Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a sin...Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a single-satellite localization algorithm based on passive synthetic aper-ture(PSA)was introduced,enabling high-precision positioning.However,its estimation of azimuth and range distance is considerably affected by the residual frequency offset(RFO)of uncoopera-tive system transceivers.Furthermore,it requires data containing a satellite flying over the radia-tion source for RFO search.After estimating the RFO,an accurate estimation of azimuth and range distance can be carried out,which is difficult to achieve in practical situations.An LFM radar source passive localization algorithm based on range migration is proposed to address the dif-ficulty in estimating frequency offset.The algorithm first provides a rough estimate of the pulse repetition time(PRT).It processes intercepted signals through range compression,range interpola-tion,and polynomial fitting to obtain range migration observations.Subsequently,it uses the changing information of range migration and an accurate PRT to formulate a system of nonlinear equations,obtaining the emitter position and a more accurate PRT through a two-step localization algorithm.Frequency offset only induces a fixed offset in range migration,which does not affect the changing information.This algorithm can also achieve high-precision localization in squint scenar-ios.Finally,the effectiveness of this algorithm is verified through simulations.展开更多
For the influence caused by multipath fading and non-line-of-sight(NLOS)transmission,it is challenging to accurately localize a moving signal source in complex environment by using the wireless sensor network(WSN)on t...For the influence caused by multipath fading and non-line-of-sight(NLOS)transmission,it is challenging to accurately localize a moving signal source in complex environment by using the wireless sensor network(WSN)on the ground.In this paper,we establish a special WSN in the sky to address this challenge,where each sensor is loaded on an unmanned aerial vehicle(UAV)and the operation center of all the UAVs is fixed on the ground.Based on the analyzing of the optimal distribution and the position error calibration of all the sensors,we formulate the localization scheme to estimate the position of the target source,which combines the time difference of arrival(TDOA)method and the frequency difference of arrival(FDOA)method.Then by employing the semidefinite programming approach,we accurately obtain the position and velocity of the signal source.In the simulation,the validity of the proposed method is verified through the performance comparison.展开更多
Time delay and Doppler shift between the echo signal and the reference signal are two most commonly used measurements in target localization for the passive radar. Doppler rate, which can be obtained from the extended...Time delay and Doppler shift between the echo signal and the reference signal are two most commonly used measurements in target localization for the passive radar. Doppler rate, which can be obtained from the extended cross ambiguity function, offers an opportunity to further enhance the localization accuracy. This paper considers using the measurement Doppler rate in addition to measurements of time delay and Doppler shift to locate a moving target. A closed-form solution is developed to accurately and efficiently estimate the target position and velocity.The proposed solution establishes a pseudolinear set of equations by introducing some additional variables, imposes weighted least squares formulation to yield a rough estimate, and utilizes the function relation among the target location parameters and additional variables to improve the estimation accuracy. Theoretical covariance and Cramer-Rao lower bound(CRLB) are derived and compared, analytically indicating that the proposed solution attains the CRLB. Numerical simulations corroborate this analysis and demonstrate that the proposed solution outperforms existing methods.展开更多
Aiming at the problem of 3D target localization by time delay estimation, this paper proposes a new acoustic passive localization method, which can provide high precision localization estimation. The first step of the...Aiming at the problem of 3D target localization by time delay estimation, this paper proposes a new acoustic passive localization method, which can provide high precision localization estimation. The first step of the two-stage algorithm is to measure the azimuth angle and pitch angle at each single array, which can obtain high precision angle estimation but low precision range estimation. And in the second step, the location of acoustic source is calculated from the angles measured above and geometry position of the two arrays. Then the accuracy of localization estimation is discussed in theory, and the influence factors and localization error are analyzed by simulation. The simulation results validate the performance of the proposed algorithm, and show the precision of localization estimation with dual arrays is superior to single array.展开更多
A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position erro...A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position errors. Firstly, the unknown matrix perturbation information is utilized to form the WRTLS problem. Then, the corresponding constrained optimization problem is transformed into an unconstrained one, which is a generalized Rayleigh quotient minimization problem. Thus, the solution can be got through the generalized eigenvalue decomposition and requires no initial state guess process. Simulation results indicate that the proposed algorithm can approach the Cramer-Rao lower bound (CRLB), and the localization solution is asymptotically unbiased.展开更多
