期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Preparation and Characterization of Three-dimensional Photocatalyst——TiO_2 Particulate Film Immobilized on Activated Carbon Fibers 被引量:1
1
作者 傅平丰 栾勇 +2 位作者 戴学刚 张建强 张安华 《过程工程学报》 EI CAS CSCD 北大核心 2006年第3期482-486,共5页
关键词 liquid phase deposition TiO2 particulate film activated carbon fibers three-dimensional structure photocatalytic activity
下载PDF
Effects of Fiber Volume Fraction on Damping Properties of Three-Dimensional and Five-Directional Braided Composites 被引量:1
2
作者 高岩 李嘉禄 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期458-465,共8页
The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental mod... The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental modal analysis method. Meanwhile,carbon fiber plain woven laminated / epoxy resin composites with different fiber volume fraction were concerned for comparison. The experimental result of braided specimens shows that the first three orders of natural frequency increase and the first three orders of the damping ratios of specimens decrease, when the fiber volume fraction increases. Furthermore,larger fiber volume fraction will be valuable for the better anti-exiting property of braided composites,and get an opposite effect on dissipation of vibration energy. The fiber volume fraction is an important factor for vibration performance design of braided composites. The comparison between the braided specimens and laminated specimens reveals that 3D braided composites have a wider range of damping properties than laminated composites with the same fiber volume fractions. 展开更多
关键词 damping properties experimental modal analysis three-dimensional and five-directional(3D-5Dir) braided composites free vibration characters fiber volume fraction
下载PDF
Three-dimensional simulation of sintering crunodes of metal powders or fibers by level set method 被引量:1
3
作者 谌东东 郑洲顺 +2 位作者 王建忠 汤慧萍 曲选辉 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2446-2455,共10页
The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equatio... The difference of sintering crunodes of metal powders and fibers is discussed. The mathematical model of the surface diffusion described by the difference in mean curvature is defined as a Hamilton-Jacobi-type equation, and the model is numerically solved by the level set method. The three-dimensional numerical simulations of two metal powders and fibers(the fiber angle is 0° or 90°) are implemented by this mathematical model, respectively. The numerical simulation results accord with the experimental ones. The sintering neck growth trends of metal powders and metal fibers are similar. The sintering neck radius of metal fibers is larger than that of metal powders. The difference of the neck radius is caused by the difference of geometric structure which makes an important influence on the curvature affecting the migration rate of atoms. 展开更多
关键词 metal fiber metal powder sintering crunodes mean curvature three-dimensional simulation
下载PDF
Eyewear-style three-dimensional endoscope derived from microstructured polymer fiber with the function of image transmission
4
作者 孔德鹏 王丽莉 +2 位作者 贺正权 储九荣 马天 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期145-148,共4页
A method of fabricating multi-core polymer image fiber is proposed.Image fiber preform is fabricated by stacking thousands of polymer fibers each with a 0.25-mm diameter orderly in a die by only one step.The preform i... A method of fabricating multi-core polymer image fiber is proposed.Image fiber preform is fabricated by stacking thousands of polymer fibers each with a 0.25-mm diameter orderly in a die by only one step.The preform is heated and stretched into image fiber with an outer diameter of 2mm.Then a portable eyewear-style three-dimensional(3D) endoscope system is designed,fabricated,and characterized.This endoscopic system is composed of two graded index lenses,two pieces of 0.35-m length image guide fibers,and a pair of oculars.It shows good ?exibility and portability,and can provide the depth information accordingly. 展开更多
关键词 three-dimensional endoscope image fiber POLYMER
下载PDF
Fabrication and formation mechanism of NbC_x-C three-dimensional netted fibers
5
作者 GuiyingXu JianbaoLi 《Journal of University of Science and Technology Beijing》 CSCD 2002年第2期121-126,共6页
