Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.Howev...Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.展开更多
This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zer...This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.展开更多
The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the tim...The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures.展开更多
Funded by The National Key Research and Development Program of China,China Deep Exploration(Sinoprobe)and The China Geological Suvery Project on 2009–2019,a large scale magnetotelluric sounding(MT)survey grid(Fig.1)h...Funded by The National Key Research and Development Program of China,China Deep Exploration(Sinoprobe)and The China Geological Suvery Project on 2009–2019,a large scale magnetotelluric sounding(MT)survey grid(Fig.1)has covered whole south China.展开更多
The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity i...The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity inversion method based on 3D U-Net++.Compared with two-dimensional gravity inversion,three-dimensional(3D)gravity inversion can more precisely describe the density distribution of underground space.However,conventional 3D gravity inversion method input is two-dimensional,the input and output of the network proposed in our method are three-dimensional.In the training stage,we design a large number of diversifi ed simulation model-data pairs by using the random walk method to improve the generalization ability of the network.In the test phase,we verify the network performance by using the model-data pairs generated by the simulation.To further illustrate the eff ectiveness of the algorithm,we apply the method to the inversion of the San Nicolas mining area,and the inversion results are basically consistent with the borehole measurement results.Moreover,the results of the 3D U-Net++inversion and the 3D U-Net inversion are compared.The density models of the 3D U-Net++inversion have higher resolution,more concentrated inversion results,and a clearer boundary of the density model.展开更多
To improve the human-physical-virtual coordination and integration of the digital twin workshop,3D visual monitoring and human-computer interaction of the digital twin workshop was studied.First,a novel 6D model of th...To improve the human-physical-virtual coordination and integration of the digital twin workshop,3D visual monitoring and human-computer interaction of the digital twin workshop was studied.First,a novel 6D model of the 3D visualization interactive system for digital twin workshops is proposed.As the traditional 5D digital twin model ignores the importance of human-computer interaction,a new dimension of the user terminal was added.A hierarchical real-time data-driven mapping model for the workshop production process is then proposed.Moreover,a real-time data acquisition method for the industrial Internet of things is proposed based on OPC UA(object linking and embedding for process control unified architecture).Based on the 6D model of the system,the process of creating a 3D visualization virtual environment based on virtual reality is introduced,in addition to a data-driven process based on the data management cloud platform.Finally,the 6D model of the system was confirmed using the blade rotor test workshop as the object,and a 3D visualization interactive system is developed.The results show that the system is more transparent,real-time,data-driven and more efficient,as well as promotes the coordination and integration of human-physical-virtual,which has practical significance for developing digital twin workshops.展开更多
Based on three-dimensional joint finite element, this paper discusses the theory and methodology about inversionof geodetic data. The FEM and inversion formula is given in detail; also a related code is developed. By ...Based on three-dimensional joint finite element, this paper discusses the theory and methodology about inversionof geodetic data. The FEM and inversion formula is given in detail; also a related code is developed. By use of theGreen's function about 3-D FEM, we invert geodetic measurementS of coseismic deformation of the 1989 Ms=7. 1Loma Prieta earthquake to datermine itS source mechanism. The result indicates that the slip on the fault plane isvery heterogeneous. The maximum slip and shear stress are located about 10 kin to northwest of the eathquakesource, the stress drop is about more than 1 MPa.展开更多
Intermediate acid-complex rock masses with low-density characteristics are the most important prospecting sign in the Beiya area, of western Yunnan province, and provide a physical basis for good gravity exploration. ...Intermediate acid-complex rock masses with low-density characteristics are the most important prospecting sign in the Beiya area, of western Yunnan province, and provide a physical basis for good gravity exploration. It is usually difficult to obtaining solutions in connection with actual geological situations due to the ambiguity of the conventional gravity-processing results and lack of deep constraints. Thus, the three-dimensional (3D) inversion technology is considered as the main channel for reducing the number of solutions and improving the vertical resolution at the current stage. The current study starts from a model test and performs nonlinear 3D density-difference inversion called “model likelihood exploration”, which performs 3D inversion imaging and inversion of the known model while considering the topographic effects. The inversion results are highly consistent with those of the known models. Simultaneously, we consider the Beiya gold mine in Yunnan as an example. The nonlinear 3D densitydifference inversion technology, which is restricted by geological information, is explored to obtain the 3D density body structure below 5 km in the mine area, and the 3D structure of the deep and concealed rock masses are obtained using the density constraints of the intermediate-acid-complex rock masses. The results are well consistent with the surface geological masses and drilling-controlled deep geological masses. The model test and examples both show that the 3D density-difference nonlinear inversion technology can reduce inversion ambiguity, improve resolution, optimize the inversion results, and realize “transparency” in deeply concealed rock masses in ore-concentrated areas,which is useful in guiding the deep ore prospecting.展开更多
The interaction of arbitrarily distributed penny-shaped cracks in three-dimensional solids is analyzed in this paper. Using oblate spheroidal coordinates and displacement functions, an analytic method is devel- oped i...The interaction of arbitrarily distributed penny-shaped cracks in three-dimensional solids is analyzed in this paper. Using oblate spheroidal coordinates and displacement functions, an analytic method is devel- oped in which the opening and the sliding displacements on each crack surface are taken as the basic unknown functions. The basic unknown functions can be expanded in series of Legendre polynomials with unknown coefficients. Based on superposition technique, a set of governing equations for the unknown coefficients are formulated from the traction free conditions on each crack surface. The boundary collocation procedure and the average method for crack-surface tractions are used for solving the governing equations. The solution can be obtained for quite closely located cracks. Numerical examples are given for several crack problems. By comparing the present results with other existing results, one can conclude that the present method provides a direct and efficient approach to deal with three-dimensional solids containing multiple cracks.展开更多
Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regressio...Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regression(SMR) technique,the liner relationships between gas-chromatographic relative retention time(RRT),298 K supercooled liquid pressures(logPL),n-octanol/air partition coefficient(logKOA),n-octanol/water partition coefficient(logKOW),aqueous solubilities(logSW),relative in vitro potency values(-logEROD) of PCNs and 3D-HoVAIF descriptors have been established by partial least-square(PLS) regression.The result shows that the 3D-HoVAIF descriptors can be well used to express the quantitative structure-property(activity) relationships of PCNs.Predictive capability of the models has also been demonstrated by leave-one-out cross-validation.Moreover,the predicted values have been presented for those PCNs which are lack of experimentally physico-chemical properties and biological activity by the optimum models.展开更多
Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,...Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,the hydrological cycle has accelerated and the likelihood of extreme weather events and natural disasters occurring(i.e.,snowstorms,floods,landslides,mudslides,and ice avalanches)has also intensified,especially in the highelevation mountainous regions.Thus,an accurate estimation of the intensity and variation of each component of the water cycle is an urgent scientific question for the assessment of plateau environmental changes.Following the transformation and movement of water between the atmosphere,biosphere and hydrosphere,the authors highlight the urgent need to strengthen the three-dimensional comprehensive observation system(including the eddy covariance system;planetary boundary layer tower;profile measurements of temperature,humidity,and wind by microwave radiometers,wind profiler,and radiosonde system;and cloud and precipitation radars)in the TP region and propose a practical implementation plan.The construction of such a three-dimensional observation system is expected to promote the study of environmental changes and natural hazards prevention.展开更多
Although scientific and policy bodies have stated that nanomaterials are not intrinsically toxic, there is interest in evaluating if and how many engineered nanomaterials may do harm to the health of mankind and the e...Although scientific and policy bodies have stated that nanomaterials are not intrinsically toxic, there is interest in evaluating if and how many engineered nanomaterials may do harm to the health of mankind and the ecological environment. The interaction between nano-TiO2 and bovine serum albumin (BSA) was studied by using TDFS and UV methods in this research.展开更多
Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both ...Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF.展开更多
