This work has a two-fold purpose.On the one hand,the theoretical formulation of a three-dimensional(3D)acoustic propagation model for shallow waters with a constant sound speed is presented,based on the boundary eleme...This work has a two-fold purpose.On the one hand,the theoretical formulation of a three-dimensional(3D)acoustic propagation model for shallow waters with a constant sound speed is presented,based on the boundary element method(BEM),which uses a half-space Green function instead of the more conventional free-space Green function.On the other hand,a numerical implementation is illustrated to explore the formulation in simple idealized cases,controlled by a few parameters,which provides necessary tests for the accuracy and performance of the model.The half-space Green's function,which has been previously used in scattering and diffraction,adds terms to the usual expressions of the integral operators without altering their continuity properties.Verifications against the wavenumber integration solution of the Pekeris waveguide suggest that the model allows an adequate prediction for the acoustic field.Likewise,numerical experiments in relation to the necessary mesh size for the description of the water-marine sediment interface lead to the conclusion that a transmission loss prediction with acceptable accuracy can be obtained with the use of a limited mesh around the desired evaluation region.展开更多
BACKGROUND Numerous variables are linked to the success of vaginal delivery,including the subpubic arch angle(SPAA)during labor,the importance of which has not yet been fully elucidated.AIM To examine the SPAA distrib...BACKGROUND Numerous variables are linked to the success of vaginal delivery,including the subpubic arch angle(SPAA)during labor,the importance of which has not yet been fully elucidated.AIM To examine the SPAA distributional characteristics and to ascertain SPAA’s ability to predict the type and duration of labor.METHODS We determined the SPAA and analyzed the corresponding data.We also evaluated the relationship between the SPAA and the mode of delivery and the duration of labor by regression.The present study comprised a total of 301 pregnant women who had given birth at Beijing Tiantan Hospital of the Capital Medical University between January and December of 2021.RESULTS Our analysis of 301 pregnant women revealed that the SPAA measured using three-dimensional trans-perineal ultrasound had a minimum angle of 81°and a maximum angle of 122.2°.The angle in the normal vaginal delivery group was greater than that in the labor cesarean group(P=0.000).The SPAA was a highly significant positive predictor of normal vaginal delivery(P=0.000)with an area under the curve of 0.782(P=0.000;95%CI:0.717-0.848).We found the length of the second stage of labor to be positively influenced by the SPAA using linear regression analysis(P=0.045).CONCLUSION The SPAA was a highly significant positive predictor of normal vaginal delivery.The length of the second stage of labor and normal vaginal birth were predicted by SPAA.展开更多
The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three ...The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three dimensional N-S equations were obtained by the finite volume method. The focus of this numerical simulation was to research the characteristics of pressure distribution (drag and litt forces) and vortex tubes at high Reynolds numbers. The results of the calculations showed that the forces at every section in the spanwise direction of the cylinder were symmetrical about the middle section and smaller than the forces calculated in two dimensional cases. Moreover, the flow around the cylinder obviously presents three dimensional characteristics.展开更多
Microseismic/acoustic emission(MS/AE)source localization method is crucial for predicting and controlling of potentially dangerous sources of complex structures.However,the locating errors induced by both the irregula...Microseismic/acoustic emission(MS/AE)source localization method is crucial for predicting and controlling of potentially dangerous sources of complex structures.However,the locating errors induced by both the irregular structure and pre-measured velocity are poorly understood in existing methods.To meet the high-accuracy locating requirements in complex three-dimensional hole-containing structures,a velocity-free MS/AE source location method is developed in this paper.It avoids manual repetitive training by using equidistant grid points to search the path,which introduces A*search algorithm and uses grid points to accommodate complex structures with irregular holes.It also takes advantage of the velocity-free source location method.To verify the validity of the proposed method,lead-breaking tests were performed on a cubic concrete test specimen with a size of 10 cm10 cm10 cm.It was cut out into a cylindrical empty space with a size of/6cm10 cm.Based on the arrivals,the classical Geiger method and the proposed method are used to locate lead-breaking sources.Results show that the locating error of the proposed method is 1.20 cm,which is less than 2.02 cm of the Geiger method.Hence,the proposed method can effectively locate sources in the complex three-dimensional structure with holes and achieve higher precision requirements.展开更多
