Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding throu...Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.展开更多
Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor ...Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.展开更多
Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising ap...Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care.展开更多
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t...Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.展开更多
With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to d...With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes.展开更多
More and more accounts or devices are shared by multiple users in video applications,which makes it difficult to provide recommendation service.Existing recommendation schemes overlook multiuser sharing scenarios,and ...More and more accounts or devices are shared by multiple users in video applications,which makes it difficult to provide recommendation service.Existing recommendation schemes overlook multiuser sharing scenarios,and they cannot make effective use of the mixed information generated by multi-user when exploring users’potential interests.To solve these problems,this paper proposes an adaptive program recommendation system for multi-user sharing environment.Specifically,we first design an offline periodic identification module by building multi-user features and periodically predicting target user in future sessions,which can separate the profile of target user from mixed log records.Subsequently,an online recommendation module with adaptive timevarying exploration strategy is constructed by jointly using personal information and multi-user social information provided by identification module.On one hand,to learn the dynamic changes in user-interest,a time-varying linear upper confidence bound(LinUCB)based on personal information is designed.On the other hand,to reduce the risk of exploration,a timeinvariant LinUCB based on separated multi-user social information from one account/device is proposed to compute the quality scores of programs for each user,which is integrated into the time-varying LinUCB by cross-weighting strategy.Finally,experimental results validate the efficiency of the proposed scheme.展开更多
As living standards improve,the demand for artworks has been escalating,transcending beyond the realm of mere basic human necessities.However,amidst an extensive array of artwork choices,users often struggle to swiftl...As living standards improve,the demand for artworks has been escalating,transcending beyond the realm of mere basic human necessities.However,amidst an extensive array of artwork choices,users often struggle to swiftly and accurately identify their preferred piece.In such scenarios,a recommendation system can be invaluable,assisting users in promptly pinpointing the desired artworks for better service design.Despite the escalating demand for artwork recommendation systems,current research fails to adequately meet these needs.Predominantly,existing artwork recommendation methodologies tend to disregard users’implicit interests,thereby overestimating their capability to articulate their preferences in full and often neglecting the nuances of their diverse interests.In response to these challenges,we have developed a weighted artwork correlation graph and put forth an embedding-based keyword-driven artwork search and recommendation methodology.Our approach transforms the keywords that delineate user interests into word embedding vectors.This allows for an effective distinction between the user’s core and peripheral interests.Subsequently,we employ a dynamic programming algorithm to extract artworks from the correlation graph,thereby obtaining artworks that align with the user’s explicit keywords and implicit interests.We have conducted an array of experiments using real-world datasets to validate our approach.The results attest to the superiority of our method in terms of its efficacy in searching and recommending artworks.展开更多
Users’interests are often diverse and multi-grained,with their underlying intents even more so.Effectively captur-ing users’interests and uncovering the relationships between diverse interests are key to news recomm...Users’interests are often diverse and multi-grained,with their underlying intents even more so.Effectively captur-ing users’interests and uncovering the relationships between diverse interests are key to news recommendation.Meanwhile,diversity is an important metric for evaluating news recommendation algorithms,as users tend to reject excessive homogeneous information in their recommendation lists.However,recommendation models themselves lack diversity awareness,making it challenging to achieve a good balance between the accuracy and diversity of news recommendations.In this paper,we propose a news recommendation algorithm that achieves good performance in both accuracy and diversity.Unlike most existing works that solely optimize accuracy or employ more features to meet diversity,the proposed algorithm leverages the diversity-aware capability of the model.First,we introduce an augmented user model to fully capture user intent and the behavioral guidance they might undergo as a result.Specifically,we focus on the relationship between the original clicked news and the augmented clicked news.Moreover,we propose an effective adversarial training method for diversity(AT4D),which is a pluggable component that can enhance both the accuracy and diversity of news recommendation results.Extensive experiments on real-world datasets confirm the efficacy of the proposed algorithm in improving both the accuracy and diversity of news recommendations.展开更多
Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal ...Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level,utilizing their knowledge and expertise.However,this process is cumbersome,labor-intensive,and cannot be applied on a large network scale.Recent studies have begun to explore the applicability of recommendation system for urban traffic control,which offer increased control efficiency and scalability.Such a decision recommendation system is complex,with various interdependent components,but a systematic literature review has not yet been conducted.In this work,we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control,demonstrates the utility and efficacy of such a system in the real world using data and knowledgedriven approaches,and discusses the current challenges and potential future directions of this field.展开更多
Knowledge graph can assist in improving recommendation performance and is widely applied in various person-alized recommendation domains.However,existing knowledge-aware recommendation methods face challenges such as ...Knowledge graph can assist in improving recommendation performance and is widely applied in various person-alized recommendation domains.However,existing knowledge-aware recommendation methods face challenges such as weak user-item interaction supervisory signals and noise in the knowledge graph.To tackle these issues,this paper proposes a neighbor information contrast-enhanced recommendation method by adding subtle noise to construct contrast views and employing contrastive learning to strengthen supervisory signals and reduce knowledge noise.Specifically,first,this paper adopts heterogeneous propagation and knowledge-aware attention networks to obtain multi-order neighbor embedding of users and items,mining the high-order neighbor informa-tion of users and items.Next,in the neighbor information,this paper introduces weak noise following a uniform distribution to construct neighbor contrast views,effectively reducing the time overhead of view construction.This paper then performs contrastive learning between neighbor views to promote the uniformity of view information,adjusting the neighbor structure,and achieving the goal of reducing the knowledge noise in the knowledge graph.Finally,this paper introduces multi-task learning to mitigate the problem of weak supervisory signals.To validate the effectiveness of our method,experiments are conducted on theMovieLens-1M,MovieLens-20M,Book-Crossing,and Last-FM datasets.The results showthat compared to the best baselines,our method shows significant improvements in AUC and F1.展开更多
In sub-Saharan Africa(SSA),63%of new human immunodeficiency virus(HIV)infections in 2021 were among women,particularly adolescent girls,and young women.There is a high incidence of HIV among pregnant and lactating wom...In sub-Saharan Africa(SSA),63%of new human immunodeficiency virus(HIV)infections in 2021 were among women,particularly adolescent girls,and young women.There is a high incidence of HIV among pregnant and lactating women(PLW)in SSA.It is estimated that the risk of HIV-acquisition during pregnancy and the postpartum period more than doubles.In this article,we discuss the safety and effectiveness of drugs used for oral HIV pre-exposure prophylaxis(PrEP),considerations for initiating PrEP in PLW,the barriers to initiating and adhering to PrEP among them and suggest recommendations to address these barriers.Tenofovir/emtricitabine,the most widely used combination in SSA,is safe,clinically effective,and cost-effective among PLW.Any PLW who requests PrEP and has no medical contraindications should receive it.PrEP users who are pregnant or lactating may experience barriers to starting and adhering for a variety of reasons,including personal,pill-related,and healthcare facility-related issues.To address the barriers,we recommend an increased provision of information on PrEP to the women and the communities,increasing and/or facilitating access to PrEP among the PLW,and developing strategies to increase adherence.展开更多
The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combinatio...The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms.展开更多
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat...A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.展开更多
BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular compon...BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular components are aligned freehand,without the use of navigation methods.Patient specific instruments(PSI)and three-dimensional(3D)printing of THA placement guides are increasingly used in primary THA to ensure optimal positioning.AIM To summarize the literature on 3D printing in THA and how they improve acetabular component alignment.METHODS PubMed was used to identify and access scientific studies reporting on different 3D printing methods used in THA.Eight studies with 236 hips in 228 patients were included.The studies could be divided into two main categories;3D printed models and 3D printed guides.RESULTS 3D printing in THA helped improve preoperative cup size planning and post-operative Harris hip scores between intervention and control groups(P=0.019,P=0.009).Otherwise,outcome measures were heterogeneous and thus difficult to compare.The overarching consensus between the studies is that the use of 3D guidance tools can assist in improving THA cup positioning and reduce the need for revision THA and the associated costs.CONCLUSION The implementation of 3D printing and PSI for primary THA can significantly improve the positioning accuracy of the acetabular cup component and reduce the number of complications caused by malpositioning.展开更多
Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell t...Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not.Typically,smartphones and their associated sensing devices operate in distributed and unstable environments.Therefore,collecting their data and extracting useful information is a significant challenge.In this context,the aimof this paper is twofold:The first is to analyze human behavior based on the recognition of physical activities.Using the results of physical activity detection and classification,the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities.This system is based on the calculation of calories burned by each user during physical activities.In this way,conclusions can be drawn about a person’s physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts.To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory(LSTM),stacked LSTM,and bidirectional LSTM.Since human activity data contains both spatial and temporal information,we proposed,in this paper,to use of an architecture allowing the extraction of the two types of information simultaneously.While Convolutional Neural Networks(CNN)has an architecture designed for spatial information,our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data.The results obtained achieved an accuracy of 96%.On the other side,the data learned by these algorithms is prone to error and uncertainty.To overcome this constraint and improve performance(96%),we proposed to use the fusion mechanisms.The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making.The Voting and Dempster-Shafer(DS)approaches are employed.The results showed that fused classifiers based on DS theory outperformed individual classifiers(96%)with the highest accuracy level of 98%.Also,the findings disclosed that participants engaging in physical activities are healthy,showcasing a disparity in the distribution of physical activities between men and women.展开更多
With the ever-increasing popularity of Internet of Things(IoT),massive enterprises are attempting to encapsulate their developed outcomes into various lightweight Web Application Programming Interfaces(APIs)that can b...With the ever-increasing popularity of Internet of Things(IoT),massive enterprises are attempting to encapsulate their developed outcomes into various lightweight Web Application Programming Interfaces(APIs)that can be accessible remotely.In this context,finding and writing a list of existing Web APIs that can collectively meet the functional needs of software developers has become a promising approach to economically and easily develop successful mobile applications.However,the number and diversity of candidate IoT Web APIs places an additional burden on application developers’Web API selection decisions,as it is often a challenging task to simultaneously ensure the diversity and compatibility of the final set of Web APIs selected.Considering this challenge and latest successful applications of game theory in IoT,a Diversified and Compatible Web APIs Recommendation approach,namely DivCAR,is put forward in this paper.First of all,to achieve API diversity,DivCAR employs random walk sampling technique on a pre-built“API-API”correlation graph to generate diverse“API-API”correlation subgraphs.Afterwards,with the diverse“API-API”correlation subgraphs,the compatible Web APIs recommendation problem is modeled as a minimum group Steiner tree search problem.A sorted set of multiple compatible and diverse Web APIs are returned to the application developer by solving the minimum group Steiner tree search problem.At last,a set of experiments are designed and implemented on a real dataset crawled from www.programmableweb.com.Experimental results validate the effectiveness and efficiency of our proposed DivCAR approach in balancing the Web APIs recommendation diversity and compatibility.展开更多
Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news text...Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news texts,resulting in unsatisfactory recommendation results.Besides,these traditional methods are more friendly to active users with rich historical behaviors.However,they can not effectively solve the long tail problem of inactive users.To address these issues,this research presents a novel general framework that combines Large Language Models(LLM)and Knowledge Graphs(KG)into traditional methods.To learn the contextual information of news text,we use LLMs’powerful text understanding ability to generate news representations with rich semantic information,and then,the generated news representations are used to enhance the news encoding in traditional methods.In addition,multi-hops relationship of news entities is mined and the structural information of news is encoded using KG,thus alleviating the challenge of long-tail distribution.Experimental results demonstrate that compared with various traditional models,on evaluation indicators such as AUC,MRR,nDCG@5 and nDCG@10,the framework significantly improves the recommendation performance.The successful integration of LLM and KG in our framework has established a feasible way for achieving more accurate personalized news recommendation.Our code is available at https://github.com/Xuan-ZW/LKPNR.展开更多
BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,e...BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,extreme liver resection can be considered a potential option.AIM To explore whether computer-assisted three-dimensional individualized extreme liver resection is safe and feasible for children with HB who still have PMV after a full course of NAC.METHODS We retrospectively collected data from children with HB who underwent surgical resection at our center from June 2013 to June 2023.We then analyzed the detailed clinical and three-dimensional characteristics of children with HB who still had PMV after a full course of NAC.RESULTS Sixty-seven children diagnosed with HB underwent surgical resection.The age at diagnosis was 21.4±18.8 months,and 40 boys and 27 girls were included.Fifty-nine(88.1%)patients had a single tumor,39(58.2%)of which was located in the right lobe of the liver.A total of 47 patients(70.1%)had PRE-TEXT III or IV.Thirty-nine patients(58.2%)underwent delayed resection.After a full course of NAC,16 patients still had close PMV(within 1 cm in two patients,touching in 11 patients,compressing in four patients,and showing tumor thrombus in three patients).There were 6 patients of tumors in the middle lobe of the liver,and four of those patients exhibited liver anatomy variations.These 16 children underwent extreme liver resection after comprehensive preoperative evaluation.Intraoperative procedures were performed according to the preoperative plan,and the operations were successfully performed.Currently,the 3-year event-free survival of 67 children with HB is 88%.Among the 16 children who underwent extreme liver resection,three experienced recurrence,and one died due to multiple metastases.CONCLUSION Extreme liver resection for HB that is still in close PMV after a full course of NAC is both safe and feasible.This approach not only reduces the necessity for liver transplantation but also results in a favorable prognosis.Individualized three-dimensional surgical planning is beneficial for accurate and complete resection of HB,particularly for assessing vascular involvement,remnant liver volume and anatomical variations.展开更多
Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.Howev...Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.展开更多
Point-of-interest(POI)recommendations in location-based social networks(LBSNs)have developed rapidly by incorporating feature information and deep learning methods.However,most studies have failed to accurately reflec...Point-of-interest(POI)recommendations in location-based social networks(LBSNs)have developed rapidly by incorporating feature information and deep learning methods.However,most studies have failed to accurately reflect different users’preferences,in particular,the short-term preferences of inactive users.To better learn user preferences,in this study,we propose a long-short-term-preference-based adaptive successive POI recommendation(LSTP-ASR)method by combining trajectory sequence processing,long short-term preference learning,and spatiotemporal context.First,the check-in trajectory sequences are adaptively divided into recent and historical sequences according to a dynamic time window.Subsequently,an adaptive filling strategy is used to expand the recent check-in sequences of users with inactive check-in behavior using those of similar active users.We further propose an adaptive learning model to accurately extract long short-term preferences of users to establish an efficient successive POI recommendation system.A spatiotemporal-context-based recurrent neural network and temporal-context-based long short-term memory network are used to model the users’recent and historical checkin trajectory sequences,respectively.Extensive experiments on the Foursquare and Gowalla datasets reveal that the proposed method outperforms several other baseline methods in terms of three evaluation metrics.More specifically,LSTP-ASR outperforms the previously best baseline method(RTPM)with a 17.15%and 20.62%average improvement on the Foursquare and Gowalla datasets in terms of the Fβmetric,respectively.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 12072337)。
文摘Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.
基金supported by the National Natural Science Foundation of China (No. 52275291)the Fundamental Research Funds for the Central Universitiesthe Program for Innovation Team of Shaanxi Province,China (No. 2023-CX-TD-17)
文摘Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.
基金This work was supported by grants fromthe Sichuan Science and Technology Program(2023NSFSC1877).
文摘Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care.