To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is perf...To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.展开更多
The Zhuxi tungsten deposit in Jiangxi Province,South China,contains a total W reserve of about 2.86 Mt at an average grade of 0.54 wt%WO3,representing the largest W deposit in the world.Numerous studies on the metallo...The Zhuxi tungsten deposit in Jiangxi Province,South China,contains a total W reserve of about 2.86 Mt at an average grade of 0.54 wt%WO3,representing the largest W deposit in the world.Numerous studies on the metallogeny of the deposit have included its timing,the ore-controlling structures and sedimentary host rocks and their implications for mineral exploration.However,the deep nappe structural style of Taqian-Fuchun metallogenic belt that hosts the W deposit,and the spatial shape and scale of deeply concealed intrusions and their sedimentary host rocks are still poorly defined,which seriously restricts the discovery of new deposits at depth and in surrounding areas of the W deposit.Modern 3 D geological modeling is an important tool for the exploration of concealed orebodies,especially in brownfield environments.There are obvious density contrast and weak magnetic contrast in the ore-controlling strata and granite at the periphery of the deposit,which lays a physical foundation for solving the 3 D spatial problems of the ore-controlling geological body in the deep part of the study area through gravity and magnetic modeling.Gravity data(1:50000)and aeromagnetic data(1:50000)from the latest geophysical surveys of 2016-2018 have been used,firstly,to carry out a potential field separation to obtain residual anomalies for gravity and magnetic interactive inversion.Then,on the basis of the analysis of the relationship between physical properties and lithology,under the constraints of surface geology and borehole data,human-computer interactive gravity and magnetic inversion for 18 cross-sections were completed.Finally,the 3 D geological model of the Zhuxi tungsten deposit and its periphery have been established through these 18 sections,and the spatial shape of the intrusions and strata with a depth of 5 km underground were obtained,initially realizing―transparency‖for ore-controlling bodies.According the analysis of the geophysical,geochemical,and geological characteristics of the Zhuxi tungsten deposit,we discern three principles for prospecting and prediction in the research area,and propose five new exploration targets in its periphery.展开更多
A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course ...A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to mea- sure the wave loads and the free motions for a pair of side-by- side arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numer- ical resonances and peak shift can be found in the 3DP pre- dictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free sur- face and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two ves- sels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.展开更多
Based on the pseudo-analytical equation of electromagnetic log for layered formation,an optimal boundary match method is proposed to adaptively truncate the encountered formation structures.An efficient integral metho...Based on the pseudo-analytical equation of electromagnetic log for layered formation,an optimal boundary match method is proposed to adaptively truncate the encountered formation structures.An efficient integral method is put forward to significantly accelerate the convergence of Sommerfeld integral.By asymptotically approximating and subtracting the first reflection/transmission waves from the scattered field,the new Sommerfeld integral method has addressed difficulties encountered by the traditional digital filtering method,such as low computational precision and limited operating range,and realized the acceleration of the computation speed of logging-while-drilling electromagnetic measurements(LWD EM).By making use of the priori information from the offset/pilot wells and interactively adjusting the formation model,the optimum initial guesses of the inversion model is determined in order to predict the nearby formation boundaries.The gradient optimization algorithm is developed and an interactive inversion system for the LWD EM data from the horizontal wells is established.The inverted results of field data demonstrated that the real-time interactive inversion method is capable of providing the accurate boundaries of layers around the wellbore from the LWD EM,and it will benefit the wellbore trajectory optimization and reservoir interpretation.展开更多
A novel complex, (H 3O) 2[Ni(2,6-pydc) 2]·2H 2O was synthesized in an aqueous solution and characterized by means of single-crystal X-ray diffraction, elemental analyses and IR spectra. The X-ray structural a...A novel complex, (H 3O) 2[Ni(2,6-pydc) 2]·2H 2O was synthesized in an aqueous solution and characterized by means of single-crystal X-ray diffraction, elemental analyses and IR spectra. The X-ray structural analysis revealed that the novel compound forms three-dimensional(3D) networks by both π-π stacking and hydrogen-bonding interactions. The crystal data for the complex are a=13.853(3) nm, b=9.6892(19) nm, c=13.732(3) nm, α=90.00°, β=115.52(3)°, γ=90.00°, Z=3, R 1=0.0786, wR 2=0.1522.展开更多
AIM To determine whether three-dimensional(3D) reconstruction from conventional magnetic resonance imaging(MRI) is able to accurately detect a meniscal tear, and define the configuration.METHODS Thirty-three patients&...AIM To determine whether three-dimensional(3D) reconstruction from conventional magnetic resonance imaging(MRI) is able to accurately detect a meniscal tear, and define the configuration.METHODS Thirty-three patients' 3T MRI scan data were collected and sagittal uni-planar 3D reconstructions performed from the preoperative MRI. There were 24 meniscal tears in 24 patients, and nine controls. All patients had arthroscopic corroboration of MRI findings. Two independent observers prospectively reported on all 33 reconstructions. Meniscal tear presence or absence was noted, and tear configuration subsequently categorised as either radial, bucket-handle, parrot beak, horizontal or complex.RESULTS Identification of control menisci or meniscal tear presence was excellent(Accuracy: observer 1 = 90.9%; observer 2 = 81.8%). Of the tear configurations, bucket handle tears were accurately identified(Accuracy observer 1 and 2 = 80%). The remaining tear configurations were notaccurately discernable.CONCLUSION Uni-planar 3D reconstruction from 3T MRI knee scan sequences are useful in identifying normal menisci and menisci with bucket-handle tears. Advances in MRI sequencing and reconstruction software are awaited for accurate identification of the remaining meniscal tear configurations.展开更多
A novel three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) was used to describe the chemical structures of 23 benzoxazinone derivatives as antithrombotic drugs.Here a quantitative structure ...A novel three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) was used to describe the chemical structures of 23 benzoxazinone derivatives as antithrombotic drugs.Here a quantitative structure activity relationship(QSAR) model was built by partial least-squares(PLS) regression.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The correlation coefficients of established PLS model,leave-one-out(LOO) cross-validation,and predicted values versus experimental ones of external samples were R2=0.899,RCV2=0.854 and Qext2=0.868,respectively.These values indicated that the built PLS model had both favorable estimation stability and good prediction capabilities.Furthermore,the satisfactory results showed that 3D-HoVAIF could preferably express the information related to the biological activity of benzoxazinone derivatives.展开更多
文摘Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.
基金supported by the Development of airborne gravity gradiometer(No.2017YFC0601601)open subject of Key Laboratory of Petroleum Resources Research,Institute of Geology and Geophysics,Chinese Academy of Sciences(No.KLOR2018-8)
文摘This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.
基金supported by the Joint Fund of Seismological Science(Grant No.U1839206)the National R&D Program on Monitoring,Early Warning and Prevention of Major Natural Disaster(Grant No.2017YFC1500301)+2 种基金supported by IGGCAS Research Start-up Funds(Grant No.E0515402)National Natural Science Foundation of China(Grant No.E1115401)supported by National Natural Science Foundation of China(Grant No.11971258).
文摘The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures.
基金co-supported by the China Geological Survey Project(DD20190012 and DD20160082)
文摘Funded by The National Key Research and Development Program of China,China Deep Exploration(Sinoprobe)and The China Geological Suvery Project on 2009–2019,a large scale magnetotelluric sounding(MT)survey grid(Fig.1)has covered whole south China.
基金supported by the Key Laboratory of Geological Survey and Evaluation of Ministry of Education (China University of Geosciences)(No. GLAB2020ZR13)
文摘The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity inversion method based on 3D U-Net++.Compared with two-dimensional gravity inversion,three-dimensional(3D)gravity inversion can more precisely describe the density distribution of underground space.However,conventional 3D gravity inversion method input is two-dimensional,the input and output of the network proposed in our method are three-dimensional.In the training stage,we design a large number of diversifi ed simulation model-data pairs by using the random walk method to improve the generalization ability of the network.In the test phase,we verify the network performance by using the model-data pairs generated by the simulation.To further illustrate the eff ectiveness of the algorithm,we apply the method to the inversion of the San Nicolas mining area,and the inversion results are basically consistent with the borehole measurement results.Moreover,the results of the 3D U-Net++inversion and the 3D U-Net inversion are compared.The density models of the 3D U-Net++inversion have higher resolution,more concentrated inversion results,and a clearer boundary of the density model.
基金The National Natural Science Foundation of China(No.51875332)the Capacity Building Projects of Some Local Universities of Shanghai Science and Technology Commission(No.18040501600).
文摘To improve the human-physical-virtual coordination and integration of the digital twin workshop,3D visual monitoring and human-computer interaction of the digital twin workshop was studied.First,a novel 6D model of the 3D visualization interactive system for digital twin workshops is proposed.As the traditional 5D digital twin model ignores the importance of human-computer interaction,a new dimension of the user terminal was added.A hierarchical real-time data-driven mapping model for the workshop production process is then proposed.Moreover,a real-time data acquisition method for the industrial Internet of things is proposed based on OPC UA(object linking and embedding for process control unified architecture).Based on the 6D model of the system,the process of creating a 3D visualization virtual environment based on virtual reality is introduced,in addition to a data-driven process based on the data management cloud platform.Finally,the 6D model of the system was confirmed using the blade rotor test workshop as the object,and a 3D visualization interactive system is developed.The results show that the system is more transparent,real-time,data-driven and more efficient,as well as promotes the coordination and integration of human-physical-virtual,which has practical significance for developing digital twin workshops.
文摘Based on three-dimensional joint finite element, this paper discusses the theory and methodology about inversionof geodetic data. The FEM and inversion formula is given in detail; also a related code is developed. By use of theGreen's function about 3-D FEM, we invert geodetic measurementS of coseismic deformation of the 1989 Ms=7. 1Loma Prieta earthquake to datermine itS source mechanism. The result indicates that the slip on the fault plane isvery heterogeneous. The maximum slip and shear stress are located about 10 kin to northwest of the eathquakesource, the stress drop is about more than 1 MPa.
基金The authors would like to thank the China Geological Survey (DD20190033)National Natural Science Foundation (41804144) for the financial support,Yunnan Gold and Mineral Group Co.,Ltd. for providing the original geological information,and the reviewers for providing valuable comments.
文摘Intermediate acid-complex rock masses with low-density characteristics are the most important prospecting sign in the Beiya area, of western Yunnan province, and provide a physical basis for good gravity exploration. It is usually difficult to obtaining solutions in connection with actual geological situations due to the ambiguity of the conventional gravity-processing results and lack of deep constraints. Thus, the three-dimensional (3D) inversion technology is considered as the main channel for reducing the number of solutions and improving the vertical resolution at the current stage. The current study starts from a model test and performs nonlinear 3D density-difference inversion called “model likelihood exploration”, which performs 3D inversion imaging and inversion of the known model while considering the topographic effects. The inversion results are highly consistent with those of the known models. Simultaneously, we consider the Beiya gold mine in Yunnan as an example. The nonlinear 3D densitydifference inversion technology, which is restricted by geological information, is explored to obtain the 3D density body structure below 5 km in the mine area, and the 3D structure of the deep and concealed rock masses are obtained using the density constraints of the intermediate-acid-complex rock masses. The results are well consistent with the surface geological masses and drilling-controlled deep geological masses. The model test and examples both show that the 3D density-difference nonlinear inversion technology can reduce inversion ambiguity, improve resolution, optimize the inversion results, and realize “transparency” in deeply concealed rock masses in ore-concentrated areas,which is useful in guiding the deep ore prospecting.
文摘The interaction of arbitrarily distributed penny-shaped cracks in three-dimensional solids is analyzed in this paper. Using oblate spheroidal coordinates and displacement functions, an analytic method is devel- oped in which the opening and the sliding displacements on each crack surface are taken as the basic unknown functions. The basic unknown functions can be expanded in series of Legendre polynomials with unknown coefficients. Based on superposition technique, a set of governing equations for the unknown coefficients are formulated from the traction free conditions on each crack surface. The boundary collocation procedure and the average method for crack-surface tractions are used for solving the governing equations. The solution can be obtained for quite closely located cracks. Numerical examples are given for several crack problems. By comparing the present results with other existing results, one can conclude that the present method provides a direct and efficient approach to deal with three-dimensional solids containing multiple cracks.
基金supported by the Ministry of Science and Technology of China (2010DFA32680)the National Natural Science Foundation of China (21005062)the Fundamental Research Funds for the Central Universities (CDJRC10220010)
文摘Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regression(SMR) technique,the liner relationships between gas-chromatographic relative retention time(RRT),298 K supercooled liquid pressures(logPL),n-octanol/air partition coefficient(logKOA),n-octanol/water partition coefficient(logKOW),aqueous solubilities(logSW),relative in vitro potency values(-logEROD) of PCNs and 3D-HoVAIF descriptors have been established by partial least-square(PLS) regression.The result shows that the 3D-HoVAIF descriptors can be well used to express the quantitative structure-property(activity) relationships of PCNs.Predictive capability of the models has also been demonstrated by leave-one-out cross-validation.Moreover,the predicted values have been presented for those PCNs which are lack of experimentally physico-chemical properties and biological activity by the optimum models.
基金This research was jointly funded by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant Nos.2019QZKK0103 and 2019QZKK0105)the National Natural Science Foundation of China(Grant Nos.91837208 and 42075085).
文摘Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,the hydrological cycle has accelerated and the likelihood of extreme weather events and natural disasters occurring(i.e.,snowstorms,floods,landslides,mudslides,and ice avalanches)has also intensified,especially in the highelevation mountainous regions.Thus,an accurate estimation of the intensity and variation of each component of the water cycle is an urgent scientific question for the assessment of plateau environmental changes.Following the transformation and movement of water between the atmosphere,biosphere and hydrosphere,the authors highlight the urgent need to strengthen the three-dimensional comprehensive observation system(including the eddy covariance system;planetary boundary layer tower;profile measurements of temperature,humidity,and wind by microwave radiometers,wind profiler,and radiosonde system;and cloud and precipitation radars)in the TP region and propose a practical implementation plan.The construction of such a three-dimensional observation system is expected to promote the study of environmental changes and natural hazards prevention.
基金Suppoted by National Nature Science Foundation of China (Grant Nos. 41130746, 41272371)the Doctor Foundation of SWUST of China (Grant No. 11zx7139)
文摘Although scientific and policy bodies have stated that nanomaterials are not intrinsically toxic, there is interest in evaluating if and how many engineered nanomaterials may do harm to the health of mankind and the ecological environment. The interaction between nano-TiO2 and bovine serum albumin (BSA) was studied by using TDFS and UV methods in this research.
基金supported by the National Natural Science Foundation of China (Grant Nos. 52104125, U1765204 and 51739008)
文摘Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF.
基金supported by the Key Natural Science Foundation(No.41530320)Natural Science Foundation(No.41274121)+1 种基金Natural Science Foundation for young scientist(No.41404093)the Projects on the Development of the Key Equipment of Chinese Academy of Science(No.ZDYZ2012-1-03)
文摘To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.
基金jointly supported by the National Key R&D Program of China(Grant No.2016YFC0600201)China Geological Survey project(Grant Nos.DD20190012,DD20160082)the National Natural Science Foundation of China(Grant Nos.92062108,41630320,41574133)。
文摘The Zhuxi tungsten deposit in Jiangxi Province,South China,contains a total W reserve of about 2.86 Mt at an average grade of 0.54 wt%WO3,representing the largest W deposit in the world.Numerous studies on the metallogeny of the deposit have included its timing,the ore-controlling structures and sedimentary host rocks and their implications for mineral exploration.However,the deep nappe structural style of Taqian-Fuchun metallogenic belt that hosts the W deposit,and the spatial shape and scale of deeply concealed intrusions and their sedimentary host rocks are still poorly defined,which seriously restricts the discovery of new deposits at depth and in surrounding areas of the W deposit.Modern 3 D geological modeling is an important tool for the exploration of concealed orebodies,especially in brownfield environments.There are obvious density contrast and weak magnetic contrast in the ore-controlling strata and granite at the periphery of the deposit,which lays a physical foundation for solving the 3 D spatial problems of the ore-controlling geological body in the deep part of the study area through gravity and magnetic modeling.Gravity data(1:50000)and aeromagnetic data(1:50000)from the latest geophysical surveys of 2016-2018 have been used,firstly,to carry out a potential field separation to obtain residual anomalies for gravity and magnetic interactive inversion.Then,on the basis of the analysis of the relationship between physical properties and lithology,under the constraints of surface geology and borehole data,human-computer interactive gravity and magnetic inversion for 18 cross-sections were completed.Finally,the 3 D geological model of the Zhuxi tungsten deposit and its periphery have been established through these 18 sections,and the spatial shape of the intrusions and strata with a depth of 5 km underground were obtained,initially realizing―transparency‖for ore-controlling bodies.According the analysis of the geophysical,geochemical,and geological characteristics of the Zhuxi tungsten deposit,we discern three principles for prospecting and prediction in the research area,and propose five new exploration targets in its periphery.
基金supported by the National Natural Science Foundation of China(50879090)the Key Research Program of Hydrodynamics of China(9140A14030712JB11044)
文摘A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to mea- sure the wave loads and the free motions for a pair of side-by- side arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numer- ical resonances and peak shift can be found in the 3DP pre- dictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free sur- face and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two ves- sels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.
基金Supported by the National Natural Science Foundation of China(41904109,41974146)National Science and Technology Major Project(2017ZX05019-005)+2 种基金China Postdoctoral Science Foundation(2018M640663)the Shandong Province Postdoctoral Innovation Projects(sdbh20180025)National Key Laboratory of Electromagnetic Environment Projects(6142403200307)。
文摘Based on the pseudo-analytical equation of electromagnetic log for layered formation,an optimal boundary match method is proposed to adaptively truncate the encountered formation structures.An efficient integral method is put forward to significantly accelerate the convergence of Sommerfeld integral.By asymptotically approximating and subtracting the first reflection/transmission waves from the scattered field,the new Sommerfeld integral method has addressed difficulties encountered by the traditional digital filtering method,such as low computational precision and limited operating range,and realized the acceleration of the computation speed of logging-while-drilling electromagnetic measurements(LWD EM).By making use of the priori information from the offset/pilot wells and interactively adjusting the formation model,the optimum initial guesses of the inversion model is determined in order to predict the nearby formation boundaries.The gradient optimization algorithm is developed and an interactive inversion system for the LWD EM data from the horizontal wells is established.The inverted results of field data demonstrated that the real-time interactive inversion method is capable of providing the accurate boundaries of layers around the wellbore from the LWD EM,and it will benefit the wellbore trajectory optimization and reservoir interpretation.
基金Supported by the National Natural Science Foundation of China(No.2 0 1710 10)
文摘A novel complex, (H 3O) 2[Ni(2,6-pydc) 2]·2H 2O was synthesized in an aqueous solution and characterized by means of single-crystal X-ray diffraction, elemental analyses and IR spectra. The X-ray structural analysis revealed that the novel compound forms three-dimensional(3D) networks by both π-π stacking and hydrogen-bonding interactions. The crystal data for the complex are a=13.853(3) nm, b=9.6892(19) nm, c=13.732(3) nm, α=90.00°, β=115.52(3)°, γ=90.00°, Z=3, R 1=0.0786, wR 2=0.1522.
文摘AIM To determine whether three-dimensional(3D) reconstruction from conventional magnetic resonance imaging(MRI) is able to accurately detect a meniscal tear, and define the configuration.METHODS Thirty-three patients' 3T MRI scan data were collected and sagittal uni-planar 3D reconstructions performed from the preoperative MRI. There were 24 meniscal tears in 24 patients, and nine controls. All patients had arthroscopic corroboration of MRI findings. Two independent observers prospectively reported on all 33 reconstructions. Meniscal tear presence or absence was noted, and tear configuration subsequently categorised as either radial, bucket-handle, parrot beak, horizontal or complex.RESULTS Identification of control menisci or meniscal tear presence was excellent(Accuracy: observer 1 = 90.9%; observer 2 = 81.8%). Of the tear configurations, bucket handle tears were accurately identified(Accuracy observer 1 and 2 = 80%). The remaining tear configurations were notaccurately discernable.CONCLUSION Uni-planar 3D reconstruction from 3T MRI knee scan sequences are useful in identifying normal menisci and menisci with bucket-handle tears. Advances in MRI sequencing and reconstruction software are awaited for accurate identification of the remaining meniscal tear configurations.
基金supported by the Natural Science Foundation of Shaanxi Province (2009JQ2005)Foundation of Educational Commission of Shaanxi Province (09JK358) Graduate Innovation Fund of Shaanxi University of Science and Technology
文摘A novel three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) was used to describe the chemical structures of 23 benzoxazinone derivatives as antithrombotic drugs.Here a quantitative structure activity relationship(QSAR) model was built by partial least-squares(PLS) regression.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The correlation coefficients of established PLS model,leave-one-out(LOO) cross-validation,and predicted values versus experimental ones of external samples were R2=0.899,RCV2=0.854 and Qext2=0.868,respectively.These values indicated that the built PLS model had both favorable estimation stability and good prediction capabilities.Furthermore,the satisfactory results showed that 3D-HoVAIF could preferably express the information related to the biological activity of benzoxazinone derivatives.