Recently,azobenzene-4,4'-dicarboxylic acid(ADCA)has been produced gradually for use as an organic synthesis or pharmaceutical intermediate due to its eminent performance.With large quantities put into application ...Recently,azobenzene-4,4'-dicarboxylic acid(ADCA)has been produced gradually for use as an organic synthesis or pharmaceutical intermediate due to its eminent performance.With large quantities put into application in the future,the thermal stability of this substance during storage,transportation,and use will become quite important.Thus,in this work,the thermal decomposition behavior,thermal decomposition kinetics,and thermal hazard of ADCA were investigated.Experiments were conducted by using a SENSYS evo DSC device.A combination of differential iso-conversion method,compensation parameter method,and nonlinear fitting evaluation were also used to analyze thermal kinetics and mechanism of ADCA decomposition.The results show that when conversion rate α increases,the activation energies of ADCA's first and main decomposition peaks fall.The amount of heat released during decomposition varies between 182.46 and 231.16 J·g^(-1).The proposed kinetic equation is based on the Avrami-Erofeev model,which is consistent with the decomposition progress.Applying the Frank-Kamenetskii model,a calculated self-accelerating decomposition temperature of 287.0℃is obtained.展开更多
Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
BACKGROUND Benign gallbladder diseases have become a high-prevalence condition not only in China but also worldwide.The main types of benign gallbladder diseases include gallbladder polyps,acute and chronic cholecysti...BACKGROUND Benign gallbladder diseases have become a high-prevalence condition not only in China but also worldwide.The main types of benign gallbladder diseases include gallbladder polyps,acute and chronic cholecystitis,and gallstones,with gallstones being the most common,accounting for over 70%of cases.Although the mortality rate of benign gallbladder diseases is low,they carry obvious potential risks.Studies have shown that an increased incidence of benign gallbladder diseases can increase the risk of cardiovascular diseases and gallbladder cancer,resulting in a substantial disease burden on patients and their families.AIM To assess the medical utility of the Configuration-Procedure-Consequence(CPC)three-dimensional quality evaluation model in modulating the prognosis of laparoscopic cholecystectomy patients.METHODS A total of 98 patients who underwent laparoscopic cholecystectomy in our hospital from February 2020 to January 2022 were selected as the subjects.According to the random number table method,they were divided into a study group and a control group,with 49 patients in each group.The control group received routine perioperative care,while the study group had the addition of the CPC three-dimensional quality evaluation.The postoperative recovery-related indicators(time to first flatus,time to oral intake,time to ambulation,hospital stay),stress indicators(cortisol and adrenaline levels),distinctions in anxiety and RESULTS The time to first flatus,time to oral intake,time to ambulation,and hospital stay of the study group patients were obviously lower than those of the control group patients,with statistical significance(P<0.05).On the 1st day after admission,there were no obvious distinctions in cortisol and adrenaline levels in blood samples,as well as in the Self-Rating Anxiety Scale(SAS)and Self-Rating Depression Scale(SDS)scores between the study group and the control group(P>0.05).However,on the 3rd day after surgery,the cortisol and adrenaline levels,as well as SAS and SDS scores of the study group patients,were obviously lower than those of the control group patients(P<0.05).The study group had 2 cases of incisional infection and 1 case of pulmonary infection,with a total incidence of complications of 6.12%(3/49),which was obviously lower than the 20.41%(10/49)in the control group(P<0.05).CONCLUSION Implementing the CPC three-dimensional quality evaluation model for patients undergoing laparoscopic cholecystectomy can help accelerate their perioperative recovery process,alleviate perioperative stress symptoms,mitigate anxiety,depression,and other adverse emotions,and to some extent,reduce the incidence of perioperative complications.展开更多
The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size,...The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined.展开更多
In order to improve the effectiveness of Fuzzy Synthetic Evaluation (FSE) models, a Parameter Correlation Analysis (PCA) was introduced into the FSE and a case study was carried out in the Naoli River in the Sanjiang ...In order to improve the effectiveness of Fuzzy Synthetic Evaluation (FSE) models, a Parameter Correlation Analysis (PCA) was introduced into the FSE and a case study was carried out in the Naoli River in the Sanjiang Plain, Northeast China. The basic principle of the PCA is that the pairs of parameters which are highly correlated and linear with each other would contribute the same information to an assessment and one of them should be eliminated. The method of the PCA is that a correlation relationship among candidate parameters is examined before the FSE. If there is an apparent nonlinear or curvilinear relationship between two parameters, then both will be retained; if the correlation is significant (p<0.01), and the scatter plot suggests a linear relationship, then one of them will be deleted. However, which one will be deleted? For solving this problem, a sensitivity test was conducted and the higher sensitivity parameters remained. The results indicate that the original data should be preprocessed through the PCA for redundancy and variability. The study shows that introducing the PCA into the FSE can simplify the FSE calculation process greatly, while the results have not been changed much.展开更多
The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis sh...The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis shows that the sensitivity of each characteristic parameter with regard to the variation of the short circuiting transfer process is different. The sensitivity of 4 kinds among these characteristic parameters is more intense than that of the short circuiting transfer frequency. In order to take account of the synthetic influence of these characteristic parameters, by means of the characteristic parameters synthetic value, a quantitative evaluation function is built up to describe and evaluate the short circuiting transfer process of CO 2 arc welding in real time. The testing shows that the evaluation function can give a suitable synthetic valuation for the short circuiting transfer process with a variety of welding variables.展开更多