Micrometer NbC_x-C three-dimensional netted fibers were synthesized by thecarbothermal method under 0.1 MPa of N_2 ambient atmosphere at a relatively low temperature. Rawmaterials were commercial powders of Nb_2O_5 (9... Micrometer NbC_x-C three-dimensional netted fibers were synthesized by thecarbothermal method under 0.1 MPa of N_2 ambient atmosphere at a relatively low temperature. Rawmaterials were commercial powders of Nb_2O_5 (99.95 percent), reactive carbon (99.99 percent), NaCl(99.95 percent) and sucrose (99.94 percent). The relationship of the fabrication processing with thecomposition, crystal structure and morphology of fibers was investigated. The formation mechanismwas also proposed and discussed. 展开更多
关键词 NbC_x-C three-dimensional netted fibers FABRICATION MORPHOLOGY formation mechanism
下载PDF
Using Acoustic Emissions to Detect Damage in Three-Dimensional Braided Composites
6
作者 李怡 万振凯 李嘉禄 《Journal of Donghua University(English Edition)》 EI CAS 2010年第4期589-592,共4页
Three-dimensional(3D)braided composites with better properties have been used in some particular industries.Some have had obvious signs of crack when they are braided.Others have had catastrophic failures occuring wit... Three-dimensional(3D)braided composites with better properties have been used in some particular industries.Some have had obvious signs of crack when they are braided.Others have had catastrophic failures occuring without warning.A new methodology for the analysis of failure modes in composite materials by means of acoustic emission techniques has been developed.The occurrence of fiber-breakage during tensile loading tests has been observed by the acoustic emission technology.Using acoustic emission technology is investigated as a means of monitoring 3D braided composites structures,detecting damage,and predicting impending damage.Some of the findings of the research project were presented. 展开更多
关键词 three-dimensional(3D)braided composites acoustic emission fiber fragmentation
下载PDF
CFD Simulation of the Filtration Performance of Fibrous Filter Considering Fiber Electric Potential Field 被引量:2
7
作者 Lei Hou Ayang Zhou +3 位作者 Xiao He Wei Li Yan Fu Jinli Zhang 《Transactions of Tianjin University》 EI CAS 2019年第5期437-450,共14页
Aiming at disclosing the quantitative e ects of Coulomb forces on the ltration e ciency of aerosol particles, a three- dimensional random ber model was established to describe the microstructure of brous lters. Then, ... Aiming at disclosing the quantitative e ects of Coulomb forces on the ltration e ciency of aerosol particles, a three- dimensional random ber model was established to describe the microstructure of brous lters. Then, computational mod- els including the ow model, particle model, and electric eld model were constructed to estimate the ltration e ciency using the Fluent custom user-de ned function program, neglecting the non-uniformity of the ber potential and the particle charge distribution. The simulation results using the established models agreed with the data in the literature. In particular, the electric eld force was found to be one of the important factors required to improve the ltration e ciency estimation accuracy for the ultra ne particles. Moreover, the variation tendencies of the ltration e ciency and the pressure drop of brous lters were studied based on the in uence factors of the ber potential, particle charge-to-mass ratio, solid volume fraction, ber diameter, and face velocity. The established models and estimated results will provide important guidance on the design of high-e ciency particulate air lters for aerosol particles. 展开更多
关键词 FILTRATION efficiency COULOMB force three-dimensional random fiber model INTERCEPTION CAPTURE BROWNIAN diffusion
下载PDF
Ablation Property of Ceramics/Carbon Fibers/Resin Novel Super-hybrid Composite
8
作者 JunQIU XiaomingCAO +1 位作者 ChongTIAN JinsongZHANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第1期92-94,共3页
A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybr... A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybrid composite is studied. The results show that the NSHC has less linear ablation rate compared with pure BPR and CF/BPR composite, for example, its linear ablation rate is 50% of CF/BPR at the same fiber content. Mass ablation rate of the NSHC is slightly lower than that of pure BPR and CF/BPR composite because of their difference in the density. Scanning electron microscopic analysis indicates that 3DRC can increase anti-erosion capacity of materials because its special reticulated structure can control the deformation of materials and strengthen the stability of integral structure. 展开更多
