In this work,a facile and effective strategy to prepare three-dimensional(3D)hierarchical flower-like Mg–Al layered double hydroxides(3D-LDH)was developed via a one-step double-drop coprecipitation method usingγ-Al ...In this work,a facile and effective strategy to prepare three-dimensional(3D)hierarchical flower-like Mg–Al layered double hydroxides(3D-LDH)was developed via a one-step double-drop coprecipitation method usingγ-Al 2O 3particles as a template.The characterization and experimental results showed that the calcined product,3D-LDO,features a large specific surface area of 204.2 m^(2)/g,abundant active sites,and excellent adsorption performance for Congo red(CR),methyl orange(MO),and methyl blue(MB).The maximum adsorption capacities of 3D-LDO for CR,MO,and MB were 1428.6,476.2,and 1666.7 mg/g,respectively;such performance is superior to that of most reported adsorbents.The adsorption mechanism of organic anionic dyes by 3D-LDO was extensively investigated and attributed to surface adsorption,the memory effect of 3D-LDO,and the unique 3D hierarchical flower-like structure of the adsorbent.Recycling performance tests revealed that3D-LDO has satisfactory reusability for the three organic anionic dyes.展开更多
Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shami...Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shamir–Adleman(RSA)is presented in this paper.In the first stage,a new 3D-ILM is proposed to enhance the chaotic behavior considering analysis of time sequence,Lyapunov exponent,and Shannon entropy.In the second stage,combined with the public key RSA algorithm,a new key acquisition mathematical model(MKA)is constructed to obtain the initial keys for the 3D-ILM.Consequently,the key stream can be produced depending on the plain image for a higher security.Moreover,a novel process model(NPM)for the input of the 3D-ILM is built,which is built to improve the distribution uniformity of the chaotic sequence.In the third stage,to encrypt the plain image,a pre-process by exclusive OR(XOR)operation with a random matrix is applied.Then,the pre-processed image is performed by a permutation for rows,a downward modulo function for adjacent pixels,a permutation for columns,a forward direction XOR addition-modulo diffusion,and a backward direction XOR addition-modulo diffusion to achieve the final cipher image.Moreover,experiments show that the the proposed algorithm has a better performance.Especially,the number of pixels change rate(NPCR)is close to ideal case 99.6094%,with the unified average changing intensity(UACI)close to 33.4634%,and the information entropy(IE)close to 8.展开更多
Fenlong Technology has been applied to increase yield by 20%-50%,improve quality by 5%,and retain water by 100%in 40 kinds of crop cultivated land and saline-alkali land in 26 provinces of China.This paper clarified f...Fenlong Technology has been applied to increase yield by 20%-50%,improve quality by 5%,and retain water by 100%in 40 kinds of crop cultivated land and saline-alkali land in 26 provinces of China.This paper clarified for the first time the scientific theory system of Fenlong Technology using three-dimensional space resources"Fenlong Agricultural Nature Theory"and the development of the relative"limits"of agricultural growth,which provides a huge power support and natural force for expanding human living spaces.Through inventing and creating a scientific and technological system of farming tools,farming machinery,farming modes,and magic weapons for cultivation,Fenlong Technology can increase grain,promote ecological development,and greatly expand the living spaces of the Chinese nation and achieve sustainable development.Using Fenlong Technology,China has expanded from the current single"cultivated land agriculture"to the"big pattern agriculture"of Fenlong"cultivated land+saline land+degraded grassland+marginal land+desertified land+river water",flexibly used 147 million ha of"three-dimensional space resources"of land,and the newly increased food,meat,and fish can feed 300 million to 400 million people,increased the water storage by 100 billion m^(3),and reduced the collection of groundwater by 20 million to 60 billion m^(3).展开更多