AIM To assess the role of three-dimensional endoanal ultrasound (3D-EAUS) for morphological assessment of the anal sphincter of female patients with chronic proctalgia (CP). METHODS In this unmatched case control stud...AIM To assess the role of three-dimensional endoanal ultrasound (3D-EAUS) for morphological assessment of the anal sphincter of female patients with chronic proctalgia (CP). METHODS In this unmatched case control study, 30 consecutive female patients with CP and 25 normal women (control group) were enrolled. 3D-EAUS was performed in all subjects. Thickness and length of internal anal sphincter (IAS), thickness of puborectalis muscle (PR), length of the external anal sphincter (EAS) plus PR, and puborectalis angle were measured and compared between the two groups. RESULTS Patients with CP had significantly shorter IAS length and greater PR thickness, as compared to those in normal individuals (26.28 +/- 3.59 mm vs 28.87 +/- 4.84 mm, P < 0.05 and 9.67 +/- 1.57 mm vs 8.85 +/- 0.97 mm, P < 0.05, respectively). No significant between-group differences were observed with respect to IAS thickness and the EAS plus PR length (P > 0.05). Puborectalis angle in the CP group was significantly decreased, both in resting (88.23 degrees +/- 1.81 degrees vs 89.94 degrees +/- 2.07 degrees in control group, P < 0.05) and straining (88.47 degrees +/- 3.32 degrees vs 90.72 degrees +/- 1.87 degrees in control group, P < 0.05) phases, which suggest the presence of paradoxical contraction of PR in patients with CP. In the CP group, no significant difference in puborectalis angle was observed between the resting and straining phases (88.23 degrees +/- 1.81 degrees vs 88.47 degrees +/- 3.32 degrees respectively, P > 0.05). CONCLUSION The association of greater PR thickness and paradoxical contraction of PR with CP suggest their potential value as markers of CP.展开更多
Based on the particle-in-cell technology and the secondary electron emission theory, a three-dimensional simulation method for multipactor is presented in this paper. By combining the finite difference time domain met...Based on the particle-in-cell technology and the secondary electron emission theory, a three-dimensional simulation method for multipactor is presented in this paper. By combining the finite difference time domain method and the panicle tracing method, such an algorithm is self-consistent and accurate since the interaction between electromagnetic fields and particles is properly modeled. In the time domain aspect, the generation of multipactor can be easily visualized, which makes it possible to gain a deeper insight into the physical mechanism of this effect. In addition to the classic secondary electron emission model, the measured practical secondary electron yield is used, which increases the accuracy of the algorithm. In order to validate the method, the impedance transformer and ridge waveguide filter are studied. By analyzing the evolution of the secondaries obtained by our method, multipactor thresholds of these components are estimated, which show good agreement with the experimental results. Furthermore, the most sensitive positions where multipactor occurs are determined from the phase focusing phenomenon, which is very meaningful for multipactor analysis and design.展开更多
This study assessed the clinical application of transvaginal three-dimensional ultrasound (3D TVUS) in the diagnosis of congenital uterine malformation. A retrospective study was performed on 62 patients with congen...This study assessed the clinical application of transvaginal three-dimensional ultrasound (3D TVUS) in the diagnosis of congenital uterine malformation. A retrospective study was performed on 62 patients with congenital uterine malformation confirmed hysteroscopically and/or laparoscopically. The patients were subjected to transvaginal two-dimensional ultrasound (2D TVUS) and 3D TVUS. The accuracy rate was compared between the two methods. The accuracy rate of 3D TVUS was (98.38%, 61/62), higher than that of 2D TVUS (80.65%, 50/62). 3D TVUS coronal plane imaging could demon- strate the internal shape of the endometrial cavity and the external contour of the uterine fundus. It al- lowed accurate measurement on the coronary plane, and could three-dimensionally show the image of cervical tube, thereby providing information for the diagnosis of some complex uterine malformation. 3D TVUS imaging can obtain comprehensive information of the uterus malformation, and it is superior to 2D TVUS for the diagnosis of congenital uterine malformations, especially complex uterine anomaly.展开更多