This paper presents a novel geometric parameters analysis to improve the measurement accuracy of stereo deflectometry.Stereo deflectometry can be used to obtain form information for freeform specular surfaces.A measur...This paper presents a novel geometric parameters analysis to improve the measurement accuracy of stereo deflectometry.Stereo deflectometry can be used to obtain form information for freeform specular surfaces.A measurement system based on stereo deflectometry typically consists of a fringe-displaying screen,a main camera,and a reference camera.The arrangement of the components of a stereo deflectometry system is important for achieving high-accuracy measurements.In this paper,four geometric parameters of a stereo deflectometry system are analyzed and evaluated:the distance between the main camera and the measured object surface,the angle between the main camera ray and the surface normal,the distance between the fringe-displaying screen and the object,and the angle between the main camera and the reference camera.The influence of the geometric parameters on the measurement accuracy is evaluated.Experiments are performed using simulated and experimental data.The experimental results confirm the impact of these parameters on the measurement accuracy.A measurement system based on the proposed analysis has been set up to measure a stock concave mirror.Through a comparison of the given surface parameters of the concave mirror,a global measurement accuracy of 154.2 nm was achieved.展开更多
The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant norma...The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests.展开更多
BACKGROUND:Three-dimensional diffusion tensor tract(DTT)is the newest imaging to describe the structure of white matter fiber in three-dimensions,it has great significance in dividing the concrete anatomic site of gra...BACKGROUND:Three-dimensional diffusion tensor tract(DTT)is the newest imaging to describe the structure of white matter fiber in three-dimensions,it has great significance in dividing the concrete anatomic site of gray and white matter lesions,displaying the correlation with fibrous band and judging clinical prognosis,which is incomparable by other imagings.OBJECTIVE:To observe the conditions of corticospinal tract(CST)in acute cerebral ischemic stroke patients,and analyze the relationship between motor function and the severity of CST injury.DESIGN:A case-control observation.SETTING:Department of Medical Imaging,Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA.PARTICIPANTS:Fifteen patients with acute cerebral infarction were selected from Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA from February to December in 2005.They all suffered from acute attack and motor disorder of hemiplegic limbs to different extent,and were conformed by CT or MRI.There were 9 males and 6 females,aging 16-87 years old,the median age was 51.7 years,and all were right handed.Fifteen right-handed normal subjects,who were matched by age and sex with the patients in the cerebral infarction group,were selected from the relatives of patients and physicians of the Imaging Department as the control group.All the subjects were informed and agreed with the study.METHODS:The patients with acute cerebral infarction and subjects in the control group received MR diffusion tensor imaging(DTI)with GE 1.5 T nuclear magnetic resonance system,fiber tracking with the software of dTV-Ⅱ.Fractional anisotropy(FA)maps and three-dimensional tractography of bilateral CST of all patients were created.Displacement,continuity and destroy of fibrous bands were observed.At the same time,muscle strength of ipsilateral hand of patients with cerebral infarction was measured with Brunnstrom standard.The correlation between the severity of CST injury and the muscle strength of ipsilateral hand was analyzed with spearman correlation analysis.MAIN OUTCOME MEASURES:①FA values in the infarcted sites and those in the contralateral corresponding sites of patients with cerebral infarction;②CST manifestations in the patients with cerebral infarction and the control group.RESULTS:All the 30 testees were involved in the analysis of results.①The FA values in infarcted sites of white matter were significantly lower than those in the contralateral ones(t=4.570,P<0.001).②In the control group,bilateral CST were reconstructed,they originated from precentral gyrus,went downwards to internal capsule,and extended to pontine and medulla oblongata,each fiber had good uniformity in continuous form.In the patients with cerebral infarction,the forms of contralateral CST were consistent with those in the control group with good continuity.Due to the involvement by the infarcted site to different extents,the ipsilateral CST manifested as continuous interruption and loss of uniformity in anatomic structure and form.The CST involvements were divided into three grades:integrated CST for grade 1(n=2);integrated CST but compressed or displaced for grade 2(n=5);interrupted CST for grade 3(n=8).③The severity of CST injury was obviously correlated with the muscle strength of the ipsilateral hand(r=0.888,P<0.05).CONCLUSION:①CST is injured to different extents in patients with acute cerebral infarction,and the severity of injury is associated with muscle strength.It is indicated that it can be used to judge the prognosis of rehabilitative treatment.②DTT can directly display the status of pyramidal tract more three-dimensionally.展开更多
The evaluation problem with three-parameter interval grey number (T-PIGN) widely exists in real world. To select effective evaluation indicators of the problem, this paper puts forward evaluation index system selectio...The evaluation problem with three-parameter interval grey number (T-PIGN) widely exists in real world. To select effective evaluation indicators of the problem, this paper puts forward evaluation index system selection principle of T-PIGN based on distance entropy model, and gives out evaluation index system selection judgment criterion of T-PIGN. Furthermore, for the redundancy of evaluation index system with T-PIGN, a selection method of evaluation index system with T-PIGN is proposed. Finally, the applicability of the proposed method is verified by concrete examples.展开更多
An efficient procedure is used for explicit description and evaluation of uncertainty of earthquake parameters in the uniform catalog of earthquakes in Iran and neighboring regions.An inadequate number of local and re...An efficient procedure is used for explicit description and evaluation of uncertainty of earthquake parameters in the uniform catalog of earthquakes in Iran and neighboring regions.An inadequate number of local and regional seismographic stations,poor station distribution,and Inadequacy of velocity models have resulted in conspicuous uncertainty in different parameters of recorded events.In a comprehensive seismic hazard analysis such uncertainties should be considered.Uncertainty of magnitude and location of events are evaluated for three different time periods,namely,historical,early instrumental,and modern instrumental time periods,for which existing seismological information differ widely in quantity,quality,and type.It is concluded that an uncertainty of 0.2-0.3 units of magnitude and 10-15 km in epicenter determinations should be considered in the most favorable conditions.None of the hypocenters of earthquakes in Iran can be considered as reliable,unless supported by other information such as展开更多
