Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tur...Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tures.Methods:From January 2018 to August 2020,we obtained data of 99 patients diagnosed thoracolumbar compression fractures.These patients were divided into control group(n=50)underwent traditional PKP surgery,and observation group(n=49)underwent preoperative digital design combined with 3D printing model assisted PKP treatment.The clinical efficacy was evaluated with five parameters,including operation time,number of intraoperative radiographs,visual analogue scale(VAS)score,Cobb Angle change,and high compression rate of injured vertebrae.Results:There were statistically significant differences of operation time and number of intraoperative radio graphs between the two groups(P<0.05).For VAS score,Cobb Angle change and vertebral height compression rate,all of these three parameters were significantly improved when the patients accepted surgery teatment in two groups(P<0.05).However,there were no significant differences between control group and observation group for these three parameters either before or after surgery(P>0.05).Conclusions:Through the design of preoperative surgical guide plate and the application of 3D printing model to guide the operation,the precise design of preoperative surgical puncture site and puncture Angle of the injured vertebra was realized,the number of intraoperative radiographs was reduced,the operation time was shortened and the operation efficiency was improved.展开更多
In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-di...In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-dimensional groundwater flows,making it impossible to validate groundwater flows simulated by numerical methods with physical modeling.展开更多
This paper focuses on the problem of low efficiency and limited non-geometric information handling ability in the process of 2D heating furnace design, proposes a 3D concurrent parametric design system, this method is...This paper focuses on the problem of low efficiency and limited non-geometric information handling ability in the process of 2D heating furnace design, proposes a 3D concurrent parametric design system, this method is realized by parametric design technology, which is supported by ActiveX-Automation technology and VBA technology, mutual visit between application programs makes batched modeling become possible, key dimensions are linked with each other by restrictions, so parts can be built concurrently by sharing few parameters between common borders, designer can be free from repeated drawing work during modification, Solid Edge is chosen as the modeling server, a secondary development software is programmed by Visual Basic, this system provides a feasible way to overlap time between different sections, the design efficiency and quality is improved significantly.展开更多
Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relat...Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relationship and positional relationship between the caries knife and the workpiece,the coordinate system of the caries machining was established.With the MATLAB software,the cutting edge model and the blade sweeping surface model of the boring cutter are sequentially established.Boolean operation is performed on the blade swept surface formed by the tooth cutter teeth with time t and the workpiece tooth geometry as well as the undeformed three-dimensional chip geometry model and the instantaneous cogging geometry model are obtained at different times.Through the compare between gear end face simulation tooth profile and the theoretical inner arc tooth profile,we verified the accuracy and rationality of the proposed method.展开更多
With the reduction of urban land, the three-dimensional garage is increasingly built with its advantages of saving land. But the current three-dimensional garage is built for the car. It is hardly stereo parking garag...With the reduction of urban land, the three-dimensional garage is increasingly built with its advantages of saving land. But the current three-dimensional garage is built for the car. It is hardly stereo parking garage for electric bicycles. This paper designed a hollow tower electric bicycle stereo parking garage with fork comb structure, based on the analysis of the characteristics of electric bicycles and the characteristics of existing three-dimensional garages. A fixed comb is mounted on the garage frame. The movable comb is mounted on the middle lift mechanism of the garage. The access of the vehicle is achieved by the exchange of the comb. The key comb structure was modeled using SolidWorks software and the stress distribution of the structure was analyzed. It was optimized by MATLAB software. The result shows that this structure can improve access efficiency. The quality of the comb structure can be minimized under the constraints of strength requirements.展开更多
We present a design of an acoustic levitator consisting of three pairs of opposite transducer arrays.Three orthogonal standing waves create a large number of acoustic traps at which the particles are levitated in mid-...We present a design of an acoustic levitator consisting of three pairs of opposite transducer arrays.Three orthogonal standing waves create a large number of acoustic traps at which the particles are levitated in mid-air.By changing the phase difference of transducer arrays,three-dimensional manipulation of particles is successfully realized.Moreover,the relationship between the translation of particles and the phase difference is experimentally investigated,and the result is in agreement with the theoretical calculation.This design can expand the application of acoustic levitation in many fields,such as biomedicine,ultrasonic motor and new materials processing.展开更多
Based on a stochastic wire length distributed model, the interconnect distribution of a three-dimensional integrated circuit (3D IC) is predicted exactly. Using the results of this model, a global interconnect desig...Based on a stochastic wire length distributed model, the interconnect distribution of a three-dimensional integrated circuit (3D IC) is predicted exactly. Using the results of this model, a global interconnect design window for a giga-scale system-on-chip (SOC) is established by evaluating the constraints of 1) wiring resource, 2) wiring bandwidth, and 3) wiring noise. In comparison to a two-dimensional integrated circuit (2D IC) in a 130-nm and 45-nm technology node, the design window expands for a 3D IC to improve the design reliability and system performance, further supporting 3D IC application in future integrated circuit design.展开更多
The changes of design methods and manufacturing techniques have brought new requirements for engineers in enterprises, and therefore brought a challenge to the traditional teaching system of mechanical major courses. ...The changes of design methods and manufacturing techniques have brought new requirements for engineers in enterprises, and therefore brought a challenge to the traditional teaching system of mechanical major courses. A new teaching system based on three-dimensional design to cultivate modern engineers with solid specialty bases and high creativity in a wide range of fields is presented.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
The feasibility of three-dimensional (3D) printing technology cgmbined with minimally invasive surgery in the treatment of pubic rami fractures was explored.From August 2015 to October 2017,a series of 30 patients who...The feasibility of three-dimensional (3D) printing technology cgmbined with minimally invasive surgery in the treatment of pubic rami fractures was explored.From August 2015 to October 2017,a series of 30 patients who underwent surgical stabilization of their anterior pelvic ring (all utilizing the 3D printing technology)by one surgeon at a single hospital were studied.The minimally invasive incisions were made through anterior inferior cilia spine and pubic nodule.Data collected included the operative duration,the blood loss,the damage of the important tissue,the biographic union and therecovery of the function after the operation.Measurements on inlet and outlet pelvic cardiograph were made immediately post-operation and at all follow-up clinic visits.The scores of reduction and function were measured during follow-up.Results showed that the wounds of 30 patients were healed in the first stage,and there was no injury of important structures such as blood vessels and nerves.According to the Matta criteria,excellent effectiveness was obtained in 22 cases and good in 8 cases.According to the functional evaluation criteria of Majeed,excellent effectiveness was obtained in 21 cases and good in 9 cases.It was suggested that the 3D printing technology assisted by minimally invasive surgery can better evaluate the pelvic fracture before operation,which was helpful in plate modeling, and can shorten surgery duration and reduce intraoperative blood loss and complications. The positioning accuracy was improved,and better surgical result was finally achieved.展开更多
The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sens...The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.展开更多
Based upon characteristic movement features of the overlying strata in solid backfill mining and in-situ observations,an associated model representing a roadway support system has been developed.Based on the Winkler f...Based upon characteristic movement features of the overlying strata in solid backfill mining and in-situ observations,an associated model representing a roadway support system has been developed.Based on the Winkler foundation and beam model,the current study presents a static analysis of the model,thus permitting acquisition of a theoretical formula pertaining to roof convergence.Through use of working face 6304-1(Jisan Colliery) as the research setting,the association between roof convergence magnitude and both packwall strength and width have been elucidated.Based upon observed conditions at the working face,realistic packwall parameters have been formulated,with numerical simulation results and field application results indicating that design parameters garnered from the developed formula successfully adapted to local geological movement and deformation.Accordingly,roadway deformation was shown to be within the permissible range,thus satisfying mine production requirements.The proposed method in the current study may give a design basis for pack design in the context of SBM under similar conditions.展开更多
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ...Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.展开更多
This work provides a method to predict the three-dimensional equivalent elastic properties of the filament-wound composites based on the multi-scale homogenization principle.In the meso-scale,a representative volume e...This work provides a method to predict the three-dimensional equivalent elastic properties of the filament-wound composites based on the multi-scale homogenization principle.In the meso-scale,a representative volume element(RVE)is defined and the bridging model is adopted to establish a theoretical predictive model for its three-dimensional equivalent elastic constants.The results obtained through this method for the previous experimental model are compared with the ones gained respectively by experiments and classical laminate theory to verify the reliability of this model.In addition,the effects of some winding parameters,such as winding angle,on the equivalent elastic behavior of the filament-wound composites are analyzed.The rules gained can provide a theoretical reference for the optimum design of filament-wound composites.展开更多
Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas i...Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas in the specific reactor.In order to understand the dynamic characteristics of the reactor,a three-dimensional numerical model has been established by the method of Computational Fluid Dynamics(CFD).Along the height of the reactor,the particle distribution in the bed becomes thinner and the mean solid volume fraction decreases from 4.18%to 0.37%.Meanwhile,the pressure fluctuation range decreased from 398.76 Pa at the entrance to a much lower value of 74.47 Pa at the exit.In this simulation,three parameters of gas inlet velocity,operating temperature and solid particle diameter are changed to explore their influences on gas-solid multiphase flow.The results show that gas velocity has a great influence on particle distribution.When the gas inlet velocity decreases from 6.51 to 1.98 m/s,the minimum height that particles can reach decreases from 169 to 100 mm.Additionally,as the operating temperature increases,the particle holdup inside the reactor changes from 0.843%to 0.700%.This indicates that the particle residence time reduces,which is not conducive to the follow-up reaction.Moreover,with the increase of particle size,the fluctuation range of the pressure at the bottom of the reactor increases,and its standard deviation increases from 55.34 to 1266.37 Pa.展开更多
In view of application characteristics of Solid Thinking Evolve in product modeling design, and the practical design of cosmetics packaging, this paper introduced the unique Construction TreeTM, fast, convenient and e...In view of application characteristics of Solid Thinking Evolve in product modeling design, and the practical design of cosmetics packaging, this paper introduced the unique Construction TreeTM, fast, convenient and easy features of Solid Thinking Evolve, and its application prospects in product development.展开更多
This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with u...This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with unique 5-element configuration</span></span><span style="white-space:normal;"><span style="font-family:;" "="">, with all five elements acting as transmitters and four elements as receivers. The receivers are designed to reduce the amount of uncertainty. As the fluid moves through this setup, four Doppler frequencies are obtained. The multi-dimensional velocity information along the measurement line can be reconstructed. The transducer has a compact geometry suitable for a wide range of applications, including narrow flow areas. The transducer’s basic frequency and sound pressure are selected and evaluated to be compatible with the application. First, to confirm the measurement ability, the measurement of the developed system in two-dimensional flow is validated by comparing it to the theoretical data. The uncertainty of measurement was within 15%. Second, the three-dimensional measurement in turbulent and swirling flow is proved experimentally to check the applicability of the proposed technique.</span></span>展开更多
This study integrated instrumental and relational approaches to the teaching and learning of solids in a preservice teacher's class. The researcher guided the preservice teachers to gather various prisms, pyramids, a...This study integrated instrumental and relational approaches to the teaching and learning of solids in a preservice teacher's class. The researcher guided the preservice teachers to gather various prisms, pyramids, and spheres to study the total surface areas and volumes. At the end of the integrated models, the test scores showed closed relationships in the concurrent instructional strategies of the integrated models. The researcher therefore, recommended the design models for the teaching and learning of solids in mathematics.展开更多
The hypoeutectic Al-Si alloy billet with non-dendrite was reheated to meet the needs of the semi-solid thixoforming microstructure by four kinds of reheating power,achieving the same final temperature of 851 K.Subsequ...The hypoeutectic Al-Si alloy billet with non-dendrite was reheated to meet the needs of the semi-solid thixoforming microstructure by four kinds of reheating power,achieving the same final temperature of 851 K.Subsequently,under the same condition of thixoforming,the microstructure,surface hardness and tensile properties were observed.Afterwards,quantitative analysis was made for the microstructures of the reheated semi-solid of billet and the thixoforming parts.The results show that when the induction reheating power is 90 kW,the average grain size of the semi-solid billet is the minimum,the microstructures of the thixoforming samples also are the finest,and the mechanical properties of the relevant thixoforming samples are the best.Furthermore,after studying on the relationship between the microstructures of the semi-solid billet of aluminum alloy and the mechanical properties of the thixoforming samples,the reverse design of microstructure is primarily achieved.Finally,the effectiveness of the reverse design for semi-solid microstructure is confirmed by an actual automobile part with complex shape.展开更多
As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promisi...As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs.展开更多
基金supported in part by the General Program of Natural Science Foundation of Hubei Province,China(Grant No.2020CFB548)a Project in 2021 of Science and Technology Support Plan of Guizhou Province,China(Grant No.202158413293820389).
文摘Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tures.Methods:From January 2018 to August 2020,we obtained data of 99 patients diagnosed thoracolumbar compression fractures.These patients were divided into control group(n=50)underwent traditional PKP surgery,and observation group(n=49)underwent preoperative digital design combined with 3D printing model assisted PKP treatment.The clinical efficacy was evaluated with five parameters,including operation time,number of intraoperative radiographs,visual analogue scale(VAS)score,Cobb Angle change,and high compression rate of injured vertebrae.Results:There were statistically significant differences of operation time and number of intraoperative radio graphs between the two groups(P<0.05).For VAS score,Cobb Angle change and vertebral height compression rate,all of these three parameters were significantly improved when the patients accepted surgery teatment in two groups(P<0.05).However,there were no significant differences between control group and observation group for these three parameters either before or after surgery(P>0.05).Conclusions:Through the design of preoperative surgical guide plate and the application of 3D printing model to guide the operation,the precise design of preoperative surgical puncture site and puncture Angle of the injured vertebra was realized,the number of intraoperative radiographs was reduced,the operation time was shortened and the operation efficiency was improved.
基金supported by the State Key Program of National Natural Science of China(Grant No.41130637)
文摘In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-dimensional groundwater flows,making it impossible to validate groundwater flows simulated by numerical methods with physical modeling.
基金Supported by National Natural Science Foundation of China (50574021)
文摘This paper focuses on the problem of low efficiency and limited non-geometric information handling ability in the process of 2D heating furnace design, proposes a 3D concurrent parametric design system, this method is realized by parametric design technology, which is supported by ActiveX-Automation technology and VBA technology, mutual visit between application programs makes batched modeling become possible, key dimensions are linked with each other by restrictions, so parts can be built concurrently by sharing few parameters between common borders, designer can be free from repeated drawing work during modification, Solid Edge is chosen as the modeling server, a secondary development software is programmed by Visual Basic, this system provides a feasible way to overlap time between different sections, the design efficiency and quality is improved significantly.
基金The National Natural Science Foundation of China (No.52165060,12272189)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region: (NJYT23022)+2 种基金Science and Technology Projects of Inner Mongolia Autonomous Region: (2021GG0432)Central Guiding Local Science and Technology Development Plan (2022ZY0013)Basic research business fee project for universities directly under Inner Mongolia Autonomous Region (GXKY22046).
文摘Aiming at the problems that the simulation accuracy which is reduced due to the simplification of the model,a three-dimensional simulation method based on solid modeling is being proposed.By analyzing the motion relationship and positional relationship between the caries knife and the workpiece,the coordinate system of the caries machining was established.With the MATLAB software,the cutting edge model and the blade sweeping surface model of the boring cutter are sequentially established.Boolean operation is performed on the blade swept surface formed by the tooth cutter teeth with time t and the workpiece tooth geometry as well as the undeformed three-dimensional chip geometry model and the instantaneous cogging geometry model are obtained at different times.Through the compare between gear end face simulation tooth profile and the theoretical inner arc tooth profile,we verified the accuracy and rationality of the proposed method.
基金supported by Supported by National Natural Science Fund(U1704156)
文摘With the reduction of urban land, the three-dimensional garage is increasingly built with its advantages of saving land. But the current three-dimensional garage is built for the car. It is hardly stereo parking garage for electric bicycles. This paper designed a hollow tower electric bicycle stereo parking garage with fork comb structure, based on the analysis of the characteristics of electric bicycles and the characteristics of existing three-dimensional garages. A fixed comb is mounted on the garage frame. The movable comb is mounted on the middle lift mechanism of the garage. The access of the vehicle is achieved by the exchange of the comb. The key comb structure was modeled using SolidWorks software and the stress distribution of the structure was analyzed. It was optimized by MATLAB software. The result shows that this structure can improve access efficiency. The quality of the comb structure can be minimized under the constraints of strength requirements.