The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete elem...The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.展开更多
A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "F...A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "Fish" language provided by PFC3D and was employed to simulate the three-point bending beam test at two temperature levels: -10 ℃ and 15℃. The AC beam was modeled with the consideration of the microstructural features of asphalt mixtures. Uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. The 3D predictions were validated using laboratory experimental measurements of AC beams prepared by the same mixture design. Effects of mastic stiffness, cohesive and adhesive strength on AC fracture behavior were investigated using the DEM model. The results show that the 3D DEM fracture model can accurately predict the fracture patterns of asphalt concrete. The ratio of stress at interfaces to the stress in mastics increases as the mastic stiffness decreases; however, the increase in the cohesive strength or adhesive strength shows no significant influence on the tensile strength.展开更多
The purpose of this study was to evaluate the outcome of patients with unresectable hepatocellular carcinoma(HCC) treated by sequential therapy of transcatheter arterial chemoembolization(TACE),three-dimensional c...The purpose of this study was to evaluate the outcome of patients with unresectable hepatocellular carcinoma(HCC) treated by sequential therapy of transcatheter arterial chemoembolization(TACE),three-dimensional conformal radiotherapy(3-DCRT) and high-intensity focused ultrasound(HIFU).From October,2005 to September,2010,120 patients with unresectable HCC received the sequential treatments of several courses of TACE followed in 2-4 weeks by 3-DCRT and then a single session of HIFU with a curative intent.The median tumor irradiation dose was 40 Gy.Tumor response,toxicity and overall survival rate were analyzed.Clinicopathologic factors affecting the primary technique effectiveness and overall survival rates were investigated by univariate analysis or multivariate analysis.All 120 HCC patients were followed up by the last follow-up time.Among these patients,hepatic toxicities due to treatment were notable in 9 cases.Gastrointestinal bleeding after the overall treatment occurred in 2 cases,leukopenia of grade III was detected in 1 case,radiation-induced liver disease(RILD) was observed in 2 patients,and first-and second-degree skin burn around the HIFU treatment zone were observed in 2 patients and 1 patient,respectively.Among 120 patients,23,83 and 14 cases achieved partial response,stable disease and progressive disease,respectively.The overall survival rates at 1 year,3 years and 5 years were 70%,35% and 15%,respectively,with a median survival time of 26 months.Both Child-Pugh liver function grading and radiation dose were determined to be independent predictors for overall survival revealed by the multivariate analysis.It is concluded that the sequential therapy of TACE,3-DCRT and HIFU is a promising therapeutic regimen for unresectable HCC.展开更多
A user-defined three-dimensional (3D) discrete element model was presented to predict the dynamic modulus and phase angle of asphalt concrete (AC). The 3D discrete element method (DEM) model of AC was constructe...A user-defined three-dimensional (3D) discrete element model was presented to predict the dynamic modulus and phase angle of asphalt concrete (AC). The 3D discrete element method (DEM) model of AC was constructed employing a user-defined computer program developed using the "Fish" language in PFC3D. Important microstructural features of AC were modeled, including aggregate gradation, air voids and mastic. The irregular shape of aggregate particle was modeled using a clump of spheres. The developed model was validated through comparing with experimental measurements and then used to simulate the cyclic uniaxial compression test, based on which the dynamic modulus and phase angle were calculated from the output stress- strain relationship. The effects of air void content, aggregate stiffness and volumetric fraction on AC modulus were further investigated. The experimental results show that the 3D DEM model is able to accurately predict both dynamic modulus and phase angle of AC across a range of temperature and loading frequencies. The user- defined 3D model also demonstrated significant improvement over the general existing two-dimensional models.展开更多