In spectrum sharing systems,locating mul-tiple radiation sources can efficiently find out the in-truders,which protects the shared spectrum from ma-licious jamming or other unauthorized usage.Com-pared to single-sourc...In spectrum sharing systems,locating mul-tiple radiation sources can efficiently find out the in-truders,which protects the shared spectrum from ma-licious jamming or other unauthorized usage.Com-pared to single-source localization,simultaneously lo-cating multiple sources is more challenging in prac-tice since the association between measurement pa-rameters and source nodes are not known.More-over,the number of possible measurements-source as-sociations increases exponentially with the number of sensor nodes.It is crucial to discriminate which measurements correspond to the same source before localization.In this work,we propose a central-ized localization scheme to estimate the positions of multiple sources.Firstly,we develop two computa-tionally light methods to handle the unknown RSS-AOA measurements-source association problem.One method utilizes linear coordinate conversion to com-pute the minimum spatial Euclidean distance sum-mation of measurements.Another method exploits the long-short-term memory(LSTM)network to clas-sify the measurement sequences.Then,we propose a weighted least squares(WLS)approach to obtain the closed-form estimation of the positions by linearizing the non-convex localization problem.Numerical re-sults demonstrate that the proposed scheme could gain sufficient localization accuracy under adversarial sce-narios where the sources are in close proximity and the measurement noise is strong.展开更多
Ultra-Wide Bandwidth(UWB)localization based on time of arrival(TOA)and angle of arrival(AOA)has attracted increasing interest owing to its high accuracy and low cost.However,existing localization methods often fail to...Ultra-Wide Bandwidth(UWB)localization based on time of arrival(TOA)and angle of arrival(AOA)has attracted increasing interest owing to its high accuracy and low cost.However,existing localization methods often fail to achieve satisfactory accuracy in realistic environments due to multipath effects and non-line-of-sight(NLOS)propagation.In this paper,we propose a passive anchor assisted localization(PAAL)scheme,where the active anchor obtains TOA/AOA measurements to the agent while the passive anchors capture the signals from the active anchor and agent.The proposed method fully exploits the time-difference-of-arrival(TDOA)information from the measurements at the passive anchors to complement single-anchor joint TOA/AOA localization.The performance limits of the PAAL system are derived as a benchmark via the information inequality.Moreover,we implement the PAAL system on a low-cost UWB platform,which can achieve 20 cm localization accuracy in NLOS environments.展开更多
The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivi...The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance.展开更多
Rydberg atoms have been widely investigated due to their large size,long radiative lifetime,huge polarizability and strong dipole-dipole interactions.The position information of Rydberg atoms provides more possibiliti...Rydberg atoms have been widely investigated due to their large size,long radiative lifetime,huge polarizability and strong dipole-dipole interactions.The position information of Rydberg atoms provides more possibilities for quantum optics research,which can be obtained under the localization method.We study the behavior of three-dimensional(3D)Rydberg atom localization in a four-level configuration with the measurement of the spatial optical absorption.The atomic localization precision depends strongly on the detuning and Rabi frequency of the involved laser fields.A 100%probability of finding the Rydberg atom at a specific 3D position is achieved with precision of~0.031λ.This work demonstrates the possibility for achieving the 3D atom localization of the Rydberg atom in the experiment.展开更多
In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localizati...In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localization algorithm. The TDOA/FDOA (Frequency Difference of Arrival) localization algorithm is used to optimize the GDOP (geometric dilution of precision) of four-Satellite localization. The simulation results show that the absolute position measurement accuracy has little influence on TDOA/FDOA localization accuracy as compared with TDOA localization. Under the same conditions, TDOA/FDOA localization has better accuracy and its GDOP shows more uniform distribution in diamond configuration case. The localization accuracy of four-Satellite TDOA/FDOA is better than the localization accuracy of four-Satellite TDOA.展开更多
Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the mo...Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the most common types of image forgeries.Thus,an overview of the traditional and the recent copy-move forgery localization methods using passive techniques is presented in this paper.These methods are classified into three types:block-based methods,keypoint-based methods,and deep learning-based methods.In addition,the strengths and weaknesses of these methods are compared and analyzed in robustness and computational cost.Finally,further research directions are discussed.展开更多
Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imagi...Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imaging system.Using the point spread function of the imaging system to realize the non-coding measurement on the target, the full-focus images and depth information of the 3D target can be extracted from a single two-dimensional(2D) image through the compressed sensing algorithm. Simulation and experiments show that this approach can complete passive 3D imaging based on an ordinary imaging system without any coding operations. This method can achieve millimeter-level vertical resolution under single exposure conditions and has the potential for real-time dynamic 3D imaging. It improves the efficiency of 3D information detection, reduces the complexity of the imaging system, and may be of considerable value to the field of computer vision and other related applications.展开更多
A scheme is used to explore the behavior of three-dimensional(3D)atom localization in a Y-type hot atomic system.We can obtain the position information of the atom due to the position-dependent atom–field interaction...A scheme is used to explore the behavior of three-dimensional(3D)atom localization in a Y-type hot atomic system.We can obtain the position information of the atom due to the position-dependent atom–field interaction.We study the influences of the system parameters and the temperature on the atom localization.More interestingly,the atom can be localized in a subspace when the temperature is equal to 323 K.Moreover,a method is proposed to tune multiparameter for localizing the atom in a subspace.The result is helpful to achieve atom nanolithography,photonic crystal and measure the center-of-mass wave function of moving atoms.展开更多
Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our prop...Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our proposed method consists of mainly three steps. First, a brain parenchymal region was segmented based on brain model matching. Second, a 3D fuzzy membership map for a cerebral cortical region was created by applying a fuzzy c-means (FCM) clustering algorithm to T1-weighted MR images. Third, cerebral cortical thickness was three- dimensionally measured on each cortical surface voxel by using a localized gradient vector trajectory in a fuzzy membership map. Spherical models with 3 mm artificial cortical regions, which were produced using three noise levels of 2%, 5%, and 10%, were employed to evaluate the proposed method. We also applied the proposed method to T1-weighted images obtained from 20 cases, i.e., 10 clinically diagnosed AD cases and 10 clinically normal (CN) subjects. The thicknesses of the 3 mm artificial cortical regions for spherical models with noise levels of 2%, 5%, and 10% were measured by the proposed method as 2.953 ± 0.342, 2.953 ± 0.342 and 2.952 ± 0.343 mm, respectively. Thus the mean thicknesses for the entire cerebral lobar region were 3.1 ± 0.4 mm for AD patients and 3.3 ± 0.4 mm for CN subjects, respectively (p < 0.05). The proposed method could be feasible for measuring the 3D cerebral cortical thickness on individual cortical surface voxels as an atrophy feature in AD.展开更多
It can be seen that it is of great practical signi? cance to evaluate practice teaching of tourism management specialty. Tourism management professional ability training objectives that is mainly refers to develop th...It can be seen that it is of great practical signi? cance to evaluate practice teaching of tourism management specialty. Tourism management professional ability training objectives that is mainly refers to develop the tourism, ecology, tourism economics, tourism planning and development, management of travel agencies, tour guides, hotel management and tourism scenic spot management expertise, has complete professional ability has a skilled job skills in tourism industry to cultivate specialized personnel with high quality. The new local colleges and universities as an important role in higher education, entrepreneurship education in the process of exploring the important role of the gradually emerging and to explore the development of the entrepreneurship education in new local colleges and universities will help to cultivate pioneering talents extensively. This paper analyzes the issue from the essential perspective that will improve the general quality of the education.展开更多
The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sens...The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.展开更多
The passive acoustic localization with planar sensor array is introduced. Based on a method to eliminate the influence of effective sound velocity in passive detection, a new five-sensors solid array and its localizat...The passive acoustic localization with planar sensor array is introduced. Based on a method to eliminate the influence of effective sound velocity in passive detection, a new five-sensors solid array and its localization model are put forward. The factors that influence the precision of the localization are analyzed. Considering the errors from the factors synchronously, the simulation compares the solid array with the planar array. It can be proved that the five-sensor solid array is better than the four-sensor planar array in the estimation of bearing elements.展开更多