关键词 Ablation performance Carbon fiber Modified phenolic resin three-dimensional reticulated SiC ceramic Super-hybrid composite materials
下载PDF
Mechanical behavior and permeability properties of sustainable and high-performance anisotropic three-dimensional printable concrete
9
作者 Fatih OZALP 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第11期1662-1674,共13页
Three-dimensional printable concrete requires further development owing to the challenges encountered,including its brittle behavior,high cement requirement for the buildability of layers,and anisotropic behavior in d... Three-dimensional printable concrete requires further development owing to the challenges encountered,including its brittle behavior,high cement requirement for the buildability of layers,and anisotropic behavior in different directions.The aim of this study is to overcome these challenges.First,three-dimensional printable concrete mixtures were prepared using silica fume,ground blast furnace slag,and metakaolin,instead of cement,to reduce the amount of cement.Subsequently,the rheological and mechanical behaviors of these concretes were investigated.Second,threedimensional printable concrete mixtures were prepared using 6-mm-long steel and synthetic fibers to eliminate brittleness and determine the effect of those fibers on the anisotropic behavior of the concrete.As a result of this study,it is understood that printable concretes with extremely low permeability and high buildability can be achieved using mineral additives.In addition,results showed that three-dimensional concrete samples containing short steel fibers achieve fracture energies up to 36 times greater than that of plain concrete.Meanwhile,its characteristic length values,as indicators of ductility,are 22 times higher than those of plain concrete.The weakest strength was recorded at the interfaces between layers.The bending and splitting tensile strengths of three-dimensional printed plain concrete samples were 15%and 19%lower than those of casted samples,respectively.However,the addition of fibers improved the mechanical strength of the interfaces significantly. 展开更多
关键词 three-dimensional concrete printing RHEOLOGY high performance mineral additives ANISOTROPY fiber
原文传递
Advanced treatment of wet-spun acrylic fiber manufacturing wastewater using three-dimensional electrochemical oxidation 被引量:9
10
作者 Tianlong Zheng, Qunhui Wang +4 位作者 Zhining Shi Yue Fang Shanshan Shi Juan Wang Chuanfu Wu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第12期21-31,共11页
A three-dimensional electrochemical oxidation (3D-EC) reactor with introduction of activated carbon (AC) as particle micro-electrodes was apphed for the advanced treatment of secondary wastewater effluent of a wet... A three-dimensional electrochemical oxidation (3D-EC) reactor with introduction of activated carbon (AC) as particle micro-electrodes was apphed for the advanced treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under the optimized conditions (current density of 500 A/m2, circulation rate of 5 mL/min, AC dosage of 50 g, and chloride concentration of 1.0 g/L), the average removal efficiencies of chemical oxygen demand (CODer), NH3-N, total organic carbon (TOC), and ultraviolet absorption at 254 nm (UV2s4) of the 3D-EC reactor were 64.5%, 60.8%, 46.4%, and 64.8%, respectively; while the corresponding effluent concentrations of CODcr, NH3-N, TOC, and UV2s4 were 76.6, 20.1, and 42.5 mg/L, and 0.08 Abs/cm, respectively. The effluent concentration of CODer was less than 100 mg/L, which showed that the treated wastewater satisfied the demand of the integrated wastewater discharge standard (GB 8978-1996). The 3D-EC process remarkably improved the treatment efficiencies with synergistic effects for CODer, NH3-N, TOC, and UV2s4 during the stable stage of 44.5%, 38.8%, 27.2%, and 10.9%, respectively, as compared with the sum of the efficiencies of a two-dimensional electrochemical oxidation (2D-EC) reactor and an AC adsorption process, which was ascribed to the numerous micro-electrodes of AC in the 3D-EC reactor. Gas chromatography mass spectrometry (GC-MS) analysis revealed that electro- chemical treatment did not generate more toxic organics, and it was proved that the increase in acute biotoxicity was caused primarily by the production of free chlorine. 展开更多
关键词 Advanced treatment Synergistic effect three-dimensional electrochemicaloxidation Wet-spun acrylic fiber wastewater
原文传递