基金supported by the National Natural Science Foundation of China,No.82171380(to CD)Jiangsu Students’Platform for Innovation and Entrepreneurship Training Program,No.202110304098Y(to DJ)。
文摘Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
基金Project supported by the National Natural Science Foundation of China(Grant No.T2293771)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘With the rapid growth of manuscript submissions,finding eligible reviewers for every submission has become a heavy task.Recommender systems are powerful tools developed in computer science and information science to deal with this problem.However,most existing approaches resort to text mining techniques to match manuscripts with potential reviewers,which require high-quality textual information to perform well.In this paper,we propose a reviewer recommendation algorithm based on a network diffusion process on a scholar-paper multilayer network,with no requirement for textual information.The network incorporates the relationship of scholar-paper pairs,the collaboration among scholars,and the bibliographic coupling among papers.Experimental results show that our proposed algorithm outperforms other state-of-the-art recommendation methods that use graph random walk and matrix factorization and methods that use machine learning and natural language processing,with improvements of over 7.62%in recall,5.66%in hit rate,and 47.53%in ranking score.Our work sheds light on the effectiveness of multilayer network diffusion-based methods in the reviewer recommendation problem,which will help to facilitate the peer-review process and promote information retrieval research in other practical scenes.
基金supported by the National Natural Science Foundation of China(Grant No.62277032,62231017,62071254)Education Scientific Planning Project of Jiangsu Province(Grant No.B/2022/01/150)Jiangsu Provincial Qinglan Project,the Special Fund for Urban and Rural Construction and Development in Jiangsu Province.
文摘More and more accounts or devices are shared by multiple users in video applications,which makes it difficult to provide recommendation service.Existing recommendation schemes overlook multiuser sharing scenarios,and they cannot make effective use of the mixed information generated by multi-user when exploring users’potential interests.To solve these problems,this paper proposes an adaptive program recommendation system for multi-user sharing environment.Specifically,we first design an offline periodic identification module by building multi-user features and periodically predicting target user in future sessions,which can separate the profile of target user from mixed log records.Subsequently,an online recommendation module with adaptive timevarying exploration strategy is constructed by jointly using personal information and multi-user social information provided by identification module.On one hand,to learn the dynamic changes in user-interest,a time-varying linear upper confidence bound(LinUCB)based on personal information is designed.On the other hand,to reduce the risk of exploration,a timeinvariant LinUCB based on separated multi-user social information from one account/device is proposed to compute the quality scores of programs for each user,which is integrated into the time-varying LinUCB by cross-weighting strategy.Finally,experimental results validate the efficiency of the proposed scheme.
文摘As living standards improve,the demand for artworks has been escalating,transcending beyond the realm of mere basic human necessities.However,amidst an extensive array of artwork choices,users often struggle to swiftly and accurately identify their preferred piece.In such scenarios,a recommendation system can be invaluable,assisting users in promptly pinpointing the desired artworks for better service design.Despite the escalating demand for artwork recommendation systems,current research fails to adequately meet these needs.Predominantly,existing artwork recommendation methodologies tend to disregard users’implicit interests,thereby overestimating their capability to articulate their preferences in full and often neglecting the nuances of their diverse interests.In response to these challenges,we have developed a weighted artwork correlation graph and put forth an embedding-based keyword-driven artwork search and recommendation methodology.Our approach transforms the keywords that delineate user interests into word embedding vectors.This allows for an effective distinction between the user’s core and peripheral interests.Subsequently,we employ a dynamic programming algorithm to extract artworks from the correlation graph,thereby obtaining artworks that align with the user’s explicit keywords and implicit interests.We have conducted an array of experiments using real-world datasets to validate our approach.The results attest to the superiority of our method in terms of its efficacy in searching and recommending artworks.
基金This research was funded by Beijing Municipal Social Science Foundation(23YTB031)the Fundamental Research Funds for the Central Universities(CUC23ZDTJ005).
文摘Users’interests are often diverse and multi-grained,with their underlying intents even more so.Effectively captur-ing users’interests and uncovering the relationships between diverse interests are key to news recommendation.Meanwhile,diversity is an important metric for evaluating news recommendation algorithms,as users tend to reject excessive homogeneous information in their recommendation lists.However,recommendation models themselves lack diversity awareness,making it challenging to achieve a good balance between the accuracy and diversity of news recommendations.In this paper,we propose a news recommendation algorithm that achieves good performance in both accuracy and diversity.Unlike most existing works that solely optimize accuracy or employ more features to meet diversity,the proposed algorithm leverages the diversity-aware capability of the model.First,we introduce an augmented user model to fully capture user intent and the behavioral guidance they might undergo as a result.Specifically,we focus on the relationship between the original clicked news and the augmented clicked news.Moreover,we propose an effective adversarial training method for diversity(AT4D),which is a pluggable component that can enhance both the accuracy and diversity of news recommendation results.Extensive experiments on real-world datasets confirm the efficacy of the proposed algorithm in improving both the accuracy and diversity of news recommendations.