The passive acoustic locating technology is widely used in military fields. The traditional locating method with single array has low precision of distance estimation, but comparatively high precision of angle estimat...The passive acoustic locating technology is widely used in military fields. The traditional locating method with single array has low precision of distance estimation, but comparatively high precision of angle estimation. According to the characteristic, the algorithm for acoustic passive localization based on the azimuth angle and geometry position of the two arrays is derived to estimate the target distance, and the simulation for the factors that affect the localization precision also proceeds. The result of the simulation shows the precision of localization estimation with dual arrays is superior to that of single array, and the passive localization algorithm based on dual array can meet the practical demands.展开更多
In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron dopin...In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron doping in the LBSF, much higher doping concentration was observed for the B-LBSF over the Al-LBSF. Higher doping concentration in the LBSF is expected to lead to better rear passivation and lower rear contact resistance. Based on one thousand pieces of solar cells for each type, it was found that the rear passivated crystalline silicon solar cells with B-LBSF showed statistical improvement in their photovoltaic properties over those with Al-LBSF.展开更多
In this paper a new method of passive underwater TMA (target motion analysis) using data fusion is presented. The findings of this research are based on an understanding that there is a powerful sonar system that cons...In this paper a new method of passive underwater TMA (target motion analysis) using data fusion is presented. The findings of this research are based on an understanding that there is a powerful sonar system that consists of many types of sonar but with one own-ship, and that different target parameter measurements can be obtained simultaneously. For the analysis 3 data measurements, passive bearing, elevation and multipath time-delay, are used, which are divided into two groups: a group with estimates of two preliminary target parameter obtained by dealing with each group measurement independently, and a group where correlated estimates are sent to a fusion center where the correlation between two data groups are considered so that the passive underwater TMA is realized. Simulation results show that curves of parameter estimation errors obtained by using the data fusion have fast convergence and the estimation accuracy is noticeably improved. The TMA algorithm presented is verified and is of practical significance because it is easy to be realized in one ship.展开更多
基金supported by the National Natural Science Foun-dation of China(No.62027801)。
文摘Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a single-satellite localization algorithm based on passive synthetic aper-ture(PSA)was introduced,enabling high-precision positioning.However,its estimation of azimuth and range distance is considerably affected by the residual frequency offset(RFO)of uncoopera-tive system transceivers.Furthermore,it requires data containing a satellite flying over the radia-tion source for RFO search.After estimating the RFO,an accurate estimation of azimuth and range distance can be carried out,which is difficult to achieve in practical situations.An LFM radar source passive localization algorithm based on range migration is proposed to address the dif-ficulty in estimating frequency offset.The algorithm first provides a rough estimate of the pulse repetition time(PRT).It processes intercepted signals through range compression,range interpola-tion,and polynomial fitting to obtain range migration observations.Subsequently,it uses the changing information of range migration and an accurate PRT to formulate a system of nonlinear equations,obtaining the emitter position and a more accurate PRT through a two-step localization algorithm.Frequency offset only induces a fixed offset in range migration,which does not affect the changing information.This algorithm can also achieve high-precision localization in squint scenar-ios.Finally,the effectiveness of this algorithm is verified through simulations.
基金supported by The Science and Technology Innovation Team Plan of Shaanxi Province (2017-KCT-30-02)The Key Research and Development Program of Shaanxi Province (2018GY-150)+1 种基金The Foundation Research Project of Shaanxi Province (The Natural Science Fund. 2018JQ6093)The Science and Technology Plan Project of Xi’an City (201805040YD18CG24-3)
文摘For the influence caused by multipath fading and non-line-of-sight(NLOS)transmission,it is challenging to accurately localize a moving signal source in complex environment by using the wireless sensor network(WSN)on the ground.In this paper,we establish a special WSN in the sky to address this challenge,where each sensor is loaded on an unmanned aerial vehicle(UAV)and the operation center of all the UAVs is fixed on the ground.Based on the analyzing of the optimal distribution and the position error calibration of all the sensors,we formulate the localization scheme to estimate the position of the target source,which combines the time difference of arrival(TDOA)method and the frequency difference of arrival(FDOA)method.Then by employing the semidefinite programming approach,we accurately obtain the position and velocity of the signal source.In the simulation,the validity of the proposed method is verified through the performance comparison.
基金supported by the National Natural Science Foundation of China (61703433)。
文摘Time delay and Doppler shift between the echo signal and the reference signal are two most commonly used measurements in target localization for the passive radar. Doppler rate, which can be obtained from the extended cross ambiguity function, offers an opportunity to further enhance the localization accuracy. This paper considers using the measurement Doppler rate in addition to measurements of time delay and Doppler shift to locate a moving target. A closed-form solution is developed to accurately and efficiently estimate the target position and velocity.The proposed solution establishes a pseudolinear set of equations by introducing some additional variables, imposes weighted least squares formulation to yield a rough estimate, and utilizes the function relation among the target location parameters and additional variables to improve the estimation accuracy. Theoretical covariance and Cramer-Rao lower bound(CRLB) are derived and compared, analytically indicating that the proposed solution attains the CRLB. Numerical simulations corroborate this analysis and demonstrate that the proposed solution outperforms existing methods.
基金supported by the 10th Five-year Defense Pre-Research Fund of China (No.51405020305BQ0110).
文摘Aiming at the problem of 3D target localization by time delay estimation, this paper proposes a new acoustic passive localization method, which can provide high precision localization estimation. The first step of the two-stage algorithm is to measure the azimuth angle and pitch angle at each single array, which can obtain high precision angle estimation but low precision range estimation. And in the second step, the location of acoustic source is calculated from the angles measured above and geometry position of the two arrays. Then the accuracy of localization estimation is discussed in theory, and the influence factors and localization error are analyzed by simulation. The simulation results validate the performance of the proposed algorithm, and show the precision of localization estimation with dual arrays is superior to single array.
基金supported by the Aeronautical Science Foundation of China (20105584004)the Science and Technology on Avionics Integration Laboratory
文摘A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position errors. Firstly, the unknown matrix perturbation information is utilized to form the WRTLS problem. Then, the corresponding constrained optimization problem is transformed into an unconstrained one, which is a generalized Rayleigh quotient minimization problem. Thus, the solution can be got through the generalized eigenvalue decomposition and requires no initial state guess process. Simulation results indicate that the proposed algorithm can approach the Cramer-Rao lower bound (CRLB), and the localization solution is asymptotically unbiased.
基金This work was supported by the National Natu-ral Science Foundation of China(No.U20B2038,No.61901520,No.61871398 and No.61931011),the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20190030),and the National Key R&D Program of China under Grant 2018YFB1801103.
文摘In spectrum sharing systems,locating mul-tiple radiation sources can efficiently find out the in-truders,which protects the shared spectrum from ma-licious jamming or other unauthorized usage.Com-pared to single-source localization,simultaneously lo-cating multiple sources is more challenging in prac-tice since the association between measurement pa-rameters and source nodes are not known.More-over,the number of possible measurements-source as-sociations increases exponentially with the number of sensor nodes.It is crucial to discriminate which measurements correspond to the same source before localization.In this work,we propose a central-ized localization scheme to estimate the positions of multiple sources.Firstly,we develop two computa-tionally light methods to handle the unknown RSS-AOA measurements-source association problem.One method utilizes linear coordinate conversion to com-pute the minimum spatial Euclidean distance sum-mation of measurements.Another method exploits the long-short-term memory(LSTM)network to clas-sify the measurement sequences.Then,we propose a weighted least squares(WLS)approach to obtain the closed-form estimation of the positions by linearizing the non-convex localization problem.Numerical re-sults demonstrate that the proposed scheme could gain sufficient localization accuracy under adversarial sce-narios where the sources are in close proximity and the measurement noise is strong.
文摘Ultra-Wide Bandwidth(UWB)localization based on time of arrival(TOA)and angle of arrival(AOA)has attracted increasing interest owing to its high accuracy and low cost.However,existing localization methods often fail to achieve satisfactory accuracy in realistic environments due to multipath effects and non-line-of-sight(NLOS)propagation.In this paper,we propose a passive anchor assisted localization(PAAL)scheme,where the active anchor obtains TOA/AOA measurements to the agent while the passive anchors capture the signals from the active anchor and agent.The proposed method fully exploits the time-difference-of-arrival(TDOA)information from the measurements at the passive anchors to complement single-anchor joint TOA/AOA localization.The performance limits of the PAAL system are derived as a benchmark via the information inequality.Moreover,we implement the PAAL system on a low-cost UWB platform,which can achieve 20 cm localization accuracy in NLOS environments.