In this paper, an investigation is made on compatibility of the video formats TV (625/50/2:1/4:3), EDTV (625/50/1:1/16:9), HDTVint (1250/50/2:1/16:9) and HDTVpro(1250/50/2:1/16:9) in three-dimensional subband coding. ...In this paper, an investigation is made on compatibility of the video formats TV (625/50/2:1/4:3), EDTV (625/50/1:1/16:9), HDTVint (1250/50/2:1/16:9) and HDTVpro(1250/50/2:1/16:9) in three-dimensional subband coding. A hierarchical method is proposed leading to a more reasonable joint solution for the issues of digital transmission evolution and interlace-to-progressive scanning conversion ill the frame work of bit rate compression. Conventional HDTVint with the diamond shaped spectrum is proposed to be replaced by a kind of 'switching'HDTVin signal which consists of three components and motion detection bits (MDB). The first component and the MDB represent TV. The first plus the second component and the MDB represent EDTV.HDTVpro is splitted into switching HDTVint and extra component. The switching threshold and the length of temporal filter banks are discussed. Rearranging the pixels in subbands is recommended. Based on the proposed method, the transmission system can evolve through four steps: TV, EDTV, HDTVint and HDTVpro Results of bit rate compression are also presented. TV, EDTV, HDTVint and HDTVpro are compressed to approximately 40, 80, 128 and 256 Mbit/s respectively. Interlace scanning has drawbacks such as line flicker and line crawling as the eye follows the line structure in the picture. Progressive version switching TV and HDTVint can be reconstructed using one frame memory without the problems of handling temporal-vertical diamond shaped spectra of conventional TV and HDTVint based on a one-frame memory algorithm in the receiver.展开更多
Optimizing the sensor energy is one of the most important concern in Three-Dimensional(3D)Wireless Sensor Networks(WSNs).An improved dynamic hierarchical clustering has been used in previous works that computes optimu...Optimizing the sensor energy is one of the most important concern in Three-Dimensional(3D)Wireless Sensor Networks(WSNs).An improved dynamic hierarchical clustering has been used in previous works that computes optimum clusters count and thus,the total consumption of energy is optimal.However,the computational complexity will be increased due to data dimension,and this leads to increase in delay in network data transmission and reception.For solving the above-mentioned issues,an efficient dimensionality reduction model based on Incremental Linear Discriminant Analysis(ILDA)is proposed for 3D hierarchical clustering WSNs.The major objective of the proposed work is to design an efficient dimensionality reduction and energy efficient clustering algorithm in 3D hierarchical clustering WSNs.This ILDA approach consists of four major steps such as data dimension reduction,distance similarity index introduction,double cluster head technique and node dormancy approach.This protocol differs from normal hierarchical routing protocols in formulating the Cluster Head(CH)selection technique.According to node’s position and residual energy,optimal cluster-head function is generated,and every CH is elected by this formulation.For a 3D spherical structure,under the same network condition,the performance of the proposed ILDA with Improved Dynamic Hierarchical Clustering(IDHC)is compared with Distributed Energy-Efficient Clustering(DEEC),Hybrid Energy Efficient Distributed(HEED)and Stable Election Protocol(SEP)techniques.It is observed that the proposed ILDA based IDHC approach provides better results with respect to Throughput,network residual energy,network lifetime and first node death round.展开更多
Mobile manipulators are used in a variety of fields because of their flexibility and maneuverability.The path planning capability of the mobile manipulator is one of the important indicators to evaluate the performanc...Mobile manipulators are used in a variety of fields because of their flexibility and maneuverability.The path planning capability of the mobile manipulator is one of the important indicators to evaluate the performance of the manipulator,but it is greatly challenged in the face of maps with narrow channel.To address the problem,an improved hierarchical motion planner(IHMP)is proposed,which consists of a two-dimensional(2D)path planner for the mobile base,and a three-dimensional(3D)trajectory planner for the on-board manipulator.Firstly,a hybrid sampling strategy is proposed,which can reduce invalid nodes of the generated probabilistic roadmap.Bridge test is used to locate the narrow channel areas,and a Gaussian sampler is deployed in these areas and the boundaries.Meanwhile,a random sampler is deployed in the rest areas.Trajectory planner for on-board manipulator is to generate a collision-free and safe trajectory in the narrow channel with collaboration of the 2D path planner.The experimental results show that IHMP is effective for mobile manipulator motion planning in complex static environments,especially in narrow channel.展开更多