A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream su...A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream surface(curved surface)strip elements along metal flow traces,and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation.The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve,of which the lateral distributions were expressed as the third-power spline function,and the altitudinal distributions were fitted in the quadratic curve.From the flow theory of plastic mechanics,the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed.Compared with the streamline strip element method proposed by the first author of this paper,the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction,and realizes the precise three-dimensional analysis and computation.The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process.展开更多
The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the tim...The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures.展开更多
A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forwar...A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances.展开更多
A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been deve...A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.展开更多
A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow t...A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow theory of 3D rigid-plastic mechanics. For the treatments of essential boundary conditions and incompressibility constraint, the boundary singular kernel method and the modified penalty method are utilized, respectively. The arc-tangential friction model is employed to treat the contact conditions. The compression of rectangular blocks, a typical 3D upsetting operation, is analyzed for different friction conditions and the numerical results are compared with those obtained using commercial rigid-plastic FEM (finite element method) software Deform^3D. As results show, when handling 3D plastic deformations, the proposed approach eliminates the need of expensive meshing and remeshing procedures which are unavoidable in conventional FEM and can provide results that are in good agreement with finite element predictions.展开更多
A fracture propagation model of radial well fracturing is established based on the finite element-meshless method.The model considers the coupling effect of fracturing fluid flow and rock matrix deformation.The fractu...A fracture propagation model of radial well fracturing is established based on the finite element-meshless method.The model considers the coupling effect of fracturing fluid flow and rock matrix deformation.The fracture geometries of radial well fracturing are simulated,the induction effect of radial well on the fracture is quantitatively characterized,and the influences of azimuth,horizontal principle stress difference,and reservoir matrix permeability on the fracture geometries are revealed.The radial wells can induce the fractures to extend parallel to their axes when two radial wells in the same layer are fractured.When the radial wells are symmetrically distributed along the direction of the minimum horizontal principle stress with the azimuth greater than 15,the extrusion effect reduces the fracture length of radial wells.When the radial wells are symmetrically distributed along the direction of the maximum horizontal principal stress,the extrusion increases the fracture length of the radial wells.The fracture geometries are controlled by the rectification of radial borehole,the extrusion between radial wells in the same layer,and the deflection of the maximum horizontal principal stress.When the radial wells are distributed along the minimum horizontal principal stress symmetrically,the fracture length induced by the radial well decreases with the increase of azimuth;in contrast,when the radial wells are distributed along the maximum horizontal principal stress symmetrically,the fracture length induced by the radial well first decreases and then increases with the increase of azimuth.The fracture length induced by the radial well decreases with the increase of horizontal principal stress difference.The increase of rock matrix permeability and pore pressure of the matrix around radial wells makes the inducing effect of the radial well on fractures increase.展开更多