A Z-parameter method is used to evaluate the damage process of HK40 austenitic steel. By using Z-parameter based on the Larson-Miller method, the nonlinear master curve of the log stress vs Larson-Miller parameter P c...A Z-parameter method is used to evaluate the damage process of HK40 austenitic steel. By using Z-parameter based on the Larson-Miller method, the nonlinear master curve of the log stress vs Larson-Miller parameter P can be expressed as: P=27.74-3.41gσ-0.032σ, and a family of curves parallel to the master curve can be written as: P=(27.74-Z)-3.41gσ-0.032σ, where Z represents the magnitude of the deviation from the master curve. According to the creep rupture data both from different segments of a serviced tube and from the same segment locations with different service time, the value of parameter Z has close relationship with the deterioration of creep rupture properties. The damage state of the samples is evaluated by monitoring the changes in natural frequency f and Young's modulus E, and the relationships between Z and the damage parameters are discussed.展开更多
Eleven evaluating parameters for rice core collection were assessed based on genotypic values and molecular marke' information. Monte Carlo simulation combined with mixed linear model was used to eliminate the interf...Eleven evaluating parameters for rice core collection were assessed based on genotypic values and molecular marke' information. Monte Carlo simulation combined with mixed linear model was used to eliminate the interference from environment in order to draw more reliable results. The coincidence rate of range (CR) was the optimal parameter. Mean Simpson index (MD), mean Shannon-Weaver index of genetic diversity (M1) and mean polymorphism information content (MPIC) were important evaluating parameters. The variable rate of coefficient of variation (VR) could act as an important reference parameter for evaluating the variation degree of core collection. Percentage of polymorphic loci (p) could be used as a determination parameter for the size of core collection. Mean difference percentage (MD) was a determination parameter for the reliability judgment of core collection. The effective evaluating parameters for core collection selected in the research could be used as criteria for sampling percentage in different plant germplasm populations.展开更多
A novel parameter is suggested for evaluating the fatigue crack growth rate in carbon steels. Fatigue crack propagation tests of an annealed 0.42% carbon steel were carried out under different conditions to investigat...A novel parameter is suggested for evaluating the fatigue crack growth rate in carbon steels. Fatigue crack propagation tests of an annealed 0.42% carbon steel were carried out under different conditions to investigate the relationship between this dominating parameter and the crack opening displacement (COD). A new equation of fatigue crack growth rate is formulated in terms of the suggested parameter. The physical meanings of the material parameters in this equation are explored experimentally. Considering the relation of crack growth and deformation properties, a simple and applicable method is proposed to evaluate the fatigue crack growth rate. It is also observed that the material parameters in the fatigue crack growth rate equation of carbon steels are related linearly to the material strength. The results are in a good agreement with experimental results.展开更多
Parameter inversions in oil/gas reservoirs based on well test interpretations are of great significance in oil/gas industry.Automatic well test interpretations based on artificial intelligence are the most promising t...Parameter inversions in oil/gas reservoirs based on well test interpretations are of great significance in oil/gas industry.Automatic well test interpretations based on artificial intelligence are the most promising to solve the problem of non-unique solution.In this work,a new deep reinforcement learning(DRL)based approach is proposed for automatic curve matching for well test interpretation,by using the double deep Q-network(DDQN).The DDQN algorithms are applied to train agents for automatic parameter tuning in three conventional well-testing models.In addition,to alleviate the dimensional disaster problem of parameter space,an asynchronous parameter adjustment strategy is used to train the agent.Finally,field applications are carried out by using the new DRL approaches.Results show that step number required for the DDQN to complete the curve matching is the least among,when comparing the naive deep Q-network(naive DQN)and deep Q-network(DQN).We also show that DDQN can improve the robustness of curve matching in comparison with supervised machine learning algorithms.Using DDQN algorithm to perform 100 curve matching tests on three traditional well test models,the results show that the mean relative error of the parameters is 7.58%for the homogeneous model,10.66%for the radial composite model,and 12.79%for the dual porosity model.In the actual field application,it is found that a good curve fitting can be obtained with only 30 steps of parameter adjustment.展开更多
Three-dimensional sand printing(3DSP)is widely applied in sand mold fabrication.In this study,the effects of printing parameters including the resolution of printehead holes,activator content,layer thickness,and recoa...Three-dimensional sand printing(3DSP)is widely applied in sand mold fabrication.In this study,the effects of printing parameters including the resolution of printehead holes,activator content,layer thickness,and recoating speed on the tensile and bending strengths,gas evolution,and loss-on-ignition(LOI)of 3DSP samples were investigated by changing single parameter,and the dimension deviation was also measured.As the resolution increases,the tensile strength,bending strength,gas evolution,LOI,and deviations at X-and Y-axis directions decrease gradually while the deviation at Z-axis direction firstly increases and then deceases.The gas evolution and LOI drops by 13.02%and 8.13%respectively,but the strength only reduces by 2.2% when the resolution increases from 0.08 mm to 0.09 mm.The strengths of samples rise at first and then decline while the gas evolution and LOI rise gradually with the increasing activator content or recoating speed.The activator content is found to have little effect on the gas evolution as the activator increases from 0.14%to 0.34%,the gas evolution is increased by 7.3%which is far less than the LOI increment of 24.1%.As the layer thickness increases,the tensile and bending strengths firstly rise and then drop while gas evolution and LOI descend.Under the optimal printing parameters of 0.09 mm resolution,0.18%activator,-10.28 mm layer thickness and 160 mm·s^(-1) recoating speed,the tensile strengths for X-sample and Y-sample are 1.48 MPa and 1.37 MPa,the bending strengths are 1.84 MPa and 1.75 MPa,the gas evolution and LOI are-19.62 mL·g^(-1) and 1.92%,respectively.展开更多