Designing metal-organic framework fiber network reinforced polymer electrolytes to provide continuous ion transport in solid state lithium metal batteries
11
作者 Wanqing Fan Ying Huang +3 位作者 Meng Yu Kaihang She Jingren Gou Zheng Zhang 《Nano Research》 SCIE EI CSCD 2024年第4期2719-2727,共9页
Polyethylene oxide(PEO)-based solid-state electrolytes are considered ideal for electrolyte materials in solid-state lithium metal batteries(SSLMBs).However,practical applications are hindered by the lower conductivit... Polyethylene oxide(PEO)-based solid-state electrolytes are considered ideal for electrolyte materials in solid-state lithium metal batteries(SSLMBs).However,practical applications are hindered by the lower conductivity and poor interfacial stability.Here,we propose a strategy to construct a three-dimensional(3D)fiber network of metal-organic frameworks(MOFs).Composite solid electrolytes(CSEs)with continuous ion transport pathways were fabricated by filling a PEO polymer matrix in fibers containing interconnected MOFs.This 3D fiber network provides a fast Li+transport path and effectively improves the ionic conductivity(1.36×10^(-4) S·cm^(-1),30℃).In addition,the network of interconnected MOFs not only effectively traps the anions,but also provides sufficient mechanical strength to prevent the growth of Li dendrites.Benefiting from the advantages of structural design,the CSEs stabilize the Li/electrolyte interface and extend the cycle life of the Li-symmetric cells to 3000 h.The assembled SSLMBs exhibit excellent cycling performance at both room and high temperatures.In addition,the constructed pouch cells can provide an areal capacity of 0.62 mA·h·cm^(-2),which can still operate under extreme conditions.This work provides a new strategy for the design of CSEs with continuous structure and stable operation of SSLMBs. 展开更多
关键词 polyethylene oxide(PEO) solid-state lithium metal batteries(SSLMBs) three-dimensional fiber network composite solid electrolytes(CSEs)
原文传递
Filter Paper-Derived Three-Dimensional Carbon Fibers Film Supported Fe3O4 as a Superior Binder-Free Anode Material for High Performance Lithium-Ion Batteries
12
作者 PENG Xue CUI Dongming +2 位作者 ZHENG Zhong MA Qian YUAN Liangjie 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第5期403-411,共9页
Highly uniform and tight adhering of Fe3O4 particles on carbon fiber film(Fe3O4/CFF) is achieved through a simple in-situ thermal oxidation method. Particularly, 3D CFF with interconnected structure can shorten tran... Highly uniform and tight adhering of Fe3O4 particles on carbon fiber film(Fe3O4/CFF) is achieved through a simple in-situ thermal oxidation method. Particularly, 3D CFF with interconnected structure can shorten transfer path and buffer the volume expansion during charge-discharge cycling. Herein, the obtained Fe3O4/CFF anode exhibits a stable cycling performance and excellent high rate capability. The cell delivers a reversible capacity of 1 711 m A·g^(–1) at a current density of 100 m A·g^(–1) after 100 cycles. Even at a high rate density of 2 A·g^(–1), the specific capacity also can maintain 1034 m A·g^(–1) after 100 cycles. The simplified fabrication is featured with low-cost and this binder-free perspective holds great potential in mass-production of high-performance metal oxide electrochemical devices. 展开更多
关键词 carbon fibers film FE3O4 three-dimensional binderfree lithium-ion batteries
原文传递
Sustainable and untethered soft robots created using printable and recyclable ferromagnetic fibers
13
作者 Wei Tang Yidan Gao +4 位作者 Zeyu Dong Dong Han Vadim V.Gorodov Elena Y.Kramarenko Jun Zou 《Bio-Design and Manufacturing》 SCIE EI CAS 2024年第6期926-937,共12页
Integrated printing of magnetic soft robots with complex structures using recyclable materials to achieve sustainability of the soft robots remains a persistent challenge.Here,we propose a kind of ferromagnetic fibers... Integrated printing of magnetic soft robots with complex structures using recyclable materials to achieve sustainability of the soft robots remains a persistent challenge.Here,we propose a kind of ferromagnetic fibers that can be used to print soft robots with complex structures.These ferromagnetic fibers are recyclable and can make soft robots sustainable.The ferromagnetic fibers based on thermoplastic polyurethane(TPU)/NdFeB hybrid particles are extruded by an extruder.We use a desktop three-dimensional(3D)printer to demonstrate the feasibility of printing two-dimensional(2D)and complex 3D soft robots.These printed soft robots can be recycled and reprinted into new robots once their tasks are completed.Moreover,these robots show almost no difference in actuation capability compared to prior versions and have new functions.Successful applications include lifting,grasping,and moving objects,and these functions can be operated untethered wirelessly.In addition,the locomotion of the magnetic soft robot in a human stomach model shows the prospect of medical applications.Overall,these fully recyclable ferromagnetic fibers pave the way for printing and reprinting sustainable soft robots while also effectively reducing e-waste and robotics waste materials,which is important for resource conservation and environmental protection. 展开更多
关键词 Ferromagnetic fibers Sustainable soft robots three-dimensional printing Recyclable soft materials Medical applications
下载PDF
Ablation Performance of a Novel Super-hybrid Composite 被引量:3
14
作者 JunQIU XiaomingCAO +1 位作者 ChongTIAN JinsongZHANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第2期269-273,共5页
A novel super-hybrid composite (NSHC) was boron-modified phenolic resin (BPR) with three-dimensional reticulated SiC ceramic (3DRC) and high silica fibers. Ablation performance of the NSHC was studied. The results sho... A novel super-hybrid composite (NSHC) was boron-modified phenolic resin (BPR) with three-dimensional reticulated SiC ceramic (3DRC) and high silica fibers. Ablation performance of the NSHC was studied. The results show that the linear ablation rate of NSHC was lower than that of pure BPR and the high silica/BPR composite. Its linear ablation rate is 1/17 of the high silica/BPR. Mass ablation rate of the NSHC is very close to that of the pure BPR and the high silica/BPR composite. Scanning electron microscope (SEM) analysis indicates that 3DRC has scarcely changed its shape at the ablation temperature. Its special reticulated structure can restrict the materials deformation and prevent high velocity heat flow from eroding the surface of the materials largely and thus increase ablation resistance of the NSHC. 展开更多
关键词 Ablation performance High silica fiber Modified phenolic resin three-dimensional reticulated SiC ceramic Super-hybrid composite materials
下载PDF
Scanning electron microscopic observation:three-dimensional architecture of the collagen in hepatic fibrosis rats 被引量:1
15
作者 WANG Xiao-hong ZHAO Jing ZHANG Wei-guang ZHANG Li-ying, MA Rui-qiong WANG Li-qin ZHANG Shu-yong TIAN Long 《Chinese Medical Journal》 SCIE CAS CSCD 2007年第4期308-312,共5页
Background In the process of hepatic fibrosis, the accumulation of collagen fibers is strongly related to the hepatic function. The aim of this study was to investigate the three-dimensional architecture of the collag... Background In the process of hepatic fibrosis, the accumulation of collagen fibers is strongly related to the hepatic function. The aim of this study was to investigate the three-dimensional architecture of the collagen network in the liver of rats with hepatic fibrosis. Methods Healthy adult male Wistar rats (n=32) were randomly divided into a control group (n=16) and a hepatic fibrosis group (n=16). In the control group, the rats were treated with peanut oil while the rats in hepatic fibrosis group were treated for 10 weeks with 60% CCI4 diluted in peanut oil. The quantity of collagen fibers was detected by Western blotting; distribution of the collagen was detected by sirius red staining and polarized microscope; the three-dimensional architecture of collagen in the liver was observed under the scanning electron microscope after fixed tissues were treated with cell-maceration using NaOH. Statistical analysis was performed using the u test. Results The quantity of collagen fibers increased significantly in the hepatic fibrosis group. With the aggravation of hepatic fibrosis, collagen fibers gradually accumulated. They interlaced the reticulation compartment and formed a round or ellipse liver tissue conglomeration like a grape framework that was disparate and wrapped up the normal liver Iobule. The deposition of collagen fibers was obvious in adjacent hepatic parenchyma, especially around the portal tracts. Conclusion Our experiment showed the collagen proliferation and displays clearly the three-dimensional architecture of collagen fibers in rat liver with hepatic fibrosis by scanning electron microscope. It can provide a morphological foundation for the mechanisms of changed haemodynamics and portal hypertension in hepatic fibrosis. 展开更多
关键词 hepatic fibrosis collagen fibers scanning electron microscope three-dimensional construct
原文传递
Facile and Large-scale Fabrication of Self-crimping Elastic Fibers for Large Strain Sensors
16
作者 Jin-Chao Yu Kang Chen +3 位作者 Hong Ji Yang Zhang Yu-Mei Zhang Zhi-Juan Pan 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第7期914-924,共11页
Stretchable conductive fibers offer unparalleled advantages in the development of wearable strain sensors for smart textiles due to their excellent flexibility and weaveability.However,the practical applications of th... Stretchable conductive fibers offer unparalleled advantages in the development of wearable strain sensors for smart textiles due to their excellent flexibility and weaveability.However,the practical applications of these fibers in wearable devices are hindered by either contradictory properties of conductive fibers(high stretchability versus high sensing stability),or lack of manufacturing scalability.Herein,we present a facile approach for highly stretchable self-crimping fiber strain sensors based on a polyether-ester(TPEE)elastomer matrix using a side-by-side bicomponent melt-spinning process involving two parallel but attached components with different shrinkage properties.The TPEE component serves as a highly elastic mechanical support layer within the bicomponent fibers,while the conductive component(E-TPEE)of carbon black(CB),multiwalled carbon nanotubes(MWCNTs)and TPEE works as a strain-sensitive layer.In addition to the intrinsic elasticity of the matrix,theTPEE/E-TPEE bicomponent fibers present an excellent form of elasticity due to self-crimping.The self-crimping elongation of the fibers can provide a large deformation,and after the crimp disappears,the intrinsic elastic deformation is responsible for monitoring the strain sensing.The reliable strain sensing range of theTPEE/E-TPEE composite fibers was 160%-270%and could be regulated by adjusting the crimp structure.More importantly,the TPEE/E-TPEE fibers had a diameter of 30-40 pm and tenacity of 40-50 MPa,showing the necessary practicality.This work introduces new possibilities for fiber strain sensors produced in standard industrial spinning machines. 展开更多
关键词 Conductive polyether-ester elastic fiber Side-by-side bicomponent fiber self-crimping Strain sensing
原文传递
2D Fusion Simulations and Experimental Confirmations of Print Paths Using Composite Particles with Particle Method for Fused Filament Fabrication
17
作者 Yuto Imaeda Akira Todoroki +2 位作者 Ryosuke Matsuzaki Masahito Ueda Yoshiyasu Hirano 《Open Journal of Composite Materials》 CAS 2022年第4期111-130,共20页
Printing short fibre/thermoplastic composites using the fused filament fabrication method sometimes creates a gap between print paths. In this study, the two-dimensional moving particle semi-implicit method for liquid... Printing short fibre/thermoplastic composites using the fused filament fabrication method sometimes creates a gap between print paths. In this study, the two-dimensional moving particle semi-implicit method for liquid simulation was applied to simulate the print-path fusion process. The three-dimensional movement of the nozzle was simulated using the sliding motion of the nozzle. The method was applied to the printing of short carbon fibre/polyamide-6 composites, and the simulation results were compared with those of experiments. The simulated results of the cross-sectional configuration agreed well with the experimental results. This will enable the optimization of printing process parameters thus reducing the gap between print paths. 展开更多
关键词 Carbon fiber Thermoplastic Resin Computational Modelling Short Carbon fiber three-dimensional Printer Fusion Process
下载PDF
Stress Distribution in Maxillary Central Incisors without Ferrules: A Finite Element Analysis of Post and Core Systems
18
作者 Akihiro Tagahara Chihiro Masaki +4 位作者 Tomotaka Nodai Takashi Munemasa Taro Mukaibo Yusuke Kondo Ryuji Hosokawa 《Open Journal of Stomatology》 2021年第7期251-262,共12页