Summary: This study sought to evaluate the contribution of two-dimensional ultrasound (2D-US) and three-dimensional skeletal imaging ultrasound (3D-SUIS) in the prenatal diagnosis of sirenomelia. Be- tween Septem...Summary: This study sought to evaluate the contribution of two-dimensional ultrasound (2D-US) and three-dimensional skeletal imaging ultrasound (3D-SUIS) in the prenatal diagnosis of sirenomelia. Be- tween September 2010 and April 2014, a prospective study was conducted in a single referral center using 3D-SU1S performed after 2D-US in 10 cases of sirenomelia. Diagnostic accuracy and detailed findings were compared with postnatal three-dimensional helical computed tomography (3D-HCT), radiological findings and autopsy. Pregnancy was terminated in all 10 sirenomelia cases, including 9 singletons and I conjoined twin pregnancy, for a total of 5 males and 5 females. These cases of sirenomelia were deter- mined by autopsy and/or chromosomal examination. Initial 2D-US showed that there were 10 cases of oligohydranmios, bilateral renal agenesis, bladder agenesis, single umbilical artery, fusion of the lower limbs and spinal abnormalities; 8 cases of dipus or monopus; 2 cases of apus; and 8 cases of cardiac abnormalities. Subsequent 3D-SUIS showed that there were 9 cases of scoliosis, l0 cases of sacrococ- cygeal vertebra dysplasia, 3 cases of hemivertebra, 1 case of vertebral fusion, 3 cases of spina bifida, and 5 cases of rib abnormalities. 3D-SUIS identified significantly more skeletal abnormalities than did 2D-US, and its accuracy was 79.5% (70/88) compared with 3D-HCT and radiography. 3D-SUIS seems to be a useful complementary method to 2D-US and may improve the accuracy of identifying prenatal skeletal abnormalities related to sirenomelia.展开更多
The singular hybrid boundary node method (SHBNM) is proposed for solving three-dimensional problems in linear elasticity. The SHBNM represents a coupling between the hybrid displacement variational formulations and ...The singular hybrid boundary node method (SHBNM) is proposed for solving three-dimensional problems in linear elasticity. The SHBNM represents a coupling between the hybrid displacement variational formulations and moving least squares (MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the later. The rigid movement method was employed to solve the hyper-singular integrations. The 'boundary layer effect', which is the main drawback of the original Hybrid BNM, was overcome by an adaptive integration scheme. The source points of the fundamental solution were arranged directly on the boundary. Thus the uncertain scale factor taken in the regular hybrid boundary node method (RHBNM) can be avoided. Numerical examples for some 3D elastic problems were given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method were studied through the numerical examples.展开更多
A technique for modelling of three-dimensional(3D)quasi-statically propagating cracks in elastic bodies by the displacement discontinuity method(DDM)was described.When the crack is closed,the Mohr-coulomb rule on the ...A technique for modelling of three-dimensional(3D)quasi-statically propagating cracks in elastic bodies by the displacement discontinuity method(DDM)was described.When the crack is closed,the Mohr-coulomb rule on the two contacted surfaces of the crack must be satisfied.A simple iterative method was adopted in order to consider three different states of cracks.Under the assumption that the advance of the point on the crack front would occur only in the normal plane which is through this edge point,the maximum energy release rate criterion is modified to be used as the criterion for the crack growth.With discretization,the process of crack propagation can be seen as the advance of the vertices of the crack front.The program MCP3D was developed based on these theories to simulate the 3D quasi-static crack propagation.A numerical example of a penny-shaped crack subject to tension and compression in an infinite elastic media was analyzed with MCP3D,and the results in comparison with others' show that the present method for 3D crack propagation is effective.展开更多
文摘This work has a two-fold purpose.On the one hand,the theoretical formulation of a three-dimensional(3D)acoustic propagation model for shallow waters with a constant sound speed is presented,based on the boundary element method(BEM),which uses a half-space Green function instead of the more conventional free-space Green function.On the other hand,a numerical implementation is illustrated to explore the formulation in simple idealized cases,controlled by a few parameters,which provides necessary tests for the accuracy and performance of the model.The half-space Green's function,which has been previously used in scattering and diffraction,adds terms to the usual expressions of the integral operators without altering their continuity properties.Verifications against the wavenumber integration solution of the Pekeris waveguide suggest that the model allows an adequate prediction for the acoustic field.Likewise,numerical experiments in relation to the necessary mesh size for the description of the water-marine sediment interface lead to the conclusion that a transmission loss prediction with acceptable accuracy can be obtained with the use of a limited mesh around the desired evaluation region.
