treatment of a kind of hook-shaped part. The calculated results are analyzed and in good agreement with the measured ones. 展开更多
关键词 热处理 传热 连续加热炉 建模 热平衡
下载PDF
Two-and Three-Dimensional Urban Core Determinants of the Urban Heat Island: A Statistical Approach 被引量:1
19
作者 Bumseok Chun Jean-Michel Guldmann 《Journal of Environmental Science and Engineering(B)》 2012年第3期363-378,共16页
There is no doubt that the UHI (urban heat island) is a mounting problem in built-up environments, due to the energy retention by surface dense building materials, leading to increased temperatures, air pollution, a... There is no doubt that the UHI (urban heat island) is a mounting problem in built-up environments, due to the energy retention by surface dense building materials, leading to increased temperatures, air pollution, and energy consumption. Much of the earlier research on the UHI has used two-dimensional (2-D) information, such as land uses and the distribution of vegetation. In the case of homogeneous land uses, it is possible to predict surface temperatures with reasonable accuracy with 2-D information. However, three-dimensional (3-D) information is necessary to analyze more complex sites, including dense building clusters. In this research, 3-D building geometry information is combined with 2-D urban surface information to examine the relationship between urban characteristics and temperature. The research includes the following stages: (1) estimating urban temperature; (2) developing a 3-D city model; (3) generating geometric parameters; and (4) conducting statistical analyses using both linear and non-linear regression models. The implications of the results are discussed, providing guidelines for policies aiming to reduce the UHI. 展开更多
关键词 Urban heat island urban morphology three-dimensional city model geographic information system.
下载PDF
Optimising Gas Quenching Technology through Modelling of Heat Transfer 被引量:1
20
作者 FiorentChaffotte LindaLefevre +3 位作者 DidierDomergue AymericGoidsteinas XavierDoussot QingfeiZhang 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第05B期758-763,共6页
Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet, the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching... Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet, the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. The configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology. 展开更多
关键词 气体流淬火 传热 冷却速率 热处理
下载PDF
上一页 1 2 141 下一页 到第
使用帮助 返回顶部