<strong>Purpose: </strong>The purpose of this study was to identify optimal post and core materials for central incisors without ferrules using three-dimensional finite element analysis and three-point ben... <strong>Purpose: </strong>The purpose of this study was to identify optimal post and core materials for central incisors without ferrules using three-dimensional finite element analysis and three-point bending tests. <strong>Methods: </strong>Stress analyses were performed with six models: cast metal post and core (MP), composite resin core alone, straight fiber-reinforced post-composite resin core (FSR), tapered fiber-reinforced post-composite resin core, straight titanium post-composite resin core (TSR), and tapered titanium post-composite resin core (TTR). A 100-N load was applied to the lingual surface at a 45&deg; angle to the long axis of the tooth. Maximum von Mises stress distributions were calculated with finite element analysis software. Five samples each of composite resin, straight fiber-reinforced post, straight titanium post, straight fiber-reinforced post and composite resin, and straight titanium post and composite resin were subjected to three-point bending tests, followed by analysis of variance and Tukey’s multiple comparison test. <strong>Results: </strong>Stress distribution was optimal on TTR. Maximum von Mises stress on the cervical side of the post was greatest in TSR (693 MPa) and TTR (556 MPa). Maximum stress on the apical side of the post was greatest in MP (110 MPa). Maximum stress in surrounding dentin was lowest in MP (203 MPa) and TTR (250 MPa). Gap distance was smallest in MP (0.09 mm) and largest in FSR (0.26 mm). Mean maximum three-point bending force was lowest in composite resin (26.9 N/mm) and highest in titanium post and composite resin (97.1 N/mm). Titanium post bending strength was consistently greater than that of the fiber-reinforced post (p < 0.01). <strong>Conclusion:</strong> These results revealed optimal stress distribution and high bending strength with the tapered titanium post and resin combination, suggesting that this combination can most effectively prevent root or post fracture in an anterior tooth without a ferrule. 展开更多
关键词 fiber Post Titanium Post FERRULE three-dimensional Finite Element Analysis Three-Point Bending Test
下载PDF
Fabrication and morphology of NbC_x-C composite three-dimensinal netted fibers
19
作者 Guiying Xu Jianbao Li Yong Huang 《Chinese Science Bulletin》 SCIE EI CAS 2000年第6期496-502,共7页
The raw materials were commercial powders of Nb2O5 (99.95%), reactive carbon (99.99%), NaCI (99.95%) and sucrose (99.94%). By the carbothermal method, the NbCx (x= 0.98)-C composite three-dimensional netted fibers wer... The raw materials were commercial powders of Nb2O5 (99.95%), reactive carbon (99.99%), NaCI (99.95%) and sucrose (99.94%). By the carbothermal method, the NbCx (x= 0.98)-C composite three-dimensional netted fibers were prepared in graphite resistance furnace in 0.1 MPa/N2 ambient atmosphere at temperature from 970 to 1 120℃. The diameters of composite three-dimensional netted fibers are 12-38 μm, the hole circumferences of netted fibers are 0.22-2.2 mm, and the hole diameters are 70-701 μm. The process conditions for fabricating NbCx-C composite three-dimensional netted fibers and related morphology, composition and crystal structure of NbCx-C composite netted fibers were investigated in detail. 展开更多
关键词 FABRICATION MORPHOLOGY NBC -C COMPOSITE three-dimensional netted fibers carbothermal method.
原文传递
Study on 3D CFBG Vibration Sensor and Its Application 被引量:1
20
作者 Qiuming NAN 《Photonic Sensors》 SCIE EI CAS CSCD 2016年第1期90-96,共7页
A novel variety of three dimensional (3D) vibration sensor based on chirped fiber Bragg grating (CFBG) is developed to measure 3D vibration in the mechanical equipment field. The sensor is composed of three indepe... A novel variety of three dimensional (3D) vibration sensor based on chirped fiber Bragg grating (CFBG) is developed to measure 3D vibration in the mechanical equipment field. The sensor is composed of three independent vibration sensing units. Each unit uses double matched chirped gratings as sensing elements, and the sensing signal is processed by the edge filtering demodulation method. The structure and principle of the sensor are theoretically analyzed, and its performances are obtained from some experiments and the results are as follows: operating frequency range of the sensor is 10Hz - 500Hz; acceleration measurement range is 2m.s-2 - 30m.s-2; sensitivity is about 70 mV/m.s-2; crosstalk coefficient is greater than 22 dB; self-compensation for temperature is available. Eventually the sensor is applied to monitor the vibration state of radiation pump. Seen from its experiments and applications, the sensor has good sensing performances, which can meet a certain requirement for some engineering measurement. 展开更多
关键词 three-dimensional (3D) matched chirped fiber Bragg grating (CFBG) edge filtering crosstalk demodulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部