在未来新型电力系统中,虚拟电厂(virtual power plant,VPP)内部多主体的可信交易和信息安全将更加复杂和具有挑战性。而区块链技术的信息安全、分布决策、智能合约及防篡改等特征,为VPP多元主体可信交易提供新思路。文中聚焦VPP内部多...在未来新型电力系统中,虚拟电厂(virtual power plant,VPP)内部多主体的可信交易和信息安全将更加复杂和具有挑战性。而区块链技术的信息安全、分布决策、智能合约及防篡改等特征,为VPP多元主体可信交易提供新思路。文中聚焦VPP内部多聚合商形成的利益最大化及可信交易匹配效率问题,首先,依据交易主体需求差异,建立区块链技术与多智能体系统融合的一主多从分层互动控制架构;其次,设计一种面向多聚合商对等交易需求下的可信交易匹配机制,引入非合作博弈模型,保证了多聚合商主体的利益;然后,基于区块链的分布式粒子群优化算法提出了改进的委托权威证明机制(delegated proof-of-authority,DPoA)共识算法,提高交易的安全性;最后,通过算例分析验证文中所提策略的合理性和可行性,该策略能有效增强多主体交易的匹配效率和安全性。展开更多
A facile synthesis of hierarchical ZSM-5 with the three-dimensionally ordered mesoporosity(3DOm ZSM-5)was achieved by solid conversion(SC)of SiO_(2)colloidal crystals to high-crystalline ZSM-5.The products of 3DZ5_S/C...A facile synthesis of hierarchical ZSM-5 with the three-dimensionally ordered mesoporosity(3DOm ZSM-5)was achieved by solid conversion(SC)of SiO_(2)colloidal crystals to high-crystalline ZSM-5.The products of 3DZ5_S/C and 3DZ5_S,which were severally transformed from the carbon-padded SiO_(2)colloidal crystals and the initial SiO_(2)colloidal crystals,exhibited not only a similar ordered structure and acidity but also higher crystallinity and more balanced meso-/micropore combination in comparison with 3DZ5_C obtained by the conventional confined space crystallization approach.All three synthesized 3DZ5 catalysts showed improved methanol-to-propylene performance than the commercially microporous ZSM-5(CZ5),embodied in five times longer lifetime,higher propylene selectivity and S_(propylene)/S_(ethylene) ratio(P/E),and superior coke toleration with lower formation rate of coke(R_(coke)).Moreover,the 3DZ5_S catalyst in situ converted from SiO_(2)colloidal crystals presented the highest selectivities of propylene(42.51%)and light olefins(74.6%)among all three 3DZ5 catalysts.The high efficiency in synthesis and in situ utilization of SiO_(2)colloidal crystals demonstrate the proposed SC strategy to be more efficiently and eco-friendly for the high-yield production of not only 3DOm ZSM-5 but also other types of hierarchical zeolites.展开更多
基金supported by the National Key R&D Program of China(No.2017YFB0602702-02)。
文摘In this work,a facile and effective strategy to prepare three-dimensional(3D)hierarchical flower-like Mg–Al layered double hydroxides(3D-LDH)was developed via a one-step double-drop coprecipitation method usingγ-Al 2O 3particles as a template.The characterization and experimental results showed that the calcined product,3D-LDO,features a large specific surface area of 204.2 m^(2)/g,abundant active sites,and excellent adsorption performance for Congo red(CR),methyl orange(MO),and methyl blue(MB).The maximum adsorption capacities of 3D-LDO for CR,MO,and MB were 1428.6,476.2,and 1666.7 mg/g,respectively;such performance is superior to that of most reported adsorbents.The adsorption mechanism of organic anionic dyes by 3D-LDO was extensively investigated and attributed to surface adsorption,the memory effect of 3D-LDO,and the unique 3D hierarchical flower-like structure of the adsorbent.Recycling performance tests revealed that3D-LDO has satisfactory reusability for the three organic anionic dyes.
基金the National Natural Science Foundation of China(Grant No.61972103)the Natural Science Foundation of Guangdong Province of China(Grant No.2023A1515011207)+3 种基金the Special Project in Key Area of General University in Guangdong Province of China(Grant No.2020ZDZX3064)the Characteristic Innovation Project of General University in Guangdong Province of China(Grant No.2022KTSCX051)the Postgraduate Education Innovation Project of Guangdong Ocean University of China(Grant No.202263)the Foundation of Guangdong Provincial Engineering and Technology Research Center of Far Sea Fisheries Management and Fishing of South China Sea.