文摘The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance.
基金the National R&D Program of China(Grant No.2017YFA0304203)the National Natural Science Foundation of China(Grant Nos.61875112,61705122,62075121,and 91736209)+1 种基金the Program for Sanjin Scholars of Shanxi Province,the Key Research and Development Program of Shanxi Province for International Cooperation(Grant No.201803D421034)Shanxi Scholarship Council of China(Grant Nos.2020-073),and 1331KSC.
文摘Rydberg atoms have been widely investigated due to their large size,long radiative lifetime,huge polarizability and strong dipole-dipole interactions.The position information of Rydberg atoms provides more possibilities for quantum optics research,which can be obtained under the localization method.We study the behavior of three-dimensional(3D)Rydberg atom localization in a four-level configuration with the measurement of the spatial optical absorption.The atomic localization precision depends strongly on the detuning and Rabi frequency of the involved laser fields.A 100%probability of finding the Rydberg atom at a specific 3D position is achieved with precision of~0.031λ.This work demonstrates the possibility for achieving the 3D atom localization of the Rydberg atom in the experiment.
文摘In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localization algorithm. The TDOA/FDOA (Frequency Difference of Arrival) localization algorithm is used to optimize the GDOP (geometric dilution of precision) of four-Satellite localization. The simulation results show that the absolute position measurement accuracy has little influence on TDOA/FDOA localization accuracy as compared with TDOA localization. Under the same conditions, TDOA/FDOA localization has better accuracy and its GDOP shows more uniform distribution in diamond configuration case. The localization accuracy of four-Satellite TDOA/FDOA is better than the localization accuracy of four-Satellite TDOA.
文摘Digital images can be tampered easily with simple image editing software tools.Therefore,image forensic investigation on the authenticity of digital images’content is increasingly important.Copy-move is one of the most common types of image forgeries.Thus,an overview of the traditional and the recent copy-move forgery localization methods using passive techniques is presented in this paper.These methods are classified into three types:block-based methods,keypoint-based methods,and deep learning-based methods.In addition,the strengths and weaknesses of these methods are compared and analyzed in robustness and computational cost.Finally,further research directions are discussed.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0504302)Beijing Institute of Technology Research Fund Program for Young Scholars (Grant No. 202122012)。
文摘Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imaging system.Using the point spread function of the imaging system to realize the non-coding measurement on the target, the full-focus images and depth information of the 3D target can be extracted from a single two-dimensional(2D) image through the compressed sensing algorithm. Simulation and experiments show that this approach can complete passive 3D imaging based on an ordinary imaging system without any coding operations. This method can achieve millimeter-level vertical resolution under single exposure conditions and has the potential for real-time dynamic 3D imaging. It improves the efficiency of 3D information detection, reduces the complexity of the imaging system, and may be of considerable value to the field of computer vision and other related applications.
文摘A scheme is used to explore the behavior of three-dimensional(3D)atom localization in a Y-type hot atomic system.We can obtain the position information of the atom due to the position-dependent atom–field interaction.We study the influences of the system parameters and the temperature on the atom localization.More interestingly,the atom can be localized in a subspace when the temperature is equal to 323 K.Moreover,a method is proposed to tune multiparameter for localizing the atom in a subspace.The result is helpful to achieve atom nanolithography,photonic crystal and measure the center-of-mass wave function of moving atoms.
