High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina con...High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina containing leaching solution obtained from Na_(2)CO_(3) roasting and HCl leaching of FAHAl was used as the mother liquor to prepare layered boehmite in situ.The preparation process with AlCl_(3) as the raw material was also compared.The formation process and mechanism of boehmite,the choice of solvent,along with the adsorption capability of Congo red were analyzed by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,Brunauer-Emmett-Teller method and adsorption experiments.Results showed that during the preparation of layered boehmite,the precursor Al(OH)_(3) from the reaction of Al^(3+) and OH-is transformed into boehmiteγ-AlOOH.The existence of ethanol is beneficial to regulate and promote the growth of boehmite crystal effectively.When water and ethanol are mixed with a volume ratio of 2:1 and used as the solvent,the maximum specific surface area of the boehmite is obtained at 135.7 m^(2)·g^(-1),and 99.16%of Congo red can be absorbed after 10 min when AlCl3 is used as a raw material.As purified leaching solution is used as the mother liquid,the crystallinity of boehmite decreases slightly when the pH value decreases from 12.5 to 11.When pH is 11,the removal efficiency of Congo red reaches a maximum of 72.25%.This process not only achieves the extraction of aluminum and high-value utilization of FAHAl but also provides a thought to prepare layered boehmite with adsorption properties.展开更多
Layered rock strata are observed to be common during the excavation of tunnels or cavities,and may significantly affect the deformation and failure characteristics of surrounding rock masses due to various complex for...Layered rock strata are observed to be common during the excavation of tunnels or cavities,and may significantly affect the deformation and failure characteristics of surrounding rock masses due to various complex forms and mechanical properties.In this paper,we propose a three-dimensional axisymmetric velocity field for roof collapse of shallow cavities in multi rock layers,by considering the influences of roof cross-section shapes,supporting pressure,ground overload,etc.The internal energy dissipation rate and work rates of external forces corresponding to the velocity field are computed by employing the Hoek-Brown strength criterion and its associated flow rule.Further,the equations of the collapse surfaces and the corresponding weight of collapsing rock masses are derived on the basis of upper bound theorem.Furthermore,we validate the proposed method by comparing the results of numerical calculations and existing research findings.The change laws of the collapse range under varying parameters are obtained for the presence of rectangular and spherical cavities.We also find that the three-dimensional mechanism is relatively safer for engineering designing actually,compared with the traditional two-dimensional mechanism.All these conclusions may provide workable guidelines for the support design of shallow cavities in layered rock strata practically.展开更多
Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on ...Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.展开更多
In this work,a facile and effective strategy to prepare three-dimensional(3D)hierarchical flower-like Mg–Al layered double hydroxides(3D-LDH)was developed via a one-step double-drop coprecipitation method usingγ-Al ...In this work,a facile and effective strategy to prepare three-dimensional(3D)hierarchical flower-like Mg–Al layered double hydroxides(3D-LDH)was developed via a one-step double-drop coprecipitation method usingγ-Al 2O 3particles as a template.The characterization and experimental results showed that the calcined product,3D-LDO,features a large specific surface area of 204.2 m^(2)/g,abundant active sites,and excellent adsorption performance for Congo red(CR),methyl orange(MO),and methyl blue(MB).The maximum adsorption capacities of 3D-LDO for CR,MO,and MB were 1428.6,476.2,and 1666.7 mg/g,respectively;such performance is superior to that of most reported adsorbents.The adsorption mechanism of organic anionic dyes by 3D-LDO was extensively investigated and attributed to surface adsorption,the memory effect of 3D-LDO,and the unique 3D hierarchical flower-like structure of the adsorbent.Recycling performance tests revealed that3D-LDO has satisfactory reusability for the three organic anionic dyes.展开更多
The indirect boundary element method (IBEM) is used to study three-dimensional scattering of obliquely incident plane SH waves by an alluvial valley embedded in a layered half-space. The free-field response of the l...The indirect boundary element method (IBEM) is used to study three-dimensional scattering of obliquely incident plane SH waves by an alluvial valley embedded in a layered half-space. The free-field response of the layered half-space is calculated by the direct stiffness method, and dynamic Green's functions of moving distributed loads acting on inclined lines in a layered half-space are calculated to simulate the scattering wave field. The presented method yields very accurate results since the three-dimensional dynamic stiffness matrix is exact and the moving distributed loads can act directly on the valley boundary without singularity. Numerical results and analyses are performed for amplification of obliquely incident plane SH waves around an alluvial valley in a uniform half-space and in single layer over half-space. The results show that the three-dimensional responses are distinctly different from the two-dimensional responses, and the displacement amplitudes around alluvial valleys in a uniform haft-space are obviously different from those in a layered half-space.展开更多
A 31 week feeding trial was conducted to investigated the effects of dietary supplementation of microbial phytase and cellulase on performance,nutrients utilization and tibia quality of laying hens fed maize and soyb...A 31 week feeding trial was conducted to investigated the effects of dietary supplementation of microbial phytase and cellulase on performance,nutrients utilization and tibia quality of laying hens fed maize and soybean meal diets.192 18 week old Hisex layers were used in the trial A 2×2×2 factorial design was used in the experiment with three factors of two levels each:0 38% and 0 16% of dietary non phytate P(nP).0 and 300 U·kg -1 of phytase (Ph),and 0 and 0 10% of cellulase (Ce).The results showed that supplementation of 300 U·kg -1 phytase significantly improved utilization of dietary crude ash,CP,Ca,total P and copper (P<0 05),and improved tibia breaking strength (P<0 05).No effect of phytase on performance was observed.Addition of 0 10% cellulase decreased feed intake (P<0 05),increased utilization of CF (P<0 05) and Ca(P<0 01),and decreased total tibia ash weight (P<0 05).300 U·kg -1 phytase and 0 10% cellulase exhibited obvious positive interactions to enhance utilization of dietary phytic P and copper (P<0 05).0 16% nP did not reduce performance of the layers,but improved egg shell quality at 20 wks,increased utilization of dietary total P,phytic P and Copper (P<0 01),decreased utilization of dietary CP,increased tibia breaking strength and Ca,Mn contents of tibia(P<0 01)展开更多
An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell ...An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current.展开更多
The unsteady viscous flow over a continuously permeable shrinking surface is studied. Similarity equations are obtained through the application of similar transformation techniques. Numerical techniques are used to so...The unsteady viscous flow over a continuously permeable shrinking surface is studied. Similarity equations are obtained through the application of similar transformation techniques. Numerical techniques are used to solve the similarity equations for different values of the unsteadiness parameter, the mass suction parameter, the shrinking parameter and the Prandtl number on the velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number. It is found that, different from an unsteady stretching sheet, dual solutions exist in a certain range of mass suction and unsteadiness parameters.展开更多
Boundary-layer receptivity is always a hot issue in laminar-turbulent tran- sition. Most actual laminar-turbulent transitions belong to three-dimensional flows. An infinite back-swept fiat-plate boundary layer is a ty...Boundary-layer receptivity is always a hot issue in laminar-turbulent tran- sition. Most actual laminar-turbulent transitions belong to three-dimensional flows. An infinite back-swept fiat-plate boundary layer is a typical three-dimensionalflow. Study of its receptivity is important both in theory and applications. In this paper, a free- stream turbulence model is established. A modified fourth-order Runge-Kutta scheme is used for time marching, and compact finite difference schemes are used for space dis- cretization/ On these bases, whether unsteady cross-flow vortices can be excited in the three-dimensional boundary layer (the infinite back-swept flat-plate boundary layer) by free-stream turbulence is studied numerically. If so, effects of the level and the direc- tion of free-stream turbulence on the three^dimensional boundary-layer receptivity are further studied. Differences of the three-dimensional boundary-layer receptivity are then discussed by considering the non-parallel effect, influence of the leading-edge stagnation point of the flat plate, and variation of the back-swept angle separately. Intensive studies on the 'three-dimensional boundary-layer receptivity will benefit the development of the hydrodynamic stability theory, and provide a theoretical basis for prediction and control of laminar-turbulent transition.展开更多
The laminar-turbulent transition has always been a hot topic of fluid mechanics. Receptivity is the initial stage and plays a crucial role in the entire transition process. The previous studies of receptivity focus on...The laminar-turbulent transition has always been a hot topic of fluid mechanics. Receptivity is the initial stage and plays a crucial role in the entire transition process. The previous studies of receptivity focus on external disturbances such as sound waves and vortices in the free stream, whereas those on the leading-edge receptivity to the three-dimensional free-stream turbulence (FST), which is more general in the nature, are rarely reported. In consideration of this, this work is devoted to investigating the receptivity process of three-dimensional Tollmien-Schlichting (T-S) wave packets excited by the three-dimensional FST in a flat-plate boundary layer numerically. The relations between the leading-edge receptivity and the turbulence intensity are established, and the influence of the FST directions on the propagation directions and group velocities of the excited T-S wave packets is studied. Moreover, the leading-edge receptivity to the anisotropic FST is also studied. This parametric investigation can contribute to the prediction of laminar-turbulent transition.展开更多
As the traditional forging process has many problems such as low efficiency, high consumption of material and energy, large cylindrical shell rolling is introduced. Large cylindrical shell rolling is a typical rotary ...As the traditional forging process has many problems such as low efficiency, high consumption of material and energy, large cylindrical shell rolling is introduced. Large cylindrical shell rolling is a typical rotary forming technology, and the upper and lower rolls have different radii and speeds. To quickly predict the three-dimensional stresses and eliminate fishtail defect, an improved strip layer method is developed, in which the asymmetry of the upper and lower rolls, non-uniform deformation and stress, as well as the asymmetrical spread on the end surface are considered. The deformation zone is divided into a certain number of layers and strips along the thickness and width, respectively. The transverse displacement model is constructed by polynomial function, in order to increase the computation speed greatly. From the metal plastic mechanics principle, the three-dimensional stress models are established. The genetic algorithm is used for optimization calculation in an industrial experiment example. The results show that the rolling pressure, the normal stresses, the upper and lower friction stress distributions are not similar with those of a general plate rolling. There are two relative maximum values in rolling pressure distribution. The upper and lower longitudinal friction stresses change direction nearby the upper and lower neutral points, respectively. The fishtail profile of spread on the end surface is predicted satisfactorily. The reduction could be helpful to eliminate fishtail defect. The large cylindrical shell rolling example illustrates the calculation results acquired rapidly are good agreements with the finite element simulation and experimental values of previous study. A highly effective and reliable three-dimensional simulation method is proposed for large cylindrical shell rolling and other asymmetrical rolling.展开更多
Twisting the stacking of layered materials leads to rich new physics. A three-dimensional topological insulator film hosts two-dimensional gapless Dirac electrons on top and bottom surfaces, which, when the film is be...Twisting the stacking of layered materials leads to rich new physics. A three-dimensional topological insulator film hosts two-dimensional gapless Dirac electrons on top and bottom surfaces, which, when the film is below some critical thickness, will hybridize and open a gap in the surface state structure. The hybridization gap can be tuned by various parameters such as film thickness and inversion symmetry, according to the literature. The three-dimensional strong topological insulator Bi(Sb)Se(Te) family has layered structures composed of quintuple layers(QLs) stacked together by van der Waals interaction. Here we successfully grow twistedly stacked Sb_2Te_3 QLs and investigate the effect of twist angels on the hybridization gaps below the thickness limit. It is found that the hybridization gap can be tuned for films of three QLs, which may lead to quantum spin Hall states.Signatures of gap-closing are found in 3-QL films. The successful in situ application of this approach opens a new route to search for exotic physics in topological insulators.展开更多
The interrelated side reactions and dendrites growth severely destabilize the electrode/electrolyte interfaces,resulting in the difficult application of aqueous Zn ion batteries(AZIBs).Hydrophobic protective layer pos...The interrelated side reactions and dendrites growth severely destabilize the electrode/electrolyte interfaces,resulting in the difficult application of aqueous Zn ion batteries(AZIBs).Hydrophobic protective layer possesses natural inhibition ability for side reactions.However,the conventional protective layer with plane structure is difficult to attain joint regulation of side reaction and Zn nucleation.Herein,a novel three-dimensional(3D)electrically conductive and hydrophobic(3DECH)interface is elaborated to enable stable Zn anode.The as-prepared 3DECHinterface presents a uniform 3Dmorphologywith hydrophobic property,large specific surface area,abundant zincophilic sites,and excellent electroconductivity.Therefore,the 3DECH interface achieves uniform nucleation and dendrite-free deposition from synergetic benefits:(1)increased nucleation sites and reduced local current density through the special 3D structure and(2)uniform electric potential distribution and rapid Zn^(2+)transport due to the electroconductive alloy chemistry,thus coupling the hydrophobic property to obtain a highly reversible Zn anode.Consequently,the modified anode achieves a superior coulombic efficiency of 99.88%over 3500 cycles,and the pouch cells using modified anode and LiMn_(2)O_(4)(LMO)cathode retain a capacity of 84 mAh g^(−1)after 700 cycles at a reasonable depth discharge of 36%,without dendrite piercing and“dead Zn.”展开更多
Ni-rich layered cathodes(LiNi_xCo_yMn_(2)O_(2))have recently drawn much attention due to their high specific capacities.However,the poor rate capability of LiNi_xCo_yMn_(2)O_(2),which is mainly originated from the two...Ni-rich layered cathodes(LiNi_xCo_yMn_(2)O_(2))have recently drawn much attention due to their high specific capacities.However,the poor rate capability of LiNi_xCo_yMn_(2)O_(2),which is mainly originated from the twodimensional diffusion of Li ions in the Li slab and Li^(+)/Ni^(2+)cation mixing that hinder the Li^(+)diffusion,has limited their practical application where high power density is needed.Here we integrated Li_(2)MnO_(3)nanodomains into the layered structure of a typical Ni-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)material,which minimized the Li^(+)/Ni^(2+)cationic disordering,and more importantly,established grain boundaries within the NCM811 matrix,thus providing a three-dimensional diffusion channel for Li ions.Accordingly,an average Li-ion diffusion coefficient(D_(Li+))of the Li_(2)MnO_(3)-integrated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811-I)during charge/discharge was calculated to be approximately 6*10^(-10)cm~2 S^(-1),two times of that in the bare NCM811(3*10^(-10)cm~2 S^(-1)).The capacity delivered by the NCM811-I(154.5 mAh g^(-1))was higher than that of NCM811(141.3 mAh g^(-1))at 2 C,and the capacity retention of NCM811-I increased by 13.6%after100 cycles at 0.1 C and 13.4%after 500 cycles at 1 C compared to NCM811.This work provides a valuable routine to improve the rate capability of Ni-rich cathode materials,which may be applied to other oxide cathodes with sluggish Li-ion transportation.展开更多
2D nanosheets such as graphene, silicene, phosphorene, metal dichalcogenides and MXenes are emerging and promising for lithium storage due to their ultrathin nature and corresponding chemical/physical properties. Howe...2D nanosheets such as graphene, silicene, phosphorene, metal dichalcogenides and MXenes are emerging and promising for lithium storage due to their ultrathin nature and corresponding chemical/physical properties. However, the serious restacking and aggregation of the 2D nanosheets are still hampering their applications. To circumvent the issues of 2D nanosheets, one efficient strategy is to construct 3D structures with hierarchical porous structures, good chemical/mechanical stabilities and tunable electrical conductivities. In this review, we firstly focus on the available synthetic approaches of 3D structures from 2D nanosheets, and then summarize the relationships between the microstructures of 3D structures built from 2D nanosheets and their electrochemical behaviors for lithium storage. On the basis of above results, some challenges are briefly discussed in the perspective of the development of various functional 3D structures.展开更多
目的分析上海市某三级甲等公立医院各科室床位利用效率,为评估床位资源配置合理性提供方法学依据。方法以上海市某三级甲等医院2023年的医疗运营数据为基础,利用床位利用模型进行可视化呈现,评价床位资源的利用效率。运用床位评价指标...目的分析上海市某三级甲等公立医院各科室床位利用效率,为评估床位资源配置合理性提供方法学依据。方法以上海市某三级甲等医院2023年的医疗运营数据为基础,利用床位利用模型进行可视化呈现,评价床位资源的利用效率。运用床位评价指标测算各科室床位的合理区间,得出床位调整方案。采用多层感知器神经网络模型评估床位调整方案的准确性、合理性、可行性。结果床位利用模型显示,11个(25.00%)科室属于床位效率型,11个(25.00%)科室属于床位周转型,16个(36.36%)科室属于床位闲置型,6个(13.64%)科室属于压床型。床位评价指标显示,8个科室床位数不需改变,16个科室床位数需要适当减少,20个科室床位数需要结合实际情况增加。利用多层感知器神经网络搭建床位不变、床位减少、床位增加模型。床位不变模型的受试者工作特征曲线下面积(area under curve,AUC)=0.719,灵敏度为100.00%,特异度为40.63%。床位减少模型的AUC=0.875,灵敏度为83.33%,特异度为85.00%。床位增加模型的AUC=0.913,灵敏度为100.00%,特异度为72.22%。结论医院整体床位利用效率较低且不同科室间床位的利用效率存在差异,通过多层感知器神经网络建立的床位增加模型评估结果与床位利用模型和床位评价指标的结果具有较好的一致性,能够为医院床位资源配置管理提供方法学依据,进而实现医院床位精细化管理。展开更多
基金supported by the National Natural Science Foundation of China(52174277,52204309 and 52374300).
文摘High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina containing leaching solution obtained from Na_(2)CO_(3) roasting and HCl leaching of FAHAl was used as the mother liquor to prepare layered boehmite in situ.The preparation process with AlCl_(3) as the raw material was also compared.The formation process and mechanism of boehmite,the choice of solvent,along with the adsorption capability of Congo red were analyzed by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,Brunauer-Emmett-Teller method and adsorption experiments.Results showed that during the preparation of layered boehmite,the precursor Al(OH)_(3) from the reaction of Al^(3+) and OH-is transformed into boehmiteγ-AlOOH.The existence of ethanol is beneficial to regulate and promote the growth of boehmite crystal effectively.When water and ethanol are mixed with a volume ratio of 2:1 and used as the solvent,the maximum specific surface area of the boehmite is obtained at 135.7 m^(2)·g^(-1),and 99.16%of Congo red can be absorbed after 10 min when AlCl3 is used as a raw material.As purified leaching solution is used as the mother liquid,the crystallinity of boehmite decreases slightly when the pH value decreases from 12.5 to 11.When pH is 11,the removal efficiency of Congo red reaches a maximum of 72.25%.This process not only achieves the extraction of aluminum and high-value utilization of FAHAl but also provides a thought to prepare layered boehmite with adsorption properties.
基金funded by National Natural Science Foundation of China(Nos.51704177,51809159)A Project of Shandong Province Higher Educational Science and Technology Program(No.J16LG04)+2 种基金Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering(No.Z018005)Shandong Co-Innovation Center for Disaster Prevention and Mitigation of Civil Structures(No.XTP201911)the Doctoral Research Fund of Shandong Jianzhu University(No.XNBS1501).
文摘Layered rock strata are observed to be common during the excavation of tunnels or cavities,and may significantly affect the deformation and failure characteristics of surrounding rock masses due to various complex forms and mechanical properties.In this paper,we propose a three-dimensional axisymmetric velocity field for roof collapse of shallow cavities in multi rock layers,by considering the influences of roof cross-section shapes,supporting pressure,ground overload,etc.The internal energy dissipation rate and work rates of external forces corresponding to the velocity field are computed by employing the Hoek-Brown strength criterion and its associated flow rule.Further,the equations of the collapse surfaces and the corresponding weight of collapsing rock masses are derived on the basis of upper bound theorem.Furthermore,we validate the proposed method by comparing the results of numerical calculations and existing research findings.The change laws of the collapse range under varying parameters are obtained for the presence of rectangular and spherical cavities.We also find that the three-dimensional mechanism is relatively safer for engineering designing actually,compared with the traditional two-dimensional mechanism.All these conclusions may provide workable guidelines for the support design of shallow cavities in layered rock strata practically.
基金Project(51008188)supported by National Natural Science Foundation of ChinaProject(KLE-TJGE-B1302)supported by Key Laboratory Fund of Geotechnical and Underground Engineering of Ministry of Education,ChinaProject(SKLGDUEK1205)supported by Open Program of State Key Laboratory for Geomechanics and Deep Underground Engineering,China
文摘Long-term settlements for underground structures, such as tunnels and pipelines, are generally observed after the completion of construction in soft clay. The soil consolidation characteristic has great influences on the long-term deformation for underground structures. A three-dimensional consolidation analysis method under the asymmetric loads is developed for porous layered soil based on Biot's classical theory. Time-displacement effects can be fully considered in this work and the analytical solutions are obtained by the state space approach in the Cartesian coordinate. The Laplace and double Fourier integral transform are applied to the state variables in order to reduce the partial differential equations into algebraic differential equations and easily obtain the state space solution. Starting from the governing equations of saturated porous soil, the basic relationship of state space variables is established between the ground surface and the arbitrary depth in the integral transform domain. Based on the continuity conditions and boundary conditions of the multi-layered pore soil model, the multi-layered pore half-space solutions are obtained by means of the transfer matrix method and the inverse integral transforms. The accuracy of proposed method is demonstrated with existing classical solutions. The results indicate that the porous homogenous soils as well as the porous non-homogenous layered soils can be considered in this proposed method. When the consolidation time factor is 0.01, the value of immediate consolidation settlement coefficient calculated by the weighted homogenous solution is 27.4% bigger than the one calculated by the non-homogeneity solution. When the consolidation time factor is 0.05, the value of excess pore water pressure for the weighted homogenous solution is 27.2% bigger than the one for the non-homogeneity solution. It is shown that the material non-homogeneity has a great influence on the long-term settlements and the dissipation process of excess pore water pressure.
基金supported by the National Key R&D Program of China(No.2017YFB0602702-02)。
文摘In this work,a facile and effective strategy to prepare three-dimensional(3D)hierarchical flower-like Mg–Al layered double hydroxides(3D-LDH)was developed via a one-step double-drop coprecipitation method usingγ-Al 2O 3particles as a template.The characterization and experimental results showed that the calcined product,3D-LDO,features a large specific surface area of 204.2 m^(2)/g,abundant active sites,and excellent adsorption performance for Congo red(CR),methyl orange(MO),and methyl blue(MB).The maximum adsorption capacities of 3D-LDO for CR,MO,and MB were 1428.6,476.2,and 1666.7 mg/g,respectively;such performance is superior to that of most reported adsorbents.The adsorption mechanism of organic anionic dyes by 3D-LDO was extensively investigated and attributed to surface adsorption,the memory effect of 3D-LDO,and the unique 3D hierarchical flower-like structure of the adsorbent.Recycling performance tests revealed that3D-LDO has satisfactory reusability for the three organic anionic dyes.
基金sponsored by Project of Natural Science Foundation of China(50908156,50978183)the Application Basis and Front Technology Research Progamme of Tianjin Municipality under Grant 12JCZDJC29000
文摘The indirect boundary element method (IBEM) is used to study three-dimensional scattering of obliquely incident plane SH waves by an alluvial valley embedded in a layered half-space. The free-field response of the layered half-space is calculated by the direct stiffness method, and dynamic Green's functions of moving distributed loads acting on inclined lines in a layered half-space are calculated to simulate the scattering wave field. The presented method yields very accurate results since the three-dimensional dynamic stiffness matrix is exact and the moving distributed loads can act directly on the valley boundary without singularity. Numerical results and analyses are performed for amplification of obliquely incident plane SH waves around an alluvial valley in a uniform half-space and in single layer over half-space. The results show that the three-dimensional responses are distinctly different from the two-dimensional responses, and the displacement amplitudes around alluvial valleys in a uniform haft-space are obviously different from those in a layered half-space.
文摘A 31 week feeding trial was conducted to investigated the effects of dietary supplementation of microbial phytase and cellulase on performance,nutrients utilization and tibia quality of laying hens fed maize and soybean meal diets.192 18 week old Hisex layers were used in the trial A 2×2×2 factorial design was used in the experiment with three factors of two levels each:0 38% and 0 16% of dietary non phytate P(nP).0 and 300 U·kg -1 of phytase (Ph),and 0 and 0 10% of cellulase (Ce).The results showed that supplementation of 300 U·kg -1 phytase significantly improved utilization of dietary crude ash,CP,Ca,total P and copper (P<0 05),and improved tibia breaking strength (P<0 05).No effect of phytase on performance was observed.Addition of 0 10% cellulase decreased feed intake (P<0 05),increased utilization of CF (P<0 05) and Ca(P<0 01),and decreased total tibia ash weight (P<0 05).300 U·kg -1 phytase and 0 10% cellulase exhibited obvious positive interactions to enhance utilization of dietary phytic P and copper (P<0 05).0 16% nP did not reduce performance of the layers,but improved egg shell quality at 20 wks,increased utilization of dietary total P,phytic P and Copper (P<0 01),decreased utilization of dietary CP,increased tibia breaking strength and Ca,Mn contents of tibia(P<0 01)
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA09020402the National Integrate Circuit Research Program of China under Grant No 2009ZX02023-003+1 种基金the National Natural Science Foundation of China under Grant Nos 61261160500,61376006,61401444 and 61504157the Science and Technology Council of Shanghai under Grant Nos 14DZ2294900,15DZ2270900 and 14ZR1447500
文摘An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current.
基金Project supported by the Ministry of Science,Technology,and Innovation of Malaysia(No.06-01-02-SF0610)
文摘The unsteady viscous flow over a continuously permeable shrinking surface is studied. Similarity equations are obtained through the application of similar transformation techniques. Numerical techniques are used to solve the similarity equations for different values of the unsteadiness parameter, the mass suction parameter, the shrinking parameter and the Prandtl number on the velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number. It is found that, different from an unsteady stretching sheet, dual solutions exist in a certain range of mass suction and unsteadiness parameters.
基金supported by the National Natural Science Foundation of China(No.11472139)the Startup Foundation for Introducing Talent of Nanjing University of Information Science&Technology(No.2016r046)
文摘Boundary-layer receptivity is always a hot issue in laminar-turbulent tran- sition. Most actual laminar-turbulent transitions belong to three-dimensional flows. An infinite back-swept fiat-plate boundary layer is a typical three-dimensionalflow. Study of its receptivity is important both in theory and applications. In this paper, a free- stream turbulence model is established. A modified fourth-order Runge-Kutta scheme is used for time marching, and compact finite difference schemes are used for space dis- cretization/ On these bases, whether unsteady cross-flow vortices can be excited in the three-dimensional boundary layer (the infinite back-swept flat-plate boundary layer) by free-stream turbulence is studied numerically. If so, effects of the level and the direc- tion of free-stream turbulence on the three^dimensional boundary-layer receptivity are further studied. Differences of the three-dimensional boundary-layer receptivity are then discussed by considering the non-parallel effect, influence of the leading-edge stagnation point of the flat plate, and variation of the back-swept angle separately. Intensive studies on the 'three-dimensional boundary-layer receptivity will benefit the development of the hydrodynamic stability theory, and provide a theoretical basis for prediction and control of laminar-turbulent transition.
基金supported by the National Natural Science Foundation of China(Nos.11472139 and11802143)the Natural Science Foundation of Jiangsu Province of China(No.BK20180781)
文摘The laminar-turbulent transition has always been a hot topic of fluid mechanics. Receptivity is the initial stage and plays a crucial role in the entire transition process. The previous studies of receptivity focus on external disturbances such as sound waves and vortices in the free stream, whereas those on the leading-edge receptivity to the three-dimensional free-stream turbulence (FST), which is more general in the nature, are rarely reported. In consideration of this, this work is devoted to investigating the receptivity process of three-dimensional Tollmien-Schlichting (T-S) wave packets excited by the three-dimensional FST in a flat-plate boundary layer numerically. The relations between the leading-edge receptivity and the turbulence intensity are established, and the influence of the FST directions on the propagation directions and group velocities of the excited T-S wave packets is studied. Moreover, the leading-edge receptivity to the anisotropic FST is also studied. This parametric investigation can contribute to the prediction of laminar-turbulent transition.
基金Supported by National Science and Technology Major Project of China(Grant No.2011ZX04002-101)National Science and Technology Support Plan of China(Grant No.2011BAF15B02)National Natural Science Foundation of China(Grant No.51305388)
文摘As the traditional forging process has many problems such as low efficiency, high consumption of material and energy, large cylindrical shell rolling is introduced. Large cylindrical shell rolling is a typical rotary forming technology, and the upper and lower rolls have different radii and speeds. To quickly predict the three-dimensional stresses and eliminate fishtail defect, an improved strip layer method is developed, in which the asymmetry of the upper and lower rolls, non-uniform deformation and stress, as well as the asymmetrical spread on the end surface are considered. The deformation zone is divided into a certain number of layers and strips along the thickness and width, respectively. The transverse displacement model is constructed by polynomial function, in order to increase the computation speed greatly. From the metal plastic mechanics principle, the three-dimensional stress models are established. The genetic algorithm is used for optimization calculation in an industrial experiment example. The results show that the rolling pressure, the normal stresses, the upper and lower friction stress distributions are not similar with those of a general plate rolling. There are two relative maximum values in rolling pressure distribution. The upper and lower longitudinal friction stresses change direction nearby the upper and lower neutral points, respectively. The fishtail profile of spread on the end surface is predicted satisfactorily. The reduction could be helpful to eliminate fishtail defect. The large cylindrical shell rolling example illustrates the calculation results acquired rapidly are good agreements with the finite element simulation and experimental values of previous study. A highly effective and reliable three-dimensional simulation method is proposed for large cylindrical shell rolling and other asymmetrical rolling.
基金Supported by the National Natural Science Foundation of China (Grant Nos.61804056 and 92065102)。
文摘Twisting the stacking of layered materials leads to rich new physics. A three-dimensional topological insulator film hosts two-dimensional gapless Dirac electrons on top and bottom surfaces, which, when the film is below some critical thickness, will hybridize and open a gap in the surface state structure. The hybridization gap can be tuned by various parameters such as film thickness and inversion symmetry, according to the literature. The three-dimensional strong topological insulator Bi(Sb)Se(Te) family has layered structures composed of quintuple layers(QLs) stacked together by van der Waals interaction. Here we successfully grow twistedly stacked Sb_2Te_3 QLs and investigate the effect of twist angels on the hybridization gaps below the thickness limit. It is found that the hybridization gap can be tuned for films of three QLs, which may lead to quantum spin Hall states.Signatures of gap-closing are found in 3-QL films. The successful in situ application of this approach opens a new route to search for exotic physics in topological insulators.
基金Joint Funds of the National Natural Science Foundation of China,Grant/Award Number:U2130204Beijing Outstanding Young Scientists Program,Grant/Award Number:BJJWZYJH01201910007023Young Elite Scientists Sponsorship Program by CAST,Grant/Award Number:YESS20200364。
文摘The interrelated side reactions and dendrites growth severely destabilize the electrode/electrolyte interfaces,resulting in the difficult application of aqueous Zn ion batteries(AZIBs).Hydrophobic protective layer possesses natural inhibition ability for side reactions.However,the conventional protective layer with plane structure is difficult to attain joint regulation of side reaction and Zn nucleation.Herein,a novel three-dimensional(3D)electrically conductive and hydrophobic(3DECH)interface is elaborated to enable stable Zn anode.The as-prepared 3DECHinterface presents a uniform 3Dmorphologywith hydrophobic property,large specific surface area,abundant zincophilic sites,and excellent electroconductivity.Therefore,the 3DECH interface achieves uniform nucleation and dendrite-free deposition from synergetic benefits:(1)increased nucleation sites and reduced local current density through the special 3D structure and(2)uniform electric potential distribution and rapid Zn^(2+)transport due to the electroconductive alloy chemistry,thus coupling the hydrophobic property to obtain a highly reversible Zn anode.Consequently,the modified anode achieves a superior coulombic efficiency of 99.88%over 3500 cycles,and the pouch cells using modified anode and LiMn_(2)O_(4)(LMO)cathode retain a capacity of 84 mAh g^(−1)after 700 cycles at a reasonable depth discharge of 36%,without dendrite piercing and“dead Zn.”
基金supported by the Ministry of Science and Technology of the People’s Republic of China(2016YFA0202500)the National Natural Science Foundation of China(52072185)+1 种基金the 111 project(B12015)the National Natural Science Foundation of China(21703147 and U1401248)。
文摘Ni-rich layered cathodes(LiNi_xCo_yMn_(2)O_(2))have recently drawn much attention due to their high specific capacities.However,the poor rate capability of LiNi_xCo_yMn_(2)O_(2),which is mainly originated from the twodimensional diffusion of Li ions in the Li slab and Li^(+)/Ni^(2+)cation mixing that hinder the Li^(+)diffusion,has limited their practical application where high power density is needed.Here we integrated Li_(2)MnO_(3)nanodomains into the layered structure of a typical Ni-rich LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)material,which minimized the Li^(+)/Ni^(2+)cationic disordering,and more importantly,established grain boundaries within the NCM811 matrix,thus providing a three-dimensional diffusion channel for Li ions.Accordingly,an average Li-ion diffusion coefficient(D_(Li+))of the Li_(2)MnO_(3)-integrated LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811-I)during charge/discharge was calculated to be approximately 6*10^(-10)cm~2 S^(-1),two times of that in the bare NCM811(3*10^(-10)cm~2 S^(-1)).The capacity delivered by the NCM811-I(154.5 mAh g^(-1))was higher than that of NCM811(141.3 mAh g^(-1))at 2 C,and the capacity retention of NCM811-I increased by 13.6%after100 cycles at 0.1 C and 13.4%after 500 cycles at 1 C compared to NCM811.This work provides a valuable routine to improve the rate capability of Ni-rich cathode materials,which may be applied to other oxide cathodes with sluggish Li-ion transportation.
基金financially supported by the National Science Foundation of China(Nos.51572007 and 51622203),"Recruitment Program of Global Experts"
文摘2D nanosheets such as graphene, silicene, phosphorene, metal dichalcogenides and MXenes are emerging and promising for lithium storage due to their ultrathin nature and corresponding chemical/physical properties. However, the serious restacking and aggregation of the 2D nanosheets are still hampering their applications. To circumvent the issues of 2D nanosheets, one efficient strategy is to construct 3D structures with hierarchical porous structures, good chemical/mechanical stabilities and tunable electrical conductivities. In this review, we firstly focus on the available synthetic approaches of 3D structures from 2D nanosheets, and then summarize the relationships between the microstructures of 3D structures built from 2D nanosheets and their electrochemical behaviors for lithium storage. On the basis of above results, some challenges are briefly discussed in the perspective of the development of various functional 3D structures.
文摘目的分析上海市某三级甲等公立医院各科室床位利用效率,为评估床位资源配置合理性提供方法学依据。方法以上海市某三级甲等医院2023年的医疗运营数据为基础,利用床位利用模型进行可视化呈现,评价床位资源的利用效率。运用床位评价指标测算各科室床位的合理区间,得出床位调整方案。采用多层感知器神经网络模型评估床位调整方案的准确性、合理性、可行性。结果床位利用模型显示,11个(25.00%)科室属于床位效率型,11个(25.00%)科室属于床位周转型,16个(36.36%)科室属于床位闲置型,6个(13.64%)科室属于压床型。床位评价指标显示,8个科室床位数不需改变,16个科室床位数需要适当减少,20个科室床位数需要结合实际情况增加。利用多层感知器神经网络搭建床位不变、床位减少、床位增加模型。床位不变模型的受试者工作特征曲线下面积(area under curve,AUC)=0.719,灵敏度为100.00%,特异度为40.63%。床位减少模型的AUC=0.875,灵敏度为83.33%,特异度为85.00%。床位增加模型的AUC=0.913,灵敏度为100.00%,特异度为72.22%。结论医院整体床位利用效率较低且不同科室间床位的利用效率存在差异,通过多层感知器神经网络建立的床位增加模型评估结果与床位利用模型和床位评价指标的结果具有较好的一致性,能够为医院床位资源配置管理提供方法学依据,进而实现医院床位精细化管理。