文摘Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shamir–Adleman(RSA)is presented in this paper.In the first stage,a new 3D-ILM is proposed to enhance the chaotic behavior considering analysis of time sequence,Lyapunov exponent,and Shannon entropy.In the second stage,combined with the public key RSA algorithm,a new key acquisition mathematical model(MKA)is constructed to obtain the initial keys for the 3D-ILM.Consequently,the key stream can be produced depending on the plain image for a higher security.Moreover,a novel process model(NPM)for the input of the 3D-ILM is built,which is built to improve the distribution uniformity of the chaotic sequence.In the third stage,to encrypt the plain image,a pre-process by exclusive OR(XOR)operation with a random matrix is applied.Then,the pre-processed image is performed by a permutation for rows,a downward modulo function for adjacent pixels,a permutation for columns,a forward direction XOR addition-modulo diffusion,and a backward direction XOR addition-modulo diffusion to achieve the final cipher image.Moreover,experiments show that the the proposed algorithm has a better performance.Especially,the number of pixels change rate(NPCR)is close to ideal case 99.6094%,with the unified average changing intensity(UACI)close to 33.4634%,and the information entropy(IE)close to 8.
基金Special Fund Project for Innovation Driven Development of Guangxi(Gui Ke AA17204037)Key Science and Technology Project of Guangxi(Gui Ke AA16380017)Team Project of Guangxi Academy of Agricultural Sciences(2015YT60).
文摘Fenlong Technology has been applied to increase yield by 20%-50%,improve quality by 5%,and retain water by 100%in 40 kinds of crop cultivated land and saline-alkali land in 26 provinces of China.This paper clarified for the first time the scientific theory system of Fenlong Technology using three-dimensional space resources"Fenlong Agricultural Nature Theory"and the development of the relative"limits"of agricultural growth,which provides a huge power support and natural force for expanding human living spaces.Through inventing and creating a scientific and technological system of farming tools,farming machinery,farming modes,and magic weapons for cultivation,Fenlong Technology can increase grain,promote ecological development,and greatly expand the living spaces of the Chinese nation and achieve sustainable development.Using Fenlong Technology,China has expanded from the current single"cultivated land agriculture"to the"big pattern agriculture"of Fenlong"cultivated land+saline land+degraded grassland+marginal land+desertified land+river water",flexibly used 147 million ha of"three-dimensional space resources"of land,and the newly increased food,meat,and fish can feed 300 million to 400 million people,increased the water storage by 100 billion m^(3),and reduced the collection of groundwater by 20 million to 60 billion m^(3).
文摘In this paper, an investigation is made on compatibility of the video formats TV (625/50/2:1/4:3), EDTV (625/50/1:1/16:9), HDTVint (1250/50/2:1/16:9) and HDTVpro(1250/50/2:1/16:9) in three-dimensional subband coding. A hierarchical method is proposed leading to a more reasonable joint solution for the issues of digital transmission evolution and interlace-to-progressive scanning conversion ill the frame work of bit rate compression. Conventional HDTVint with the diamond shaped spectrum is proposed to be replaced by a kind of 'switching'HDTVin signal which consists of three components and motion detection bits (MDB). The first component and the MDB represent TV. The first plus the second component and the MDB represent EDTV.HDTVpro is splitted into switching HDTVint and extra component. The switching threshold and the length of temporal filter banks are discussed. Rearranging the pixels in subbands is recommended. Based on the proposed method, the transmission system can evolve through four steps: TV, EDTV, HDTVint and HDTVpro Results of bit rate compression are also presented. TV, EDTV, HDTVint and HDTVpro are compressed to approximately 40, 80, 128 and 256 Mbit/s respectively. Interlace scanning has drawbacks such as line flicker and line crawling as the eye follows the line structure in the picture. Progressive version switching TV and HDTVint can be reconstructed using one frame memory without the problems of handling temporal-vertical diamond shaped spectra of conventional TV and HDTVint based on a one-frame memory algorithm in the receiver.