文摘Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our proposed method consists of mainly three steps. First, a brain parenchymal region was segmented based on brain model matching. Second, a 3D fuzzy membership map for a cerebral cortical region was created by applying a fuzzy c-means (FCM) clustering algorithm to T1-weighted MR images. Third, cerebral cortical thickness was three- dimensionally measured on each cortical surface voxel by using a localized gradient vector trajectory in a fuzzy membership map. Spherical models with 3 mm artificial cortical regions, which were produced using three noise levels of 2%, 5%, and 10%, were employed to evaluate the proposed method. We also applied the proposed method to T1-weighted images obtained from 20 cases, i.e., 10 clinically diagnosed AD cases and 10 clinically normal (CN) subjects. The thicknesses of the 3 mm artificial cortical regions for spherical models with noise levels of 2%, 5%, and 10% were measured by the proposed method as 2.953 ± 0.342, 2.953 ± 0.342 and 2.952 ± 0.343 mm, respectively. Thus the mean thicknesses for the entire cerebral lobar region were 3.1 ± 0.4 mm for AD patients and 3.3 ± 0.4 mm for CN subjects, respectively (p < 0.05). The proposed method could be feasible for measuring the 3D cerebral cortical thickness on individual cortical surface voxels as an atrophy feature in AD.
文摘It can be seen that it is of great practical signi? cance to evaluate practice teaching of tourism management specialty. Tourism management professional ability training objectives that is mainly refers to develop the tourism, ecology, tourism economics, tourism planning and development, management of travel agencies, tour guides, hotel management and tourism scenic spot management expertise, has complete professional ability has a skilled job skills in tourism industry to cultivate specialized personnel with high quality. The new local colleges and universities as an important role in higher education, entrepreneurship education in the process of exploring the important role of the gradually emerging and to explore the development of the entrepreneurship education in new local colleges and universities will help to cultivate pioneering talents extensively. This paper analyzes the issue from the essential perspective that will improve the general quality of the education.
基金Y. Wang was supported in part by the US National Science Foundation (NSF) under Grant Nos.CNS-0721666,CNS-0915331,and CNS-1050398Y. Liu was partially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61074092+1 种基金by the Shandong Provincial Natural Science Foundation,China under Grant No.Q2008E01Z. Guo was partially supported by the NSFC under Grant Nos. 61170258 and 6093301
文摘The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.
文摘The passive acoustic localization with planar sensor array is introduced. Based on a method to eliminate the influence of effective sound velocity in passive detection, a new five-sensors solid array and its localization model are put forward. The factors that influence the precision of the localization are analyzed. Considering the errors from the factors synchronously, the simulation compares the solid array with the planar array. It can be proved that the five-sensor solid array is better than the four-sensor planar array in the estimation of bearing elements.
基金Sponsored by the Ministerial Level Advanced Research Foundation (9153C6753029532C667)
文摘The passive acoustic locating technology is widely used in military fields. The traditional locating method with single array has low precision of distance estimation, but comparatively high precision of angle estimation. According to the characteristic, the algorithm for acoustic passive localization based on the azimuth angle and geometry position of the two arrays is derived to estimate the target distance, and the simulation for the factors that affect the localization precision also proceeds. The result of the simulation shows the precision of localization estimation with dual arrays is superior to that of single array, and the passive localization algorithm based on dual array can meet the practical demands.
基金Funded by the National Natural Science Foundation of China(61366004)the Research Fund for the Doctoral Program of Higher Education(20123601110006)the Jiangxi Provincial Department of Education(KJLD13008)
文摘In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron doping in the LBSF, much higher doping concentration was observed for the B-LBSF over the Al-LBSF. Higher doping concentration in the LBSF is expected to lead to better rear passivation and lower rear contact resistance. Based on one thousand pieces of solar cells for each type, it was found that the rear passivated crystalline silicon solar cells with B-LBSF showed statistical improvement in their photovoltaic properties over those with Al-LBSF.
文摘In this paper a new method of passive underwater TMA (target motion analysis) using data fusion is presented. The findings of this research are based on an understanding that there is a powerful sonar system that consists of many types of sonar but with one own-ship, and that different target parameter measurements can be obtained simultaneously. For the analysis 3 data measurements, passive bearing, elevation and multipath time-delay, are used, which are divided into two groups: a group with estimates of two preliminary target parameter obtained by dealing with each group measurement independently, and a group where correlated estimates are sent to a fusion center where the correlation between two data groups are considered so that the passive underwater TMA is realized. Simulation results show that curves of parameter estimation errors obtained by using the data fusion have fast convergence and the estimation accuracy is noticeably improved. The TMA algorithm presented is verified and is of practical significance because it is easy to be realized in one ship.