In order to investigate the corrosion mechanism of recycled reinforced concrete (RRC) under harsh environments,four recycled coarse aggregate (RCA) contents were selected,and saline soil was used as an electrolyte to ...In order to investigate the corrosion mechanism of recycled reinforced concrete (RRC) under harsh environments,four recycled coarse aggregate (RCA) contents were selected,and saline soil was used as an electrolyte to perform electrified accelerated corrosion experiments.The relative dynamic elastic modulus and relative corrosion current density were considered to describe the deterioration law of the RRC in saline soil.The results indicated that as the energization time increased,the corrosion current density,corrosion potential,and polarization resistance of the steel bar decreased gradually.Compared with ordinary reinforced concrete,when the RCA content was 30%,the ability of the RRC to resist corrosion was improved slightly;however,when the RCA content exceeded 30%,the corrosion resistance of the RRC deteriorated rapidly.Scanning electron microscopy revealed that for a dense RRC,less corrosion products were generated in the pores inside the concrete and on the surface of the steel bar.X-ray diffraction results indicated that SO_(4)^(2-) can generate ettringite and other corrosion products,along with volume expansion.The main corrosion products generated on the surface of the steel bars included Fe_(2)O_(3),Fe_(3)O_(4) and FeO(OH),which were the corrosion products generated by steel bars under natural environments.Therefore,using saline soil as an electrolyte is more consistent with the actual service environments of RRC.Both the relative dynamic mode and relative corrosion current density of the degradation parameters conform to the Weibull distribution;furthermore,the relative dynamic mode is more sensitive and the corresponding reliability curve can better describe the degradation law of RRC under saline soil environments.展开更多
In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare co...In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare comprehensively considered, and the governing equations are solved bysimplifying the boundary conditions. The axial magnetization of the sectorshapedpermanent magnets is accurately described in an algebraic form bythe parameters, which makes the physical meaning more explicit than thepurely mathematical expression in general series forms. The parameters of theBessel function are determined simply and the magnetic field distribution ofpermanent magnets and the air-gap is solved. Furthermore, the field solutionsare completely analytical, which provides convenience and satisfactoryaccuracy for modeling a series of electromagnetic performance parameters,such as the axial electromagnetic force density, axial electromagnetic force,and electromagnetic torque. The correctness and accuracy of the analyticalmodels are fully verified by three-dimensional finite element simulations and a15 kW prototype and the results of calculations, simulations, and experimentsunder three methods are highly consistent. The influence of several designparameters on magnetic field distribution and performance is studied and discussed.The results indicate that the modeling method proposed in this papercan calculate the magnetic field distribution and performance accurately andrapidly, which affords an important reference for the design and optimizationof axial-flux permanent magnet drivers.展开更多
As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonl...As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonlinear effectiveness evaluation under small sample conditions,we propose an evaluation method based on support vector regression(SVR)to effectively address the defects of traditional methods.Considering the performance of SVR is influenced by the penalty factor,kernel type,and other parameters deeply,the improved grey wolf optimizer(IGWO)is employed for parameter optimization.In the proposed IGWO algorithm,the opposition-based learning strategy is adopted to increase the probability of avoiding the local optima,the mutation operator is used to escape from premature convergence and differential convergence factors are applied to increase the rate of convergence.Numerical experiments of 14 test functions validate the applicability of IGWO algorithm dealing with global optimization.The index system and evaluation method are constructed based on the characteristics of RSS.To validate the proposed IGWO-SVR evaluation method,eight benchmark data sets and combat simulation are employed to estimate the evaluation accuracy,convergence performance and computational complexity.According to the experimental results,the proposed method outperforms several prediction based evaluation methods,verifies the superiority and effectiveness in RSS operational effectiveness evaluation.展开更多
The threshold stress, σc, for sulfide stress corrosion cracking (SCC) of seven pipeline steels and five other steels, the critical stress, Sc, for seven pipeline steels and two drill rod steels with various strengths...The threshold stress, σc, for sulfide stress corrosion cracking (SCC) of seven pipeline steels and five other steels, the critical stress, Sc, for seven pipeline steels and two drill rod steels with various strengths and the susceptibility to SCC, IRA or σf(SCC)/σf, for four pipeline steels, two drill rod steels and five other steels were measured. The results showed that there are no definite relationships among σc, Sc and IRA or σf(SCC)/σf.The threshold stress for hydrogen induced cracking (HlC) during charging with loading in the H2S04 solution, σc(H), decreased linearly with logarithm of the concentration of diffusible hydrogen c0, i.e., σc(H)=A-B Inco for four pipeline steels. σc(H) obtained with a special cathodic current ic, which was corresponding to the diffusible hydrogen concentration during immersing in the H2S solution, were consistent with /c for sulfide SCC for four pipeline steels. Therefore, σc for sulfide SCC can be measured using dynamically charging in the H2SO4 solution with the special cathodic current ic.展开更多
基金supported by National Natural Science Foundation of China(51974166).