基金supported by the National Key Research and Development Program of China(2021YFB2900200)the Key Research and Development Program of Science and Technology Department of Zhejiang Province(2022C01121)Zhejiang Provincial Department of Transport Research Project(ZJXL-JTT-202223).
文摘Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level,utilizing their knowledge and expertise.However,this process is cumbersome,labor-intensive,and cannot be applied on a large network scale.Recent studies have begun to explore the applicability of recommendation system for urban traffic control,which offer increased control efficiency and scalability.Such a decision recommendation system is complex,with various interdependent components,but a systematic literature review has not yet been conducted.In this work,we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control,demonstrates the utility and efficacy of such a system in the real world using data and knowledgedriven approaches,and discusses the current challenges and potential future directions of this field.
基金supported by the Natural Science Foundation of Ningxia Province(No.2023AAC03316)the Ningxia Hui Autonomous Region Education Department Higher Edu-cation Key Scientific Research Project(No.NYG2022051)the North Minzu University Graduate Innovation Project(YCX23146).
文摘Knowledge graph can assist in improving recommendation performance and is widely applied in various person-alized recommendation domains.However,existing knowledge-aware recommendation methods face challenges such as weak user-item interaction supervisory signals and noise in the knowledge graph.To tackle these issues,this paper proposes a neighbor information contrast-enhanced recommendation method by adding subtle noise to construct contrast views and employing contrastive learning to strengthen supervisory signals and reduce knowledge noise.Specifically,first,this paper adopts heterogeneous propagation and knowledge-aware attention networks to obtain multi-order neighbor embedding of users and items,mining the high-order neighbor informa-tion of users and items.Next,in the neighbor information,this paper introduces weak noise following a uniform distribution to construct neighbor contrast views,effectively reducing the time overhead of view construction.This paper then performs contrastive learning between neighbor views to promote the uniformity of view information,adjusting the neighbor structure,and achieving the goal of reducing the knowledge noise in the knowledge graph.Finally,this paper introduces multi-task learning to mitigate the problem of weak supervisory signals.To validate the effectiveness of our method,experiments are conducted on theMovieLens-1M,MovieLens-20M,Book-Crossing,and Last-FM datasets.The results showthat compared to the best baselines,our method shows significant improvements in AUC and F1.
文摘In sub-Saharan Africa(SSA),63%of new human immunodeficiency virus(HIV)infections in 2021 were among women,particularly adolescent girls,and young women.There is a high incidence of HIV among pregnant and lactating women(PLW)in SSA.It is estimated that the risk of HIV-acquisition during pregnancy and the postpartum period more than doubles.In this article,we discuss the safety and effectiveness of drugs used for oral HIV pre-exposure prophylaxis(PrEP),considerations for initiating PrEP in PLW,the barriers to initiating and adhering to PrEP among them and suggest recommendations to address these barriers.Tenofovir/emtricitabine,the most widely used combination in SSA,is safe,clinically effective,and cost-effective among PLW.Any PLW who requests PrEP and has no medical contraindications should receive it.PrEP users who are pregnant or lactating may experience barriers to starting and adhering for a variety of reasons,including personal,pill-related,and healthcare facility-related issues.To address the barriers,we recommend an increased provision of information on PrEP to the women and the communities,increasing and/or facilitating access to PrEP among the PLW,and developing strategies to increase adherence.
基金supported by the Fundamental Research Funds for Higher Education Institutions of Heilongjiang Province(145209126)the Heilongjiang Province Higher Education Teaching Reform Project under Grant No.SJGY20200770.
文摘The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2018YFE0309100 and 2019YFE03010004)National Natural Science Foundation of China(No.51821005)。
文摘A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.
文摘BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular components are aligned freehand,without the use of navigation methods.Patient specific instruments(PSI)and three-dimensional(3D)printing of THA placement guides are increasingly used in primary THA to ensure optimal positioning.AIM To summarize the literature on 3D printing in THA and how they improve acetabular component alignment.METHODS PubMed was used to identify and access scientific studies reporting on different 3D printing methods used in THA.Eight studies with 236 hips in 228 patients were included.The studies could be divided into two main categories;3D printed models and 3D printed guides.RESULTS 3D printing in THA helped improve preoperative cup size planning and post-operative Harris hip scores between intervention and control groups(P=0.019,P=0.009).Otherwise,outcome measures were heterogeneous and thus difficult to compare.The overarching consensus between the studies is that the use of 3D guidance tools can assist in improving THA cup positioning and reduce the need for revision THA and the associated costs.CONCLUSION The implementation of 3D printing and PSI for primary THA can significantly improve the positioning accuracy of the acetabular cup component and reduce the number of complications caused by malpositioning.
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number 223202.
文摘Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not.Typically,smartphones and their associated sensing devices operate in distributed and unstable environments.Therefore,collecting their data and extracting useful information is a significant challenge.In this context,the aimof this paper is twofold:The first is to analyze human behavior based on the recognition of physical activities.Using the results of physical activity detection and classification,the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities.This system is based on the calculation of calories burned by each user during physical activities.In this way,conclusions can be drawn about a person’s physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts.To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory(LSTM),stacked LSTM,and bidirectional LSTM.Since human activity data contains both spatial and temporal information,we proposed,in this paper,to use of an architecture allowing the extraction of the two types of information simultaneously.While Convolutional Neural Networks(CNN)has an architecture designed for spatial information,our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data.The results obtained achieved an accuracy of 96%.On the other side,the data learned by these algorithms is prone to error and uncertainty.To overcome this constraint and improve performance(96%),we proposed to use the fusion mechanisms.The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making.The Voting and Dempster-Shafer(DS)approaches are employed.The results showed that fused classifiers based on DS theory outperformed individual classifiers(96%)with the highest accuracy level of 98%.Also,the findings disclosed that participants engaging in physical activities are healthy,showcasing a disparity in the distribution of physical activities between men and women.
文摘With the ever-increasing popularity of Internet of Things(IoT),massive enterprises are attempting to encapsulate their developed outcomes into various lightweight Web Application Programming Interfaces(APIs)that can be accessible remotely.In this context,finding and writing a list of existing Web APIs that can collectively meet the functional needs of software developers has become a promising approach to economically and easily develop successful mobile applications.However,the number and diversity of candidate IoT Web APIs places an additional burden on application developers’Web API selection decisions,as it is often a challenging task to simultaneously ensure the diversity and compatibility of the final set of Web APIs selected.Considering this challenge and latest successful applications of game theory in IoT,a Diversified and Compatible Web APIs Recommendation approach,namely DivCAR,is put forward in this paper.First of all,to achieve API diversity,DivCAR employs random walk sampling technique on a pre-built“API-API”correlation graph to generate diverse“API-API”correlation subgraphs.Afterwards,with the diverse“API-API”correlation subgraphs,the compatible Web APIs recommendation problem is modeled as a minimum group Steiner tree search problem.A sorted set of multiple compatible and diverse Web APIs are returned to the application developer by solving the minimum group Steiner tree search problem.At last,a set of experiments are designed and implemented on a real dataset crawled from www.programmableweb.com.Experimental results validate the effectiveness and efficiency of our proposed DivCAR approach in balancing the Web APIs recommendation diversity and compatibility.
基金supported by National Key R&D Program of China(2022QY2000-02).
文摘Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems.Traditional methods are usually difficult to learn and acquire complex semantic information in news texts,resulting in unsatisfactory recommendation results.Besides,these traditional methods are more friendly to active users with rich historical behaviors.However,they can not effectively solve the long tail problem of inactive users.To address these issues,this research presents a novel general framework that combines Large Language Models(LLM)and Knowledge Graphs(KG)into traditional methods.To learn the contextual information of news text,we use LLMs’powerful text understanding ability to generate news representations with rich semantic information,and then,the generated news representations are used to enhance the news encoding in traditional methods.In addition,multi-hops relationship of news entities is mined and the structural information of news is encoded using KG,thus alleviating the challenge of long-tail distribution.Experimental results demonstrate that compared with various traditional models,on evaluation indicators such as AUC,MRR,nDCG@5 and nDCG@10,the framework significantly improves the recommendation performance.The successful integration of LLM and KG in our framework has established a feasible way for achieving more accurate personalized news recommendation.Our code is available at https://github.com/Xuan-ZW/LKPNR.
基金Supported by National Natural Science Foundation of China,No.82293665Anhui Provincial Department of Education University Research Project,No.2023AH051763.
文摘BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,extreme liver resection can be considered a potential option.AIM To explore whether computer-assisted three-dimensional individualized extreme liver resection is safe and feasible for children with HB who still have PMV after a full course of NAC.METHODS We retrospectively collected data from children with HB who underwent surgical resection at our center from June 2013 to June 2023.We then analyzed the detailed clinical and three-dimensional characteristics of children with HB who still had PMV after a full course of NAC.RESULTS Sixty-seven children diagnosed with HB underwent surgical resection.The age at diagnosis was 21.4±18.8 months,and 40 boys and 27 girls were included.Fifty-nine(88.1%)patients had a single tumor,39(58.2%)of which was located in the right lobe of the liver.A total of 47 patients(70.1%)had PRE-TEXT III or IV.Thirty-nine patients(58.2%)underwent delayed resection.After a full course of NAC,16 patients still had close PMV(within 1 cm in two patients,touching in 11 patients,compressing in four patients,and showing tumor thrombus in three patients).There were 6 patients of tumors in the middle lobe of the liver,and four of those patients exhibited liver anatomy variations.These 16 children underwent extreme liver resection after comprehensive preoperative evaluation.Intraoperative procedures were performed according to the preoperative plan,and the operations were successfully performed.Currently,the 3-year event-free survival of 67 children with HB is 88%.Among the 16 children who underwent extreme liver resection,three experienced recurrence,and one died due to multiple metastases.CONCLUSION Extreme liver resection for HB that is still in close PMV after a full course of NAC is both safe and feasible.This approach not only reduces the necessity for liver transplantation but also results in a favorable prognosis.Individualized three-dimensional surgical planning is beneficial for accurate and complete resection of HB,particularly for assessing vascular involvement,remnant liver volume and anatomical variations.
文摘Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.
基金the National Natural Science Foundation of China(Grant Nos.62102347,62376041,62172352)Guangdong Ocean University Research Fund Project(Grant No.060302102304).
文摘Point-of-interest(POI)recommendations in location-based social networks(LBSNs)have developed rapidly by incorporating feature information and deep learning methods.However,most studies have failed to accurately reflect different users’preferences,in particular,the short-term preferences of inactive users.To better learn user preferences,in this study,we propose a long-short-term-preference-based adaptive successive POI recommendation(LSTP-ASR)method by combining trajectory sequence processing,long short-term preference learning,and spatiotemporal context.First,the check-in trajectory sequences are adaptively divided into recent and historical sequences according to a dynamic time window.Subsequently,an adaptive filling strategy is used to expand the recent check-in sequences of users with inactive check-in behavior using those of similar active users.We further propose an adaptive learning model to accurately extract long short-term preferences of users to establish an efficient successive POI recommendation system.A spatiotemporal-context-based recurrent neural network and temporal-context-based long short-term memory network are used to model the users’recent and historical checkin trajectory sequences,respectively.Extensive experiments on the Foursquare and Gowalla datasets reveal that the proposed method outperforms several other baseline methods in terms of three evaluation metrics.More specifically,LSTP-ASR outperforms the previously best baseline method(RTPM)with a 17.15%and 20.62%average improvement on the Foursquare and Gowalla datasets in terms of the Fβmetric,respectively.