文摘BACKGROUND Numerous variables are linked to the success of vaginal delivery,including the subpubic arch angle(SPAA)during labor,the importance of which has not yet been fully elucidated.AIM To examine the SPAA distributional characteristics and to ascertain SPAA’s ability to predict the type and duration of labor.METHODS We determined the SPAA and analyzed the corresponding data.We also evaluated the relationship between the SPAA and the mode of delivery and the duration of labor by regression.The present study comprised a total of 301 pregnant women who had given birth at Beijing Tiantan Hospital of the Capital Medical University between January and December of 2021.RESULTS Our analysis of 301 pregnant women revealed that the SPAA measured using three-dimensional trans-perineal ultrasound had a minimum angle of 81°and a maximum angle of 122.2°.The angle in the normal vaginal delivery group was greater than that in the labor cesarean group(P=0.000).The SPAA was a highly significant positive predictor of normal vaginal delivery(P=0.000)with an area under the curve of 0.782(P=0.000;95%CI:0.717-0.848).We found the length of the second stage of labor to be positively influenced by the SPAA using linear regression analysis(P=0.045).CONCLUSION The SPAA was a highly significant positive predictor of normal vaginal delivery.The length of the second stage of labor and normal vaginal birth were predicted by SPAA.
文摘The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three dimensional N-S equations were obtained by the finite volume method. The focus of this numerical simulation was to research the characteristics of pressure distribution (drag and litt forces) and vortex tubes at high Reynolds numbers. The results of the calculations showed that the forces at every section in the spanwise direction of the cylinder were symmetrical about the middle section and smaller than the forces calculated in two dimensional cases. Moreover, the flow around the cylinder obviously presents three dimensional characteristics.
基金The authors wish to acknowledge financial support from the National Natural Science Foundation of China(51822407 and 51774327)Natural Science Foundation of Hunan Province in China(2018JJ1037)Innovation Driven project of Central South University(2020CX014).
文摘Microseismic/acoustic emission(MS/AE)source localization method is crucial for predicting and controlling of potentially dangerous sources of complex structures.However,the locating errors induced by both the irregular structure and pre-measured velocity are poorly understood in existing methods.To meet the high-accuracy locating requirements in complex three-dimensional hole-containing structures,a velocity-free MS/AE source location method is developed in this paper.It avoids manual repetitive training by using equidistant grid points to search the path,which introduces A*search algorithm and uses grid points to accommodate complex structures with irregular holes.It also takes advantage of the velocity-free source location method.To verify the validity of the proposed method,lead-breaking tests were performed on a cubic concrete test specimen with a size of 10 cm10 cm10 cm.It was cut out into a cylindrical empty space with a size of/6cm10 cm.Based on the arrivals,the classical Geiger method and the proposed method are used to locate lead-breaking sources.Results show that the locating error of the proposed method is 1.20 cm,which is less than 2.02 cm of the Geiger method.Hence,the proposed method can effectively locate sources in the complex three-dimensional structure with holes and achieve higher precision requirements.
基金Supported by the State administration of Traditional Secretary and the nanjing health Bureau,no.YKK12142
文摘AIM To assess the role of three-dimensional endoanal ultrasound (3D-EAUS) for morphological assessment of the anal sphincter of female patients with chronic proctalgia (CP). METHODS In this unmatched case control study, 30 consecutive female patients with CP and 25 normal women (control group) were enrolled. 3D-EAUS was performed in all subjects. Thickness and length of internal anal sphincter (IAS), thickness of puborectalis muscle (PR), length of the external anal sphincter (EAS) plus PR, and puborectalis angle were measured and compared between the two groups. RESULTS Patients with CP had significantly shorter IAS length and greater PR thickness, as compared to those in normal individuals (26.28 +/- 3.59 mm vs 28.87 +/- 4.84 mm, P < 0.05 and 9.67 +/- 1.57 mm vs 8.85 +/- 0.97 mm, P < 0.05, respectively). No significant between-group differences were observed with respect to IAS thickness and the EAS plus PR length (P > 0.05). Puborectalis angle in the CP group was significantly decreased, both in resting (88.23 degrees +/- 1.81 degrees vs 89.94 degrees +/- 2.07 degrees in control group, P < 0.05) and straining (88.47 degrees +/- 3.32 degrees vs 90.72 degrees +/- 1.87 degrees in control group, P < 0.05) phases, which suggest the presence of paradoxical contraction of PR in patients with CP. In the CP group, no significant difference in puborectalis angle was observed between the resting and straining phases (88.23 degrees +/- 1.81 degrees vs 88.47 degrees +/- 3.32 degrees respectively, P > 0.05). CONCLUSION The association of greater PR thickness and paradoxical contraction of PR with CP suggest their potential value as markers of CP.