文摘Recently,azobenzene-4,4'-dicarboxylic acid(ADCA)has been produced gradually for use as an organic synthesis or pharmaceutical intermediate due to its eminent performance.With large quantities put into application in the future,the thermal stability of this substance during storage,transportation,and use will become quite important.Thus,in this work,the thermal decomposition behavior,thermal decomposition kinetics,and thermal hazard of ADCA were investigated.Experiments were conducted by using a SENSYS evo DSC device.A combination of differential iso-conversion method,compensation parameter method,and nonlinear fitting evaluation were also used to analyze thermal kinetics and mechanism of ADCA decomposition.The results show that when conversion rate α increases,the activation energies of ADCA's first and main decomposition peaks fall.The amount of heat released during decomposition varies between 182.46 and 231.16 J·g^(-1).The proposed kinetic equation is based on the Avrami-Erofeev model,which is consistent with the decomposition progress.Applying the Frank-Kamenetskii model,a calculated self-accelerating decomposition temperature of 287.0℃is obtained.
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
基金reviewed and approved by the Institutional Review Board of The Second People's Hospital of Lianyungang(Approval No.LW-20220707001).
文摘BACKGROUND Benign gallbladder diseases have become a high-prevalence condition not only in China but also worldwide.The main types of benign gallbladder diseases include gallbladder polyps,acute and chronic cholecystitis,and gallstones,with gallstones being the most common,accounting for over 70%of cases.Although the mortality rate of benign gallbladder diseases is low,they carry obvious potential risks.Studies have shown that an increased incidence of benign gallbladder diseases can increase the risk of cardiovascular diseases and gallbladder cancer,resulting in a substantial disease burden on patients and their families.AIM To assess the medical utility of the Configuration-Procedure-Consequence(CPC)three-dimensional quality evaluation model in modulating the prognosis of laparoscopic cholecystectomy patients.METHODS A total of 98 patients who underwent laparoscopic cholecystectomy in our hospital from February 2020 to January 2022 were selected as the subjects.According to the random number table method,they were divided into a study group and a control group,with 49 patients in each group.The control group received routine perioperative care,while the study group had the addition of the CPC three-dimensional quality evaluation.The postoperative recovery-related indicators(time to first flatus,time to oral intake,time to ambulation,hospital stay),stress indicators(cortisol and adrenaline levels),distinctions in anxiety and RESULTS The time to first flatus,time to oral intake,time to ambulation,and hospital stay of the study group patients were obviously lower than those of the control group patients,with statistical significance(P<0.05).On the 1st day after admission,there were no obvious distinctions in cortisol and adrenaline levels in blood samples,as well as in the Self-Rating Anxiety Scale(SAS)and Self-Rating Depression Scale(SDS)scores between the study group and the control group(P>0.05).However,on the 3rd day after surgery,the cortisol and adrenaline levels,as well as SAS and SDS scores of the study group patients,were obviously lower than those of the control group patients(P<0.05).The study group had 2 cases of incisional infection and 1 case of pulmonary infection,with a total incidence of complications of 6.12%(3/49),which was obviously lower than the 20.41%(10/49)in the control group(P<0.05).CONCLUSION Implementing the CPC three-dimensional quality evaluation model for patients undergoing laparoscopic cholecystectomy can help accelerate their perioperative recovery process,alleviate perioperative stress symptoms,mitigate anxiety,depression,and other adverse emotions,and to some extent,reduce the incidence of perioperative complications.
基金Shanxi Province Science and Technology Research Project(No.20140321008-03)
文摘The paper analyzes the factors influencing machine tool selection. By using fuzzy mathematics theory, we establish a theorietical model for optimal machine tool selection considering geometric features, clamping size, machining range, machining precision and surface roughness. By means of fuzzy comprehensive evaluation method, the membership degree of machine tool selection and the largest comprehensive evaluation index are determined. Then the reasonably automatic selection of machine tool is realized in the generative computer aided process planning (CAPP) system. Finally, the finite element model based on ABAQUS is established and the cutting process of machine tool is simulated. According to the theoretical and empirical cutting parameters and the curve of surface residual stress, the optimal cutting parameters can be determined.
基金Under the auspices of National Natural Science Foundation of China (No. 40830535)Knowledge Innovation Pro-gram of Chinese Academy of Sciences (No.KSCX2-YW-N-46-06)
文摘In order to improve the effectiveness of Fuzzy Synthetic Evaluation (FSE) models, a Parameter Correlation Analysis (PCA) was introduced into the FSE and a case study was carried out in the Naoli River in the Sanjiang Plain, Northeast China. The basic principle of the PCA is that the pairs of parameters which are highly correlated and linear with each other would contribute the same information to an assessment and one of them should be eliminated. The method of the PCA is that a correlation relationship among candidate parameters is examined before the FSE. If there is an apparent nonlinear or curvilinear relationship between two parameters, then both will be retained; if the correlation is significant (p<0.01), and the scatter plot suggests a linear relationship, then one of them will be deleted. However, which one will be deleted? For solving this problem, a sensitivity test was conducted and the higher sensitivity parameters remained. The results indicate that the original data should be preprocessed through the PCA for redundancy and variability. The study shows that introducing the PCA into the FSE can simplify the FSE calculation process greatly, while the results have not been changed much.