文摘Optimizing the sensor energy is one of the most important concern in Three-Dimensional(3D)Wireless Sensor Networks(WSNs).An improved dynamic hierarchical clustering has been used in previous works that computes optimum clusters count and thus,the total consumption of energy is optimal.However,the computational complexity will be increased due to data dimension,and this leads to increase in delay in network data transmission and reception.For solving the above-mentioned issues,an efficient dimensionality reduction model based on Incremental Linear Discriminant Analysis(ILDA)is proposed for 3D hierarchical clustering WSNs.The major objective of the proposed work is to design an efficient dimensionality reduction and energy efficient clustering algorithm in 3D hierarchical clustering WSNs.This ILDA approach consists of four major steps such as data dimension reduction,distance similarity index introduction,double cluster head technique and node dormancy approach.This protocol differs from normal hierarchical routing protocols in formulating the Cluster Head(CH)selection technique.According to node’s position and residual energy,optimal cluster-head function is generated,and every CH is elected by this formulation.For a 3D spherical structure,under the same network condition,the performance of the proposed ILDA with Improved Dynamic Hierarchical Clustering(IDHC)is compared with Distributed Energy-Efficient Clustering(DEEC),Hybrid Energy Efficient Distributed(HEED)and Stable Election Protocol(SEP)techniques.It is observed that the proposed ILDA based IDHC approach provides better results with respect to Throughput,network residual energy,network lifetime and first node death round.
文摘Mobile manipulators are used in a variety of fields because of their flexibility and maneuverability.The path planning capability of the mobile manipulator is one of the important indicators to evaluate the performance of the manipulator,but it is greatly challenged in the face of maps with narrow channel.To address the problem,an improved hierarchical motion planner(IHMP)is proposed,which consists of a two-dimensional(2D)path planner for the mobile base,and a three-dimensional(3D)trajectory planner for the on-board manipulator.Firstly,a hybrid sampling strategy is proposed,which can reduce invalid nodes of the generated probabilistic roadmap.Bridge test is used to locate the narrow channel areas,and a Gaussian sampler is deployed in these areas and the boundaries.Meanwhile,a random sampler is deployed in the rest areas.Trajectory planner for on-board manipulator is to generate a collision-free and safe trajectory in the narrow channel with collaboration of the 2D path planner.The experimental results show that IHMP is effective for mobile manipulator motion planning in complex static environments,especially in narrow channel.
文摘在未来新型电力系统中,虚拟电厂(virtual power plant,VPP)内部多主体的可信交易和信息安全将更加复杂和具有挑战性。而区块链技术的信息安全、分布决策、智能合约及防篡改等特征,为VPP多元主体可信交易提供新思路。文中聚焦VPP内部多聚合商形成的利益最大化及可信交易匹配效率问题,首先,依据交易主体需求差异,建立区块链技术与多智能体系统融合的一主多从分层互动控制架构;其次,设计一种面向多聚合商对等交易需求下的可信交易匹配机制,引入非合作博弈模型,保证了多聚合商主体的利益;然后,基于区块链的分布式粒子群优化算法提出了改进的委托权威证明机制(delegated proof-of-authority,DPoA)共识算法,提高交易的安全性;最后,通过算例分析验证文中所提策略的合理性和可行性,该策略能有效增强多主体交易的匹配效率和安全性。
基金supported by the National Natural Science Foundation of China(Grant No.21978238)the Natural Science Foundation of Shaanxi Provincial Department of Education(Grant No.21JY041)the Key R&D Program of Shaanxi Province(Grant No.2024GX-YBXM-426)。
文摘A facile synthesis of hierarchical ZSM-5 with the three-dimensionally ordered mesoporosity(3DOm ZSM-5)was achieved by solid conversion(SC)of SiO_(2)colloidal crystals to high-crystalline ZSM-5.The products of 3DZ5_S/C and 3DZ5_S,which were severally transformed from the carbon-padded SiO_(2)colloidal crystals and the initial SiO_(2)colloidal crystals,exhibited not only a similar ordered structure and acidity but also higher crystallinity and more balanced meso-/micropore combination in comparison with 3DZ5_C obtained by the conventional confined space crystallization approach.All three synthesized 3DZ5 catalysts showed improved methanol-to-propylene performance than the commercially microporous ZSM-5(CZ5),embodied in five times longer lifetime,higher propylene selectivity and S_(propylene)/S_(ethylene) ratio(P/E),and superior coke toleration with lower formation rate of coke(R_(coke)).Moreover,the 3DZ5_S catalyst in situ converted from SiO_(2)colloidal crystals presented the highest selectivities of propylene(42.51%)and light olefins(74.6%)among all three 3DZ5 catalysts.The high efficiency in synthesis and in situ utilization of SiO_(2)colloidal crystals demonstrate the proposed SC strategy to be more efficiently and eco-friendly for the high-yield production of not only 3DOm ZSM-5 but also other types of hierarchical zeolites.