基金Project supported by the National Key Laboratory Foundation,China(Grant No.9140C530103110C5301)
文摘Based on the particle-in-cell technology and the secondary electron emission theory, a three-dimensional simulation method for multipactor is presented in this paper. By combining the finite difference time domain method and the panicle tracing method, such an algorithm is self-consistent and accurate since the interaction between electromagnetic fields and particles is properly modeled. In the time domain aspect, the generation of multipactor can be easily visualized, which makes it possible to gain a deeper insight into the physical mechanism of this effect. In addition to the classic secondary electron emission model, the measured practical secondary electron yield is used, which increases the accuracy of the algorithm. In order to validate the method, the impedance transformer and ridge waveguide filter are studied. By analyzing the evolution of the secondaries obtained by our method, multipactor thresholds of these components are estimated, which show good agreement with the experimental results. Furthermore, the most sensitive positions where multipactor occurs are determined from the phase focusing phenomenon, which is very meaningful for multipactor analysis and design.
文摘This study assessed the clinical application of transvaginal three-dimensional ultrasound (3D TVUS) in the diagnosis of congenital uterine malformation. A retrospective study was performed on 62 patients with congenital uterine malformation confirmed hysteroscopically and/or laparoscopically. The patients were subjected to transvaginal two-dimensional ultrasound (2D TVUS) and 3D TVUS. The accuracy rate was compared between the two methods. The accuracy rate of 3D TVUS was (98.38%, 61/62), higher than that of 2D TVUS (80.65%, 50/62). 3D TVUS coronal plane imaging could demon- strate the internal shape of the endometrial cavity and the external contour of the uterine fundus. It al- lowed accurate measurement on the coronary plane, and could three-dimensionally show the image of cervical tube, thereby providing information for the diagnosis of some complex uterine malformation. 3D TVUS imaging can obtain comprehensive information of the uterus malformation, and it is superior to 2D TVUS for the diagnosis of congenital uterine malformations, especially complex uterine anomaly.
基金Project(51378006) supported by National Natural Science Foundation of ChinaProject(141076) supported by Huoyingdong Foundation of the Ministry of Education of China+1 种基金Project(2242015R30027) supported by Excellent Young Teacher Program of Southeast University,ChinaProject(BK20140109) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.
基金Project(51208178)supported by the National Natural Science Foundation of ChinaProject(2012M520991)supported by China Postdoctoral Science Foundation
文摘A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "Fish" language provided by PFC3D and was employed to simulate the three-point bending beam test at two temperature levels: -10 ℃ and 15℃. The AC beam was modeled with the consideration of the microstructural features of asphalt mixtures. Uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. The 3D predictions were validated using laboratory experimental measurements of AC beams prepared by the same mixture design. Effects of mastic stiffness, cohesive and adhesive strength on AC fracture behavior were investigated using the DEM model. The results show that the 3D DEM fracture model can accurately predict the fracture patterns of asphalt concrete. The ratio of stress at interfaces to the stress in mastics increases as the mastic stiffness decreases; however, the increase in the cohesive strength or adhesive strength shows no significant influence on the tensile strength.