文摘The statistical probability and their variation regularity of the measurable characteristic parameters in the CO 2 arc welding droplet short circuiting transfer process have been studied. The statistical analysis shows that the sensitivity of each characteristic parameter with regard to the variation of the short circuiting transfer process is different. The sensitivity of 4 kinds among these characteristic parameters is more intense than that of the short circuiting transfer frequency. In order to take account of the synthetic influence of these characteristic parameters, by means of the characteristic parameters synthetic value, a quantitative evaluation function is built up to describe and evaluate the short circuiting transfer process of CO 2 arc welding in real time. The testing shows that the evaluation function can give a suitable synthetic valuation for the short circuiting transfer process with a variety of welding variables.
文摘This paper presents a novel geometric parameters analysis to improve the measurement accuracy of stereo deflectometry.Stereo deflectometry can be used to obtain form information for freeform specular surfaces.A measurement system based on stereo deflectometry typically consists of a fringe-displaying screen,a main camera,and a reference camera.The arrangement of the components of a stereo deflectometry system is important for achieving high-accuracy measurements.In this paper,four geometric parameters of a stereo deflectometry system are analyzed and evaluated:the distance between the main camera and the measured object surface,the angle between the main camera ray and the surface normal,the distance between the fringe-displaying screen and the object,and the angle between the main camera and the reference camera.The influence of the geometric parameters on the measurement accuracy is evaluated.Experiments are performed using simulated and experimental data.The experimental results confirm the impact of these parameters on the measurement accuracy.A measurement system based on the proposed analysis has been set up to measure a stock concave mirror.Through a comparison of the given surface parameters of the concave mirror,a global measurement accuracy of 154.2 nm was achieved.
基金Project(41130742)supported by the Key Program of National Natural Science Foundation of ChinaProject(2014CB046904)supportedby the National Basic Research Program of China+1 种基金Project(2011CDA119)supported by Natural Science Foundation of Hubei Province,ChinaProject(40972178)supported by the General Program of National Natural Science Foundation of China
文摘The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests.
文摘BACKGROUND:Three-dimensional diffusion tensor tract(DTT)is the newest imaging to describe the structure of white matter fiber in three-dimensions,it has great significance in dividing the concrete anatomic site of gray and white matter lesions,displaying the correlation with fibrous band and judging clinical prognosis,which is incomparable by other imagings.OBJECTIVE:To observe the conditions of corticospinal tract(CST)in acute cerebral ischemic stroke patients,and analyze the relationship between motor function and the severity of CST injury.DESIGN:A case-control observation.SETTING:Department of Medical Imaging,Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA.PARTICIPANTS:Fifteen patients with acute cerebral infarction were selected from Fuzhou General Hospital of Nanjing Military Area Command of Chinese PLA from February to December in 2005.They all suffered from acute attack and motor disorder of hemiplegic limbs to different extent,and were conformed by CT or MRI.There were 9 males and 6 females,aging 16-87 years old,the median age was 51.7 years,and all were right handed.Fifteen right-handed normal subjects,who were matched by age and sex with the patients in the cerebral infarction group,were selected from the relatives of patients and physicians of the Imaging Department as the control group.All the subjects were informed and agreed with the study.METHODS:The patients with acute cerebral infarction and subjects in the control group received MR diffusion tensor imaging(DTI)with GE 1.5 T nuclear magnetic resonance system,fiber tracking with the software of dTV-Ⅱ.Fractional anisotropy(FA)maps and three-dimensional tractography of bilateral CST of all patients were created.Displacement,continuity and destroy of fibrous bands were observed.At the same time,muscle strength of ipsilateral hand of patients with cerebral infarction was measured with Brunnstrom standard.The correlation between the severity of CST injury and the muscle strength of ipsilateral hand was analyzed with spearman correlation analysis.MAIN OUTCOME MEASURES:①FA values in the infarcted sites and those in the contralateral corresponding sites of patients with cerebral infarction;②CST manifestations in the patients with cerebral infarction and the control group.RESULTS:All the 30 testees were involved in the analysis of results.①The FA values in infarcted sites of white matter were significantly lower than those in the contralateral ones(t=4.570,P<0.001).②In the control group,bilateral CST were reconstructed,they originated from precentral gyrus,went downwards to internal capsule,and extended to pontine and medulla oblongata,each fiber had good uniformity in continuous form.In the patients with cerebral infarction,the forms of contralateral CST were consistent with those in the control group with good continuity.Due to the involvement by the infarcted site to different extents,the ipsilateral CST manifested as continuous interruption and loss of uniformity in anatomic structure and form.The CST involvements were divided into three grades:integrated CST for grade 1(n=2);integrated CST but compressed or displaced for grade 2(n=5);interrupted CST for grade 3(n=8).③The severity of CST injury was obviously correlated with the muscle strength of the ipsilateral hand(r=0.888,P<0.05).CONCLUSION:①CST is injured to different extents in patients with acute cerebral infarction,and the severity of injury is associated with muscle strength.It is indicated that it can be used to judge the prognosis of rehabilitative treatment.②DTT can directly display the status of pyramidal tract more three-dimensionally.
文摘The evaluation problem with three-parameter interval grey number (T-PIGN) widely exists in real world. To select effective evaluation indicators of the problem, this paper puts forward evaluation index system selection principle of T-PIGN based on distance entropy model, and gives out evaluation index system selection judgment criterion of T-PIGN. Furthermore, for the redundancy of evaluation index system with T-PIGN, a selection method of evaluation index system with T-PIGN is proposed. Finally, the applicability of the proposed method is verified by concrete examples.
文摘An efficient procedure is used for explicit description and evaluation of uncertainty of earthquake parameters in the uniform catalog of earthquakes in Iran and neighboring regions.An inadequate number of local and regional seismographic stations,poor station distribution,and Inadequacy of velocity models have resulted in conspicuous uncertainty in different parameters of recorded events.In a comprehensive seismic hazard analysis such uncertainties should be considered.Uncertainty of magnitude and location of events are evaluated for three different time periods,namely,historical,early instrumental,and modern instrumental time periods,for which existing seismological information differ widely in quantity,quality,and type.It is concluded that an uncertainty of 0.2-0.3 units of magnitude and 10-15 km in epicenter determinations should be considered in the most favorable conditions.None of the hypocenters of earthquakes in Iran can be considered as reliable,unless supported by other information such as
文摘A Z-parameter method is used to evaluate the damage process of HK40 austenitic steel. By using Z-parameter based on the Larson-Miller method, the nonlinear master curve of the log stress vs Larson-Miller parameter P can be expressed as: P=27.74-3.41gσ-0.032σ, and a family of curves parallel to the master curve can be written as: P=(27.74-Z)-3.41gσ-0.032σ, where Z represents the magnitude of the deviation from the master curve. According to the creep rupture data both from different segments of a serviced tube and from the same segment locations with different service time, the value of parameter Z has close relationship with the deterioration of creep rupture properties. The damage state of the samples is evaluated by monitoring the changes in natural frequency f and Young's modulus E, and the relationships between Z and the damage parameters are discussed.
基金the National Natural Science Foundation of China (Grant No. 30270759) the Science and Technology Department of Zhejiang Province (Grant No. 2005C32001).
文摘Eleven evaluating parameters for rice core collection were assessed based on genotypic values and molecular marke' information. Monte Carlo simulation combined with mixed linear model was used to eliminate the interference from environment in order to draw more reliable results. The coincidence rate of range (CR) was the optimal parameter. Mean Simpson index (MD), mean Shannon-Weaver index of genetic diversity (M1) and mean polymorphism information content (MPIC) were important evaluating parameters. The variable rate of coefficient of variation (VR) could act as an important reference parameter for evaluating the variation degree of core collection. Percentage of polymorphic loci (p) could be used as a determination parameter for the size of core collection. Mean difference percentage (MD) was a determination parameter for the reliability judgment of core collection. The effective evaluating parameters for core collection selected in the research could be used as criteria for sampling percentage in different plant germplasm populations.
基金the financial support of the Tsinghua University Foundation (Grant No. Jc~2OOOO57), and the Visiting Sch
文摘A novel parameter is suggested for evaluating the fatigue crack growth rate in carbon steels. Fatigue crack propagation tests of an annealed 0.42% carbon steel were carried out under different conditions to investigate the relationship between this dominating parameter and the crack opening displacement (COD). A new equation of fatigue crack growth rate is formulated in terms of the suggested parameter. The physical meanings of the material parameters in this equation are explored experimentally. Considering the relation of crack growth and deformation properties, a simple and applicable method is proposed to evaluate the fatigue crack growth rate. It is also observed that the material parameters in the fatigue crack growth rate equation of carbon steels are related linearly to the material strength. The results are in a good agreement with experimental results.
基金funding support from National Natural Science Foundation of China(52074322)Beijing Natural Science Foundation(3204052)+1 种基金Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC032)National Major Project of China(2017ZX05030002-005)。
文摘Parameter inversions in oil/gas reservoirs based on well test interpretations are of great significance in oil/gas industry.Automatic well test interpretations based on artificial intelligence are the most promising to solve the problem of non-unique solution.In this work,a new deep reinforcement learning(DRL)based approach is proposed for automatic curve matching for well test interpretation,by using the double deep Q-network(DDQN).The DDQN algorithms are applied to train agents for automatic parameter tuning in three conventional well-testing models.In addition,to alleviate the dimensional disaster problem of parameter space,an asynchronous parameter adjustment strategy is used to train the agent.Finally,field applications are carried out by using the new DRL approaches.Results show that step number required for the DDQN to complete the curve matching is the least among,when comparing the naive deep Q-network(naive DQN)and deep Q-network(DQN).We also show that DDQN can improve the robustness of curve matching in comparison with supervised machine learning algorithms.Using DDQN algorithm to perform 100 curve matching tests on three traditional well test models,the results show that the mean relative error of the parameters is 7.58%for the homogeneous model,10.66%for the radial composite model,and 12.79%for the dual porosity model.In the actual field application,it is found that a good curve fitting can be obtained with only 30 steps of parameter adjustment.
基金The study was supported by the National Natural Science Foundation of China(No.51975165).
文摘Three-dimensional sand printing(3DSP)is widely applied in sand mold fabrication.In this study,the effects of printing parameters including the resolution of printehead holes,activator content,layer thickness,and recoating speed on the tensile and bending strengths,gas evolution,and loss-on-ignition(LOI)of 3DSP samples were investigated by changing single parameter,and the dimension deviation was also measured.As the resolution increases,the tensile strength,bending strength,gas evolution,LOI,and deviations at X-and Y-axis directions decrease gradually while the deviation at Z-axis direction firstly increases and then deceases.The gas evolution and LOI drops by 13.02%and 8.13%respectively,but the strength only reduces by 2.2% when the resolution increases from 0.08 mm to 0.09 mm.The strengths of samples rise at first and then decline while the gas evolution and LOI rise gradually with the increasing activator content or recoating speed.The activator content is found to have little effect on the gas evolution as the activator increases from 0.14%to 0.34%,the gas evolution is increased by 7.3%which is far less than the LOI increment of 24.1%.As the layer thickness increases,the tensile and bending strengths firstly rise and then drop while gas evolution and LOI descend.Under the optimal printing parameters of 0.09 mm resolution,0.18%activator,-10.28 mm layer thickness and 160 mm·s^(-1) recoating speed,the tensile strengths for X-sample and Y-sample are 1.48 MPa and 1.37 MPa,the bending strengths are 1.84 MPa and 1.75 MPa,the gas evolution and LOI are-19.62 mL·g^(-1) and 1.92%,respectively.
基金Funded by National Natural Science Foundation of China (Nos. 51468039, 51868044)。
文摘In order to investigate the corrosion mechanism of recycled reinforced concrete (RRC) under harsh environments,four recycled coarse aggregate (RCA) contents were selected,and saline soil was used as an electrolyte to perform electrified accelerated corrosion experiments.The relative dynamic elastic modulus and relative corrosion current density were considered to describe the deterioration law of the RRC in saline soil.The results indicated that as the energization time increased,the corrosion current density,corrosion potential,and polarization resistance of the steel bar decreased gradually.Compared with ordinary reinforced concrete,when the RCA content was 30%,the ability of the RRC to resist corrosion was improved slightly;however,when the RCA content exceeded 30%,the corrosion resistance of the RRC deteriorated rapidly.Scanning electron microscopy revealed that for a dense RRC,less corrosion products were generated in the pores inside the concrete and on the surface of the steel bar.X-ray diffraction results indicated that SO_(4)^(2-) can generate ettringite and other corrosion products,along with volume expansion.The main corrosion products generated on the surface of the steel bars included Fe_(2)O_(3),Fe_(3)O_(4) and FeO(OH),which were the corrosion products generated by steel bars under natural environments.Therefore,using saline soil as an electrolyte is more consistent with the actual service environments of RRC.Both the relative dynamic mode and relative corrosion current density of the degradation parameters conform to the Weibull distribution;furthermore,the relative dynamic mode is more sensitive and the corresponding reliability curve can better describe the degradation law of RRC under saline soil environments.
基金supported by the National Natural Science Foundation of China under Grant[52077027]Liaoning Province Science and Technology Major Project[No.2020JH1/10100020].
文摘In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare comprehensively considered, and the governing equations are solved bysimplifying the boundary conditions. The axial magnetization of the sectorshapedpermanent magnets is accurately described in an algebraic form bythe parameters, which makes the physical meaning more explicit than thepurely mathematical expression in general series forms. The parameters of theBessel function are determined simply and the magnetic field distribution ofpermanent magnets and the air-gap is solved. Furthermore, the field solutionsare completely analytical, which provides convenience and satisfactoryaccuracy for modeling a series of electromagnetic performance parameters,such as the axial electromagnetic force density, axial electromagnetic force,and electromagnetic torque. The correctness and accuracy of the analyticalmodels are fully verified by three-dimensional finite element simulations and a15 kW prototype and the results of calculations, simulations, and experimentsunder three methods are highly consistent. The influence of several designparameters on magnetic field distribution and performance is studied and discussed.The results indicate that the modeling method proposed in this papercan calculate the magnetic field distribution and performance accurately andrapidly, which affords an important reference for the design and optimizationof axial-flux permanent magnet drivers.
基金the National Defense Science and Technology Key Laboratory Fund of China(XM2020XT1023).
文摘As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonlinear effectiveness evaluation under small sample conditions,we propose an evaluation method based on support vector regression(SVR)to effectively address the defects of traditional methods.Considering the performance of SVR is influenced by the penalty factor,kernel type,and other parameters deeply,the improved grey wolf optimizer(IGWO)is employed for parameter optimization.In the proposed IGWO algorithm,the opposition-based learning strategy is adopted to increase the probability of avoiding the local optima,the mutation operator is used to escape from premature convergence and differential convergence factors are applied to increase the rate of convergence.Numerical experiments of 14 test functions validate the applicability of IGWO algorithm dealing with global optimization.The index system and evaluation method are constructed based on the characteristics of RSS.To validate the proposed IGWO-SVR evaluation method,eight benchmark data sets and combat simulation are employed to estimate the evaluation accuracy,convergence performance and computational complexity.According to the experimental results,the proposed method outperforms several prediction based evaluation methods,verifies the superiority and effectiveness in RSS operational effectiveness evaluation.
基金This project was supported by the NNSFC of China! (No.19891180, 59725104, 59895150) the Corporation of iron and Steel Baosha
文摘The threshold stress, σc, for sulfide stress corrosion cracking (SCC) of seven pipeline steels and five other steels, the critical stress, Sc, for seven pipeline steels and two drill rod steels with various strengths and the susceptibility to SCC, IRA or σf(SCC)/σf, for four pipeline steels, two drill rod steels and five other steels were measured. The results showed that there are no definite relationships among σc, Sc and IRA or σf(SCC)/σf.The threshold stress for hydrogen induced cracking (HlC) during charging with loading in the H2S04 solution, σc(H), decreased linearly with logarithm of the concentration of diffusible hydrogen c0, i.e., σc(H)=A-B Inco for four pipeline steels. σc(H) obtained with a special cathodic current ic, which was corresponding to the diffusible hydrogen concentration during immersing in the H2S solution, were consistent with /c for sulfide SCC for four pipeline steels. Therefore, σc for sulfide SCC can be measured using dynamically charging in the H2SO4 solution with the special cathodic current ic.