Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is...This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics.展开更多
The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant norma...The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests.展开更多
The Laji Shan—Jishi Shan tectonic belt(LJTB),located in the southern part of the northeastern Tibetan Plateau(NETP),is a tectonic window to reveal regional tectonic deformation in the NETP.However,its kinematics in t...The Laji Shan—Jishi Shan tectonic belt(LJTB),located in the southern part of the northeastern Tibetan Plateau(NETP),is a tectonic window to reveal regional tectonic deformation in the NETP.However,its kinematics in the Holocene remains controversial.We obtain the latest and dense horizontal velocity field based on data collected from our newly constructed and existing GNSS stations.Combined with fault kinematics from geologic observations,we analyze the crustal deformation characteristics along the LJTB.The results show that:(1)The Laji Shan fault(LJF)is inactive,and the northwest-oriented Jishi Shan fault(JSF)exhibits a significant dextral and thrust slip.(2)The transpression along the arc-shaped LJTB accommodates deformation transformation between the dextral Riyue Shan fault and the sinistral west Qinling fault.(3)With the continuous pushing of the Indian plate,internal strains in the Tibetan Plateau are continuously transferred in the northeast via the LJTB as they are gradually dissipated near the LJTB and translated into significant crustal uplift in these regions.展开更多
Based on the assumption of the plain-strain problem, various optimization or random search methods have been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is a...Based on the assumption of the plain-strain problem, various optimization or random search methods have been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is applicable to the 3D case. In this paper, a simple Monte Carlo random simulation method is proposed to identify the 3D critical slip surface. Assuming the initial slip to be the lower part of a slip ellipsoid, the 3D critical slip surface is located by means of a minimized 3D safety factor. A column-based 3D slope stability analysis model is used to calculate this factor. In this study, some practical cases of known minimum safety factors and critical slip surfaces in 2D analysis are extended to 3D slope problems to locate the critical slip surfaces. Compared with the 2D result, the resulting 3D critical slip surface has no apparent difference in terms of only cross section, but the associated 3D safety factor is definitely higher.展开更多
Three-dimensional sand printing(3DSP)is widely applied in sand mold fabrication.In this study,the effects of printing parameters including the resolution of printehead holes,activator content,layer thickness,and recoa...Three-dimensional sand printing(3DSP)is widely applied in sand mold fabrication.In this study,the effects of printing parameters including the resolution of printehead holes,activator content,layer thickness,and recoating speed on the tensile and bending strengths,gas evolution,and loss-on-ignition(LOI)of 3DSP samples were investigated by changing single parameter,and the dimension deviation was also measured.As the resolution increases,the tensile strength,bending strength,gas evolution,LOI,and deviations at X-and Y-axis directions decrease gradually while the deviation at Z-axis direction firstly increases and then deceases.The gas evolution and LOI drops by 13.02%and 8.13%respectively,but the strength only reduces by 2.2% when the resolution increases from 0.08 mm to 0.09 mm.The strengths of samples rise at first and then decline while the gas evolution and LOI rise gradually with the increasing activator content or recoating speed.The activator content is found to have little effect on the gas evolution as the activator increases from 0.14%to 0.34%,the gas evolution is increased by 7.3%which is far less than the LOI increment of 24.1%.As the layer thickness increases,the tensile and bending strengths firstly rise and then drop while gas evolution and LOI descend.Under the optimal printing parameters of 0.09 mm resolution,0.18%activator,-10.28 mm layer thickness and 160 mm·s^(-1) recoating speed,the tensile strengths for X-sample and Y-sample are 1.48 MPa and 1.37 MPa,the bending strengths are 1.84 MPa and 1.75 MPa,the gas evolution and LOI are-19.62 mL·g^(-1) and 1.92%,respectively.展开更多
In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare co...In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare comprehensively considered, and the governing equations are solved bysimplifying the boundary conditions. The axial magnetization of the sectorshapedpermanent magnets is accurately described in an algebraic form bythe parameters, which makes the physical meaning more explicit than thepurely mathematical expression in general series forms. The parameters of theBessel function are determined simply and the magnetic field distribution ofpermanent magnets and the air-gap is solved. Furthermore, the field solutionsare completely analytical, which provides convenience and satisfactoryaccuracy for modeling a series of electromagnetic performance parameters,such as the axial electromagnetic force density, axial electromagnetic force,and electromagnetic torque. The correctness and accuracy of the analyticalmodels are fully verified by three-dimensional finite element simulations and a15 kW prototype and the results of calculations, simulations, and experimentsunder three methods are highly consistent. The influence of several designparameters on magnetic field distribution and performance is studied and discussed.The results indicate that the modeling method proposed in this papercan calculate the magnetic field distribution and performance accurately andrapidly, which affords an important reference for the design and optimizationof axial-flux permanent magnet drivers.展开更多
The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In th...The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...展开更多
Sometimes endometrial polyps,submucosal myomas,and endometrial cancer show similar findings under ultrasonography.The aim of this study was to assess the antidiastole value of blood flow parameters using three-dimensi...Sometimes endometrial polyps,submucosal myomas,and endometrial cancer show similar findings under ultrasonography.The aim of this study was to assess the antidiastole value of blood flow parameters using three-dimensional(3D)power Doppler ultrasonography angiography(PDA)between endometrial cancer and uterine parenchyma lumps.The data of the blood flow indices in 3D-PDA including the vascularization index(VI),flow index(FI),and vascularization flow index(VFI)in 40 patients with endometrial cancer and 41 patients with uterine parenchyma lumps(endometrial polyps and submucosal myomas)were retrospectively analysed and compared utilizing Virtual Organ Computer-aided AnaLysis(VOCAL)software.The results showed that all the blood flow parameters(VI,FI,VFI)were significantly higher in women with endometrial cancer than in those with uterine parenchyma lumps(P<0.001).The area under the curve of ROC of VI,FI,and VFI was 0.98,0.84,and 0.97,respectively.Thus,the best predictor of endometrial carcinoma was VI with a sensitivity of 97.0% and a specificity of 91.0%.The optimal cutoff value of VI was 4.06%.Our data demonstrated that all of the blood flow signal parameters(including VI,FI,and VFI)in 3D power Doppler ultrasonography had significant antidiastole values between endometrial cancer and uterine parenchyma lumps to assist clinicians in properly diagnosing patients.展开更多
It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the mi...It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the microscopic parameters of parallel-bonded particle model for three-dimensional discrete element particle flow code(PFC3D).Variation ranges of microscopic of the microscopic parameters are created by analyzing the effects of microscopic parameters on macroscopic parameters(elastic modulus E,Poisson ratio v,uniaxial compressive strengthσc,and ratio of crack initial stress to uniaxial compressive strengthσci/σc)in order to obtain the actual uniform design talbe.The calculation equations of the microscopic and macroscopic parameters of rock materials can be established by the actual uniform design table and the regression analysis and thus the PFC3D microscopic parameters can be quantitatively determined.The PFC3D simulated results of the intact and pre-cracked rock specimens under uniaxial and triaxial compressions(including the macroscopic mechanical parameters,stress−strain curves and failure process)are in good agreement with experimental results,which can prove the validity of the calculation equations of microscopic and macroscopic parameters.展开更多
The 2009 M W 7.8 Fiordland (New Zealand) earthquake is the largest to have occurred in New Zealand since the 1931 M W 7.8 Hawke’s Bay earthquake, 1 000 km to the northwest. In this paper two tracks of ALOS PALSAR i...The 2009 M W 7.8 Fiordland (New Zealand) earthquake is the largest to have occurred in New Zealand since the 1931 M W 7.8 Hawke’s Bay earthquake, 1 000 km to the northwest. In this paper two tracks of ALOS PALSAR interferograms (one ascending and one descending) are used to determine fault geometry and slip distribution of this large earthquake. Modeling the event as dislocation in an elastic half-space suggests that the earthquake resulted from slip on a SSW-NNE orientated thrust fault that is associated with the subduction between the Pacific and Australian Plates, with oblique displacement of up to 6.3 m. This finding is consistent with the preliminary studies undertaken by the USGS using seismic data.展开更多
Actual slope stability problems have three-dimensional(3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach o...Actual slope stability problems have three-dimensional(3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach of limit analysis to conduct the evaluation of the stability of 3D slopes. A tangential technique is adopted to simplify the nonlinear failure criterion in the form of equivalent Mohr-Coulomb strength parameters. A class of 3D admissible rotational failure mechanisms is selected for soil slopes including three types of failure mechanisms: face failure, base failure, and toe failure. The upper-bound solutions and corresponding critical slip surfaces can be obtained by an efficient optimization method. The results indicate that the nonlinear parameters have significant influences on the assessment of slope stability, especially on the type of failure mechanism. The effects of nonlinear parameters appear to be pronounced for gentle slopes constrained to a narrow width. Compared with the solutions derived from plane-strain analysis, the 3D solutions are more sensitive to the values of nonlinear parameters.展开更多
This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on...This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.展开更多
The objective of this paper is to study unsteady magneto hydrodynamic (MHD) free flow of viscoelastic fluid (Walter’s B) past an infinite vertical plate through porous medium. The temperature is assumed to be oscilla...The objective of this paper is to study unsteady magneto hydrodynamic (MHD) free flow of viscoelastic fluid (Walter’s B) past an infinite vertical plate through porous medium. The temperature is assumed to be oscillating with time. The solution obtained shows different profiles of effects of slip conditions on primary and secondary velocity. Also, the effects of various parameters on temperature, concentration, primary and secondary velocity profiles were presented graphically. The result indicated the secondary velocity is enhanced with increase in slip parameter. Primary velocity demonstrated opposite trend.展开更多
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
基金Project supported by the Executive Agency for Higher Education Research Development and Innovation Funding of Romania(No.PN-III-P4-PCE-2021-0993)。
文摘This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics.
基金Project(41130742)supported by the Key Program of National Natural Science Foundation of ChinaProject(2014CB046904)supportedby the National Basic Research Program of China+1 种基金Project(2011CDA119)supported by Natural Science Foundation of Hubei Province,ChinaProject(40972178)supported by the General Program of National Natural Science Foundation of China
文摘The shear behavior of rock joints is important in solving practical problems of rock mechanics. Three group rock joints with different morphologies are made by cement mortar material and a series of CNL(constant normal loading) shear tests are performed. The influences of the applied normal stress and joint morphology to its shear strength are analyzed. According to the experimental results, the peak dilatancy angle of rock joint decreases with increasing normal stress, but increases with increasing roughness. The shear strength increases with the increasing normal stress and the roughness of rock joint. It is observed that the modes of failure of asperities are tensile, pure shear, or a combination of both. It is suggested that the three-dimensional roughness parameters and the tensile strength are the appropriate parameter for describing the shear strength criterion. A new peak shear criterion is proposed which can be used to predict peak shear strength of rock joints. All the used parameters can be easily obtained by performing tests.
基金supported by the National Science Foundation of China(41874117)the Second Tibetan Plateau Scientific Expedition and Research Program(SETP)(2019QZKK0901)Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-ON-0309)。
文摘The Laji Shan—Jishi Shan tectonic belt(LJTB),located in the southern part of the northeastern Tibetan Plateau(NETP),is a tectonic window to reveal regional tectonic deformation in the NETP.However,its kinematics in the Holocene remains controversial.We obtain the latest and dense horizontal velocity field based on data collected from our newly constructed and existing GNSS stations.Combined with fault kinematics from geologic observations,we analyze the crustal deformation characteristics along the LJTB.The results show that:(1)The Laji Shan fault(LJF)is inactive,and the northwest-oriented Jishi Shan fault(JSF)exhibits a significant dextral and thrust slip.(2)The transpression along the arc-shaped LJTB accommodates deformation transformation between the dextral Riyue Shan fault and the sinistral west Qinling fault.(3)With the continuous pushing of the Indian plate,internal strains in the Tibetan Plateau are continuously transferred in the northeast via the LJTB as they are gradually dissipated near the LJTB and translated into significant crustal uplift in these regions.
文摘Based on the assumption of the plain-strain problem, various optimization or random search methods have been developed for locating the critical slip surfaces in slope-stability analysis, but none of such methods is applicable to the 3D case. In this paper, a simple Monte Carlo random simulation method is proposed to identify the 3D critical slip surface. Assuming the initial slip to be the lower part of a slip ellipsoid, the 3D critical slip surface is located by means of a minimized 3D safety factor. A column-based 3D slope stability analysis model is used to calculate this factor. In this study, some practical cases of known minimum safety factors and critical slip surfaces in 2D analysis are extended to 3D slope problems to locate the critical slip surfaces. Compared with the 2D result, the resulting 3D critical slip surface has no apparent difference in terms of only cross section, but the associated 3D safety factor is definitely higher.
基金The study was supported by the National Natural Science Foundation of China(No.51975165).
文摘Three-dimensional sand printing(3DSP)is widely applied in sand mold fabrication.In this study,the effects of printing parameters including the resolution of printehead holes,activator content,layer thickness,and recoating speed on the tensile and bending strengths,gas evolution,and loss-on-ignition(LOI)of 3DSP samples were investigated by changing single parameter,and the dimension deviation was also measured.As the resolution increases,the tensile strength,bending strength,gas evolution,LOI,and deviations at X-and Y-axis directions decrease gradually while the deviation at Z-axis direction firstly increases and then deceases.The gas evolution and LOI drops by 13.02%and 8.13%respectively,but the strength only reduces by 2.2% when the resolution increases from 0.08 mm to 0.09 mm.The strengths of samples rise at first and then decline while the gas evolution and LOI rise gradually with the increasing activator content or recoating speed.The activator content is found to have little effect on the gas evolution as the activator increases from 0.14%to 0.34%,the gas evolution is increased by 7.3%which is far less than the LOI increment of 24.1%.As the layer thickness increases,the tensile and bending strengths firstly rise and then drop while gas evolution and LOI descend.Under the optimal printing parameters of 0.09 mm resolution,0.18%activator,-10.28 mm layer thickness and 160 mm·s^(-1) recoating speed,the tensile strengths for X-sample and Y-sample are 1.48 MPa and 1.37 MPa,the bending strengths are 1.84 MPa and 1.75 MPa,the gas evolution and LOI are-19.62 mL·g^(-1) and 1.92%,respectively.
基金supported by the National Natural Science Foundation of China under Grant[52077027]Liaoning Province Science and Technology Major Project[No.2020JH1/10100020].
文摘In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare comprehensively considered, and the governing equations are solved bysimplifying the boundary conditions. The axial magnetization of the sectorshapedpermanent magnets is accurately described in an algebraic form bythe parameters, which makes the physical meaning more explicit than thepurely mathematical expression in general series forms. The parameters of theBessel function are determined simply and the magnetic field distribution ofpermanent magnets and the air-gap is solved. Furthermore, the field solutionsare completely analytical, which provides convenience and satisfactoryaccuracy for modeling a series of electromagnetic performance parameters,such as the axial electromagnetic force density, axial electromagnetic force,and electromagnetic torque. The correctness and accuracy of the analyticalmodels are fully verified by three-dimensional finite element simulations and a15 kW prototype and the results of calculations, simulations, and experimentsunder three methods are highly consistent. The influence of several designparameters on magnetic field distribution and performance is studied and discussed.The results indicate that the modeling method proposed in this papercan calculate the magnetic field distribution and performance accurately andrapidly, which affords an important reference for the design and optimizationof axial-flux permanent magnet drivers.
基金Supported by National Natural Science Foundation of China (No. 50778058 and No. 90715038)National Key Technology Research and Development Program of China (No. 2006BAC13B02)Major State Basic Research Development Program of China ("973" Program, No. 2008CB425802)
文摘The hybrid slip model used to generate a finite fault model for near-field ground motion estimation and seismic hazard assessment was improved to express the uncertainty of the source form of a future earthquake.In this process, source parameters were treated as normal random variables, and the Fortran code of hybrid slip model was modified by adding a random number generator so that the code could generate many finite fault models with different dimensions and slip distributions for a given magnitude.Furth...
基金This research was supported by grants from the National Natural Science Foundation of China(No.81501530)Hubei Province Health and Family Planning Scientific Research Project(No.WJ2019M130).
文摘Sometimes endometrial polyps,submucosal myomas,and endometrial cancer show similar findings under ultrasonography.The aim of this study was to assess the antidiastole value of blood flow parameters using three-dimensional(3D)power Doppler ultrasonography angiography(PDA)between endometrial cancer and uterine parenchyma lumps.The data of the blood flow indices in 3D-PDA including the vascularization index(VI),flow index(FI),and vascularization flow index(VFI)in 40 patients with endometrial cancer and 41 patients with uterine parenchyma lumps(endometrial polyps and submucosal myomas)were retrospectively analysed and compared utilizing Virtual Organ Computer-aided AnaLysis(VOCAL)software.The results showed that all the blood flow parameters(VI,FI,VFI)were significantly higher in women with endometrial cancer than in those with uterine parenchyma lumps(P<0.001).The area under the curve of ROC of VI,FI,and VFI was 0.98,0.84,and 0.97,respectively.Thus,the best predictor of endometrial carcinoma was VI with a sensitivity of 97.0% and a specificity of 91.0%.The optimal cutoff value of VI was 4.06%.Our data demonstrated that all of the blood flow signal parameters(including VI,FI,and VFI)in 3D power Doppler ultrasonography had significant antidiastole values between endometrial cancer and uterine parenchyma lumps to assist clinicians in properly diagnosing patients.
基金Projects(51474251,51874351)supported by the National Natural Science Foundation,China。
文摘It is important to calibrate micro-parameters for applying partied flow code(PFC)to study mechanical characteristics and failure mechanism of rock materials.Uniform design method is firstly adopted to determine the microscopic parameters of parallel-bonded particle model for three-dimensional discrete element particle flow code(PFC3D).Variation ranges of microscopic of the microscopic parameters are created by analyzing the effects of microscopic parameters on macroscopic parameters(elastic modulus E,Poisson ratio v,uniaxial compressive strengthσc,and ratio of crack initial stress to uniaxial compressive strengthσci/σc)in order to obtain the actual uniform design talbe.The calculation equations of the microscopic and macroscopic parameters of rock materials can be established by the actual uniform design table and the regression analysis and thus the PFC3D microscopic parameters can be quantitatively determined.The PFC3D simulated results of the intact and pre-cracked rock specimens under uniaxial and triaxial compressions(including the macroscopic mechanical parameters,stress−strain curves and failure process)are in good agreement with experimental results,which can prove the validity of the calculation equations of microscopic and macroscopic parameters.
基金supported jointly by the GAS project (Ref: NE/H001085/1)a China 863 Project (No.2009AA12Z317)+2 种基金supported by the Natural Environmental Research Council (NERC) through the National Center of Earth Observation (NCEO) of which the Center for the Observation and Modelling of Earthquakesfunded by a general project of National Natural Science Foundation of China (NS- FC) (No. 40902081)a key project of the Ministry of Land & Resources, China (No. 1212010914015)
文摘The 2009 M W 7.8 Fiordland (New Zealand) earthquake is the largest to have occurred in New Zealand since the 1931 M W 7.8 Hawke’s Bay earthquake, 1 000 km to the northwest. In this paper two tracks of ALOS PALSAR interferograms (one ascending and one descending) are used to determine fault geometry and slip distribution of this large earthquake. Modeling the event as dislocation in an elastic half-space suggests that the earthquake resulted from slip on a SSW-NNE orientated thrust fault that is associated with the subduction between the Pacific and Australian Plates, with oblique displacement of up to 6.3 m. This finding is consistent with the preliminary studies undertaken by the USGS using seismic data.
基金Project(201501035-03)supported by the Public Service Sector R&D Project of Ministry of Water Resource of ChinaProject(2015CB057901)supported by Basic Research Program of China+4 种基金Projects(51278382,51479050,51508160)supported by the National Natural Science Foundation of ChinaProject(B13024)supported by the 111 ProjectProjects(2014B06814,B15020060,2014B33414)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(YK913004)supported by the Open Foundation of Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dam of the Ministry of Water Resources,ChinaProject(KYZZ_0143)supported by the Graduate Education Innovation Project of Jiangsu Province of China
文摘Actual slope stability problems have three-dimensional(3D) characteristics and the soils of slopes have curved failure envelopes. This incorporates a power-law nonlinear failure criterion into the kinematic approach of limit analysis to conduct the evaluation of the stability of 3D slopes. A tangential technique is adopted to simplify the nonlinear failure criterion in the form of equivalent Mohr-Coulomb strength parameters. A class of 3D admissible rotational failure mechanisms is selected for soil slopes including three types of failure mechanisms: face failure, base failure, and toe failure. The upper-bound solutions and corresponding critical slip surfaces can be obtained by an efficient optimization method. The results indicate that the nonlinear parameters have significant influences on the assessment of slope stability, especially on the type of failure mechanism. The effects of nonlinear parameters appear to be pronounced for gentle slopes constrained to a narrow width. Compared with the solutions derived from plane-strain analysis, the 3D solutions are more sensitive to the values of nonlinear parameters.
文摘This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.
文摘The objective of this paper is to study unsteady magneto hydrodynamic (MHD) free flow of viscoelastic fluid (Walter’s B) past an infinite vertical plate through porous medium. The temperature is assumed to be oscillating with time. The solution obtained shows different profiles of effects of slip conditions on primary and secondary velocity. Also, the effects of various parameters on temperature, concentration, primary and secondary velocity profiles were presented graphically. The result indicated the secondary velocity is enhanced with increase in slip parameter. Primary velocity demonstrated opposite trend.