文摘The purpose of this study was to evaluate the outcome of patients with unresectable hepatocellular carcinoma(HCC) treated by sequential therapy of transcatheter arterial chemoembolization(TACE),three-dimensional conformal radiotherapy(3-DCRT) and high-intensity focused ultrasound(HIFU).From October,2005 to September,2010,120 patients with unresectable HCC received the sequential treatments of several courses of TACE followed in 2-4 weeks by 3-DCRT and then a single session of HIFU with a curative intent.The median tumor irradiation dose was 40 Gy.Tumor response,toxicity and overall survival rate were analyzed.Clinicopathologic factors affecting the primary technique effectiveness and overall survival rates were investigated by univariate analysis or multivariate analysis.All 120 HCC patients were followed up by the last follow-up time.Among these patients,hepatic toxicities due to treatment were notable in 9 cases.Gastrointestinal bleeding after the overall treatment occurred in 2 cases,leukopenia of grade III was detected in 1 case,radiation-induced liver disease(RILD) was observed in 2 patients,and first-and second-degree skin burn around the HIFU treatment zone were observed in 2 patients and 1 patient,respectively.Among 120 patients,23,83 and 14 cases achieved partial response,stable disease and progressive disease,respectively.The overall survival rates at 1 year,3 years and 5 years were 70%,35% and 15%,respectively,with a median survival time of 26 months.Both Child-Pugh liver function grading and radiation dose were determined to be independent predictors for overall survival revealed by the multivariate analysis.It is concluded that the sequential therapy of TACE,3-DCRT and HIFU is a promising therapeutic regimen for unresectable HCC.
基金Funded by the National "863" Plan Foundation of China(No.2006AA11Z110)
文摘A user-defined three-dimensional (3D) discrete element model was presented to predict the dynamic modulus and phase angle of asphalt concrete (AC). The 3D discrete element method (DEM) model of AC was constructed employing a user-defined computer program developed using the "Fish" language in PFC3D. Important microstructural features of AC were modeled, including aggregate gradation, air voids and mastic. The irregular shape of aggregate particle was modeled using a clump of spheres. The developed model was validated through comparing with experimental measurements and then used to simulate the cyclic uniaxial compression test, based on which the dynamic modulus and phase angle were calculated from the output stress- strain relationship. The effects of air void content, aggregate stiffness and volumetric fraction on AC modulus were further investigated. The experimental results show that the 3D DEM model is able to accurately predict both dynamic modulus and phase angle of AC across a range of temperature and loading frequencies. The user- defined 3D model also demonstrated significant improvement over the general existing two-dimensional models.
基金Sponsored by National Natural Science Foundation of China(50175095)Provincial Natural Science Foundation of Hebei of China(502173)
文摘A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream surface(curved surface)strip elements along metal flow traces,and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation.The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve,of which the lateral distributions were expressed as the third-power spline function,and the altitudinal distributions were fitted in the quadratic curve.From the flow theory of plastic mechanics,the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed.Compared with the streamline strip element method proposed by the first author of this paper,the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction,and realizes the precise three-dimensional analysis and computation.The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process.
基金supported by the Joint Fund of Seismological Science(Grant No.U1839206)the National R&D Program on Monitoring,Early Warning and Prevention of Major Natural Disaster(Grant No.2017YFC1500301)+2 种基金supported by IGGCAS Research Start-up Funds(Grant No.E0515402)National Natural Science Foundation of China(Grant No.E1115401)supported by National Natural Science Foundation of China(Grant No.11971258).
文摘The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures.
基金Project(60672042) supported by the National Natural Science Foundation of China
文摘A finite element algorithm combined with divergence condition was presented for computing three-dimensional(3D) magnetotelluric forward modeling. The finite element equation of three-dimensional magnetotelluric forward modeling was derived from Maxwell's equations using general variation principle. The divergence condition was added forcedly to the electric field boundary value problem, which made the solution correct. The system of equation of the finite element algorithm was a large sparse, banded, symmetric, ill-conditioned, non-Hermitian complex matrix equation, which can be solved using the Bi-CGSTAB method. In order to prove correctness of the three-dimensional magnetotelluric forward algorithm, the computed results and analytic results of one-dimensional geo-electrical model were compared. In addition, the three-dimensional magnetotelluric forward algorithm is given a further evaluation by computing COMMEMI model. The forward modeling results show that the algorithm is very efficient, and it has a lot of advantages, such as the high precision, the canonical process of solving problem, meeting the internal boundary condition automatically and adapting to all kinds of distribution of multi-substances.
基金Projects(41674080,41674079)supported by the National Natural Science Foundation of China
文摘A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys,based on a finite-element discretization of the Helmholtz equation for the electric fields,has been developed.The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source.Firstly,the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields.