A web camera based multi-camera convergent close-range photogrammetric system is developed to obtain the neonates' head and facial morphology. The data will then be used to develop a secure and good-fitting eye-patch...A web camera based multi-camera convergent close-range photogrammetric system is developed to obtain the neonates' head and facial morphology. The data will then be used to develop a secure and good-fitting eye-patch protector for neonates, particularly whoa they are exposed to bright lights such as phototherapy light. Measurements obtained by the system are evaluated and validated against data obtained from optical scanning. Results show that the photogrammetric system meets the requirements of measuring accuracy and safety for neonate in the neonatal units.展开更多
BACKGROUND Diabetic cardiomyopathy is considered as a chronic complication of diabetes mellitus(DM).Therefore,early detection of left ventricular systolic function(LVSF)damage in DM is essential.AIM To explore the use...BACKGROUND Diabetic cardiomyopathy is considered as a chronic complication of diabetes mellitus(DM).Therefore,early detection of left ventricular systolic function(LVSF)damage in DM is essential.AIM To explore the use of the three-dimensional speckle tracking technique(3D-STI)for measuring LVSF in DM patients via meta-analysis.METHODS The electronic databases were retrieved from the initial accessible time to 29 April 2023.The current study involved 9 studies,including 970 subjects.We carried out this meta-analysis to estimate myocardial function in DM compared with controls according to myocardial strain attained by 3D-STI.RESULTS Night articles including 970 subjects were included.No significant difference was detected in the left ventricular ejection fraction between the control and the diabetic group(P>0.05),while differences in global longitudinal strain,global circumferential strain,global radial strain,and global area strain were markedly different between the controls and DM patients(all P<0.05).CONCLUSION The 3D-STI could be applied to accurately measure early LVSF damage in patients with DM.展开更多
In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation o...In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.展开更多
Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacem...We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.展开更多
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat...A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.展开更多
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R...The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.展开更多
Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding throu...Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.展开更多
Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor ...Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.展开更多
Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising ap...Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care.展开更多
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t...Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.展开更多
This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on...This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.展开更多
Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the pro...Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.展开更多
Assimilation systems absorb both satellite measurements and Argo observations.This assimilation is essential to diagnose and evaluate the contribution from each type of data to the reconstructed analysis,allowing for ...Assimilation systems absorb both satellite measurements and Argo observations.This assimilation is essential to diagnose and evaluate the contribution from each type of data to the reconstructed analysis,allowing for better configuration of assimilation parameters.To achieve this,two comparative reconstruction schemes were designed under the optimal interpolation framework.Using a static scheme,an in situ-only field of ocean temperature was derived by correcting climatology with only Argo profiles.Through a dynamic scheme,a synthetic field was first derived from only satellite sea surface height and sea surface temperature measurements through vertical projection,and then a combined field was reconstructed by correcting the synthetic field with in situ profiles.For both schemes,a diagnostic iterative method was performed to optimize the background and observation error covariance statics.The root mean square difference(RMSD)of the in situ-only field,synthetic field and combined field were analyzed toward assimilated observations and independent observations,respectively.The rationale behind the distribution of RMSD was discussed using the following diagnostics:(1)The synthetic field has a smaller RMSD within the global mixed layer and extratropical deep waters,as in the Northwest Pacific Ocean;this is controlled by the explained variance of the vertical surface-underwater regression that reflects the ocean upper mixing and interior baroclinicity.(2)The in situ-only field has a smaller RMSD in the tropical upper layer and at midlatitudes;this is determined by the actual noise-to-signal ratio of ocean temperature.(3)The satellite observations make a more significant contribution to the analysis toward independent observations in the extratropics;this is determined by both the geographical feature of the synthetic field RMSD(smaller at depth in the extratropics)and that of the covariance correlation scales(smaller in the extratropics).展开更多
This paper introduces a new method of measuring the three-dimensional drape shape of fabrics with structural light. First, we apply parallel annular structural light to form light and shade alternating contour stripes...This paper introduces a new method of measuring the three-dimensional drape shape of fabrics with structural light. First, we apply parallel annular structural light to form light and shade alternating contour stripes on the surface of fabrics. We then collect the images of contour stripes using Charge Coupled Device (CCD). Subsequently, we process the images to identify the contour stripes and edges of fabrics, and obtain the fabric contour lines of curved surfaces. Finally, we apply three-dimensional curved surface modeling method based on a network of polar coordinates, and reconstruct the three-dimensional drape shape of fabrics. Experiments show that our method is effective in testing and reconstructing three-dimensional drape shape of fabrics.展开更多
Using self-researched gas drainage borehole stability dynamic monitoring device, three-dimensional deformation characteristics of borehole under steady vertical load were researched experimentally and systematically. ...Using self-researched gas drainage borehole stability dynamic monitoring device, three-dimensional deformation characteristics of borehole under steady vertical load were researched experimentally and systematically. This research indicated that under the action of steady loading, the mechanical deformation path of the simulated gas drainage borehole is gradually complicated, and the decay of the borehole circumferential strain is an important characterization of the prediction and early warning of borehole instability and collapse. The horizontal position of borehole occurs compressive strain, and the vertical of which occurs tensile strain under the action of vertical stress. At the initial stage of loading, the vertical strain is more sensitive than that in the horizontal direction. After a certain period of time, the horizontal strain is gradually higher than the vertical one, and the intersection of the borehole horizontal diameter and the hole wall is the stress concentration point. With the increase of the depth of hole, the strain shows a gradual decay trend as a whole, and the vertical strain decays more observably, but there is no absolute position correlation between the amount of strain decay and the increase in borehole depth,and the area within 1.5 times the orifice size is the borehole stress concentration zone.展开更多
Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the...Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.展开更多
BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular compon...BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular components are aligned freehand,without the use of navigation methods.Patient specific instruments(PSI)and three-dimensional(3D)printing of THA placement guides are increasingly used in primary THA to ensure optimal positioning.AIM To summarize the literature on 3D printing in THA and how they improve acetabular component alignment.METHODS PubMed was used to identify and access scientific studies reporting on different 3D printing methods used in THA.Eight studies with 236 hips in 228 patients were included.The studies could be divided into two main categories;3D printed models and 3D printed guides.RESULTS 3D printing in THA helped improve preoperative cup size planning and post-operative Harris hip scores between intervention and control groups(P=0.019,P=0.009).Otherwise,outcome measures were heterogeneous and thus difficult to compare.The overarching consensus between the studies is that the use of 3D guidance tools can assist in improving THA cup positioning and reduce the need for revision THA and the associated costs.CONCLUSION The implementation of 3D printing and PSI for primary THA can significantly improve the positioning accuracy of the acetabular cup component and reduce the number of complications caused by malpositioning.展开更多
BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,e...BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,extreme liver resection can be considered a potential option.AIM To explore whether computer-assisted three-dimensional individualized extreme liver resection is safe and feasible for children with HB who still have PMV after a full course of NAC.METHODS We retrospectively collected data from children with HB who underwent surgical resection at our center from June 2013 to June 2023.We then analyzed the detailed clinical and three-dimensional characteristics of children with HB who still had PMV after a full course of NAC.RESULTS Sixty-seven children diagnosed with HB underwent surgical resection.The age at diagnosis was 21.4±18.8 months,and 40 boys and 27 girls were included.Fifty-nine(88.1%)patients had a single tumor,39(58.2%)of which was located in the right lobe of the liver.A total of 47 patients(70.1%)had PRE-TEXT III or IV.Thirty-nine patients(58.2%)underwent delayed resection.After a full course of NAC,16 patients still had close PMV(within 1 cm in two patients,touching in 11 patients,compressing in four patients,and showing tumor thrombus in three patients).There were 6 patients of tumors in the middle lobe of the liver,and four of those patients exhibited liver anatomy variations.These 16 children underwent extreme liver resection after comprehensive preoperative evaluation.Intraoperative procedures were performed according to the preoperative plan,and the operations were successfully performed.Currently,the 3-year event-free survival of 67 children with HB is 88%.Among the 16 children who underwent extreme liver resection,three experienced recurrence,and one died due to multiple metastases.CONCLUSION Extreme liver resection for HB that is still in close PMV after a full course of NAC is both safe and feasible.This approach not only reduces the necessity for liver transplantation but also results in a favorable prognosis.Individualized three-dimensional surgical planning is beneficial for accurate and complete resection of HB,particularly for assessing vascular involvement,remnant liver volume and anatomical variations.展开更多
Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.Howev...Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.展开更多
基金Earmarked Research Grant (Hong Kong)(No.POLYU 5299/04E)
文摘A web camera based multi-camera convergent close-range photogrammetric system is developed to obtain the neonates' head and facial morphology. The data will then be used to develop a secure and good-fitting eye-patch protector for neonates, particularly whoa they are exposed to bright lights such as phototherapy light. Measurements obtained by the system are evaluated and validated against data obtained from optical scanning. Results show that the photogrammetric system meets the requirements of measuring accuracy and safety for neonate in the neonatal units.
文摘BACKGROUND Diabetic cardiomyopathy is considered as a chronic complication of diabetes mellitus(DM).Therefore,early detection of left ventricular systolic function(LVSF)damage in DM is essential.AIM To explore the use of the three-dimensional speckle tracking technique(3D-STI)for measuring LVSF in DM patients via meta-analysis.METHODS The electronic databases were retrieved from the initial accessible time to 29 April 2023.The current study involved 9 studies,including 970 subjects.We carried out this meta-analysis to estimate myocardial function in DM compared with controls according to myocardial strain attained by 3D-STI.RESULTS Night articles including 970 subjects were included.No significant difference was detected in the left ventricular ejection fraction between the control and the diabetic group(P>0.05),while differences in global longitudinal strain,global circumferential strain,global radial strain,and global area strain were markedly different between the controls and DM patients(all P<0.05).CONCLUSION The 3D-STI could be applied to accurately measure early LVSF damage in patients with DM.
文摘In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
基金the National Science Foundation of China (No.50745020).
文摘We developed a measuring instrument that had wide range, high precision, small measuring touch force. The instrument for three-dimensional (3D) surface topography measurement was composed of a high precision displacement sensor based on the Michelson interference principle, a 3D platform based on vertical scanning, a measuring and control circuit, and an industrial control computer. It was a closed loop control system, which changed the traditional moving stylus scanning style into a moving platform scanning style. When the workpiece was measured, the lever of the displacement sensor returned to the balanced position in every sample interval according to the zero offset of the displacement sensor. The non-linear error caused by the rotation of the lever was, therefore, very small even if the measuring range was wide. The instrument can measure the roughness and the profile size of a curved surface.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2018YFE0309100 and 2019YFE03010004)National Natural Science Foundation of China(No.51821005)。
文摘A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.
基金supported by the National Key Research and Development Program of China(No.2023YFC2907600)the National Natural Science Foundation of China(Nos.42077267,42277174 and 52074164)+2 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2020JQ23)the Opening Project of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(No.KFJJ21-02Z)the Fundamental Research Funds for the Central Universities,China(No.2022JCCXSB03).
文摘The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters.
基金Project supported by the National Natural Science Foundation of China (No. 12072337)。
文摘Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.
基金supported by the National Natural Science Foundation of China (No. 52275291)the Fundamental Research Funds for the Central Universitiesthe Program for Innovation Team of Shaanxi Province,China (No. 2023-CX-TD-17)
文摘Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.
基金This work was supported by grants fromthe Sichuan Science and Technology Program(2023NSFSC1877).
文摘Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care.
基金supported by the National Natural Science Foundation of China,No.82171380(to CD)Jiangsu Students’Platform for Innovation and Entrepreneurship Training Program,No.202110304098Y(to DJ)。
文摘Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
文摘This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.
基金Project supported by the Zhejiang Provincial Welfare Technology Applied Research Project,China(Grant No.2017C31080)
文摘Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.
基金The National Natural Science Foundation of China under contract Nos 41706021 and 41976188。
文摘Assimilation systems absorb both satellite measurements and Argo observations.This assimilation is essential to diagnose and evaluate the contribution from each type of data to the reconstructed analysis,allowing for better configuration of assimilation parameters.To achieve this,two comparative reconstruction schemes were designed under the optimal interpolation framework.Using a static scheme,an in situ-only field of ocean temperature was derived by correcting climatology with only Argo profiles.Through a dynamic scheme,a synthetic field was first derived from only satellite sea surface height and sea surface temperature measurements through vertical projection,and then a combined field was reconstructed by correcting the synthetic field with in situ profiles.For both schemes,a diagnostic iterative method was performed to optimize the background and observation error covariance statics.The root mean square difference(RMSD)of the in situ-only field,synthetic field and combined field were analyzed toward assimilated observations and independent observations,respectively.The rationale behind the distribution of RMSD was discussed using the following diagnostics:(1)The synthetic field has a smaller RMSD within the global mixed layer and extratropical deep waters,as in the Northwest Pacific Ocean;this is controlled by the explained variance of the vertical surface-underwater regression that reflects the ocean upper mixing and interior baroclinicity.(2)The in situ-only field has a smaller RMSD in the tropical upper layer and at midlatitudes;this is determined by the actual noise-to-signal ratio of ocean temperature.(3)The satellite observations make a more significant contribution to the analysis toward independent observations in the extratropics;this is determined by both the geographical feature of the synthetic field RMSD(smaller at depth in the extratropics)and that of the covariance correlation scales(smaller in the extratropics).
基金National Natural Science Foundation of China (50275139) Natural Science Foundation of Zhejiang (01388-G)
文摘This paper introduces a new method of measuring the three-dimensional drape shape of fabrics with structural light. First, we apply parallel annular structural light to form light and shade alternating contour stripes on the surface of fabrics. We then collect the images of contour stripes using Charge Coupled Device (CCD). Subsequently, we process the images to identify the contour stripes and edges of fabrics, and obtain the fabric contour lines of curved surfaces. Finally, we apply three-dimensional curved surface modeling method based on a network of polar coordinates, and reconstruct the three-dimensional drape shape of fabrics. Experiments show that our method is effective in testing and reconstructing three-dimensional drape shape of fabrics.
基金financial support of Distinguished scholars of yueqi (NO. 800015Z1179)National Science Fund subsidized project (51474220)Basic scientific research project of the CPC Central Committee (NO. 2009QZ03)
文摘Using self-researched gas drainage borehole stability dynamic monitoring device, three-dimensional deformation characteristics of borehole under steady vertical load were researched experimentally and systematically. This research indicated that under the action of steady loading, the mechanical deformation path of the simulated gas drainage borehole is gradually complicated, and the decay of the borehole circumferential strain is an important characterization of the prediction and early warning of borehole instability and collapse. The horizontal position of borehole occurs compressive strain, and the vertical of which occurs tensile strain under the action of vertical stress. At the initial stage of loading, the vertical strain is more sensitive than that in the horizontal direction. After a certain period of time, the horizontal strain is gradually higher than the vertical one, and the intersection of the borehole horizontal diameter and the hole wall is the stress concentration point. With the increase of the depth of hole, the strain shows a gradual decay trend as a whole, and the vertical strain decays more observably, but there is no absolute position correlation between the amount of strain decay and the increase in borehole depth,and the area within 1.5 times the orifice size is the borehole stress concentration zone.
基金supported by the Project of State Grid Hebei Electric Power Co.,Ltd.(SGHEYX00SCJS2100077).
文摘Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.
文摘BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular components are aligned freehand,without the use of navigation methods.Patient specific instruments(PSI)and three-dimensional(3D)printing of THA placement guides are increasingly used in primary THA to ensure optimal positioning.AIM To summarize the literature on 3D printing in THA and how they improve acetabular component alignment.METHODS PubMed was used to identify and access scientific studies reporting on different 3D printing methods used in THA.Eight studies with 236 hips in 228 patients were included.The studies could be divided into two main categories;3D printed models and 3D printed guides.RESULTS 3D printing in THA helped improve preoperative cup size planning and post-operative Harris hip scores between intervention and control groups(P=0.019,P=0.009).Otherwise,outcome measures were heterogeneous and thus difficult to compare.The overarching consensus between the studies is that the use of 3D guidance tools can assist in improving THA cup positioning and reduce the need for revision THA and the associated costs.CONCLUSION The implementation of 3D printing and PSI for primary THA can significantly improve the positioning accuracy of the acetabular cup component and reduce the number of complications caused by malpositioning.
基金Supported by National Natural Science Foundation of China,No.82293665Anhui Provincial Department of Education University Research Project,No.2023AH051763.
文摘BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,extreme liver resection can be considered a potential option.AIM To explore whether computer-assisted three-dimensional individualized extreme liver resection is safe and feasible for children with HB who still have PMV after a full course of NAC.METHODS We retrospectively collected data from children with HB who underwent surgical resection at our center from June 2013 to June 2023.We then analyzed the detailed clinical and three-dimensional characteristics of children with HB who still had PMV after a full course of NAC.RESULTS Sixty-seven children diagnosed with HB underwent surgical resection.The age at diagnosis was 21.4±18.8 months,and 40 boys and 27 girls were included.Fifty-nine(88.1%)patients had a single tumor,39(58.2%)of which was located in the right lobe of the liver.A total of 47 patients(70.1%)had PRE-TEXT III or IV.Thirty-nine patients(58.2%)underwent delayed resection.After a full course of NAC,16 patients still had close PMV(within 1 cm in two patients,touching in 11 patients,compressing in four patients,and showing tumor thrombus in three patients).There were 6 patients of tumors in the middle lobe of the liver,and four of those patients exhibited liver anatomy variations.These 16 children underwent extreme liver resection after comprehensive preoperative evaluation.Intraoperative procedures were performed according to the preoperative plan,and the operations were successfully performed.Currently,the 3-year event-free survival of 67 children with HB is 88%.Among the 16 children who underwent extreme liver resection,three experienced recurrence,and one died due to multiple metastases.CONCLUSION Extreme liver resection for HB that is still in close PMV after a full course of NAC is both safe and feasible.This approach not only reduces the necessity for liver transplantation but also results in a favorable prognosis.Individualized three-dimensional surgical planning is beneficial for accurate and complete resection of HB,particularly for assessing vascular involvement,remnant liver volume and anatomical variations.
文摘Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.