基金Supported by the Beijing College Students’Innovation and Entrepreneurship Training Program under Grant No BJ17040
文摘We present a design of an acoustic levitator consisting of three pairs of opposite transducer arrays.Three orthogonal standing waves create a large number of acoustic traps at which the particles are levitated in mid-air.By changing the phase difference of transducer arrays,three-dimensional manipulation of particles is successfully realized.Moreover,the relationship between the translation of particles and the phase difference is experimentally investigated,and the result is in agreement with the theoretical calculation.This design can expand the application of acoustic levitation in many fields,such as biomedicine,ultrasonic motor and new materials processing.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60725415 and 60676009)the Natural Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2009ZX01034-002-001-005)
文摘Based on a stochastic wire length distributed model, the interconnect distribution of a three-dimensional integrated circuit (3D IC) is predicted exactly. Using the results of this model, a global interconnect design window for a giga-scale system-on-chip (SOC) is established by evaluating the constraints of 1) wiring resource, 2) wiring bandwidth, and 3) wiring noise. In comparison to a two-dimensional integrated circuit (2D IC) in a 130-nm and 45-nm technology node, the design window expands for a 3D IC to improve the design reliability and system performance, further supporting 3D IC application in future integrated circuit design.
文摘The changes of design methods and manufacturing techniques have brought new requirements for engineers in enterprises, and therefore brought a challenge to the traditional teaching system of mechanical major courses. A new teaching system based on three-dimensional design to cultivate modern engineers with solid specialty bases and high creativity in a wide range of fields is presented.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
文摘The feasibility of three-dimensional (3D) printing technology cgmbined with minimally invasive surgery in the treatment of pubic rami fractures was explored.From August 2015 to October 2017,a series of 30 patients who underwent surgical stabilization of their anterior pelvic ring (all utilizing the 3D printing technology)by one surgeon at a single hospital were studied.The minimally invasive incisions were made through anterior inferior cilia spine and pubic nodule.Data collected included the operative duration,the blood loss,the damage of the important tissue,the biographic union and therecovery of the function after the operation.Measurements on inlet and outlet pelvic cardiograph were made immediately post-operation and at all follow-up clinic visits.The scores of reduction and function were measured during follow-up.Results showed that the wounds of 30 patients were healed in the first stage,and there was no injury of important structures such as blood vessels and nerves.According to the Matta criteria,excellent effectiveness was obtained in 22 cases and good in 8 cases.According to the functional evaluation criteria of Majeed,excellent effectiveness was obtained in 21 cases and good in 9 cases.It was suggested that the 3D printing technology assisted by minimally invasive surgery can better evaluate the pelvic fracture before operation,which was helpful in plate modeling, and can shorten surgery duration and reduce intraoperative blood loss and complications. The positioning accuracy was improved,and better surgical result was finally achieved.
基金Y. Wang was supported in part by the US National Science Foundation (NSF) under Grant Nos.CNS-0721666,CNS-0915331,and CNS-1050398Y. Liu was partially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61074092+1 种基金by the Shandong Provincial Natural Science Foundation,China under Grant No.Q2008E01Z. Guo was partially supported by the NSFC under Grant Nos. 61170258 and 6093301
文摘The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.
基金financial support from the Fundamental Research Funds for the Central Universities(China University of Mining and Technology)under Grant 2014ZDPY02Qing Lan Project
文摘Based upon characteristic movement features of the overlying strata in solid backfill mining and in-situ observations,an associated model representing a roadway support system has been developed.Based on the Winkler foundation and beam model,the current study presents a static analysis of the model,thus permitting acquisition of a theoretical formula pertaining to roof convergence.Through use of working face 6304-1(Jisan Colliery) as the research setting,the association between roof convergence magnitude and both packwall strength and width have been elucidated.Based upon observed conditions at the working face,realistic packwall parameters have been formulated,with numerical simulation results and field application results indicating that design parameters garnered from the developed formula successfully adapted to local geological movement and deformation.Accordingly,roadway deformation was shown to be within the permissible range,thus satisfying mine production requirements.The proposed method in the current study may give a design basis for pack design in the context of SBM under similar conditions.
基金The work described in this paper was fully supported by a Grant from the City University of Hong Kong(Project No.9610641).
文摘Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.
文摘This work provides a method to predict the three-dimensional equivalent elastic properties of the filament-wound composites based on the multi-scale homogenization principle.In the meso-scale,a representative volume element(RVE)is defined and the bridging model is adopted to establish a theoretical predictive model for its three-dimensional equivalent elastic constants.The results obtained through this method for the previous experimental model are compared with the ones gained respectively by experiments and classical laminate theory to verify the reliability of this model.In addition,the effects of some winding parameters,such as winding angle,on the equivalent elastic behavior of the filament-wound composites are analyzed.The rules gained can provide a theoretical reference for the optimum design of filament-wound composites.
基金Funding Statement:This work was supported by the National Key Research and Development Program of China[Grant No.2019YFC1906802].
文摘Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas in the specific reactor.In order to understand the dynamic characteristics of the reactor,a three-dimensional numerical model has been established by the method of Computational Fluid Dynamics(CFD).Along the height of the reactor,the particle distribution in the bed becomes thinner and the mean solid volume fraction decreases from 4.18%to 0.37%.Meanwhile,the pressure fluctuation range decreased from 398.76 Pa at the entrance to a much lower value of 74.47 Pa at the exit.In this simulation,three parameters of gas inlet velocity,operating temperature and solid particle diameter are changed to explore their influences on gas-solid multiphase flow.The results show that gas velocity has a great influence on particle distribution.When the gas inlet velocity decreases from 6.51 to 1.98 m/s,the minimum height that particles can reach decreases from 169 to 100 mm.Additionally,as the operating temperature increases,the particle holdup inside the reactor changes from 0.843%to 0.700%.This indicates that the particle residence time reduces,which is not conducive to the follow-up reaction.Moreover,with the increase of particle size,the fluctuation range of the pressure at the bottom of the reactor increases,and its standard deviation increases from 55.34 to 1266.37 Pa.
文摘In view of application characteristics of Solid Thinking Evolve in product modeling design, and the practical design of cosmetics packaging, this paper introduced the unique Construction TreeTM, fast, convenient and easy features of Solid Thinking Evolve, and its application prospects in product development.
文摘This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with unique 5-element configuration</span></span><span style="white-space:normal;"><span style="font-family:;" "="">, with all five elements acting as transmitters and four elements as receivers. The receivers are designed to reduce the amount of uncertainty. As the fluid moves through this setup, four Doppler frequencies are obtained. The multi-dimensional velocity information along the measurement line can be reconstructed. The transducer has a compact geometry suitable for a wide range of applications, including narrow flow areas. The transducer’s basic frequency and sound pressure are selected and evaluated to be compatible with the application. First, to confirm the measurement ability, the measurement of the developed system in two-dimensional flow is validated by comparing it to the theoretical data. The uncertainty of measurement was within 15%. Second, the three-dimensional measurement in turbulent and swirling flow is proved experimentally to check the applicability of the proposed technique.</span></span>
文摘This study integrated instrumental and relational approaches to the teaching and learning of solids in a preservice teacher's class. The researcher guided the preservice teachers to gather various prisms, pyramids, and spheres to study the total surface areas and volumes. At the end of the integrated models, the test scores showed closed relationships in the concurrent instructional strategies of the integrated models. The researcher therefore, recommended the design models for the teaching and learning of solids in mathematics.
文摘The hypoeutectic Al-Si alloy billet with non-dendrite was reheated to meet the needs of the semi-solid thixoforming microstructure by four kinds of reheating power,achieving the same final temperature of 851 K.Subsequently,under the same condition of thixoforming,the microstructure,surface hardness and tensile properties were observed.Afterwards,quantitative analysis was made for the microstructures of the reheated semi-solid of billet and the thixoforming parts.The results show that when the induction reheating power is 90 kW,the average grain size of the semi-solid billet is the minimum,the microstructures of the thixoforming samples also are the finest,and the mechanical properties of the relevant thixoforming samples are the best.Furthermore,after studying on the relationship between the microstructures of the semi-solid billet of aluminum alloy and the mechanical properties of the thixoforming samples,the reverse design of microstructure is primarily achieved.Finally,the effectiveness of the reverse design for semi-solid microstructure is confirmed by an actual automobile part with complex shape.
基金Tianjin Natural Science Foundation (23JCYBJC00660)Tianjin Enterprise Science and Technology Commissioner Project (23YDTPJC00490)+4 种基金National Natural Science Foundation of China (52203066, 51973157, 61904123)China Postdoctoral Science Foundation Grant (2023M742135)National innovation and entrepreneurship training program for college students (202310058007)Tianjin Municipal college students’ innovation and entrepreneurship training program (202310058088)State Key Laboratory of Membrane and Membrane Separation, Tiangong University。
文摘As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs.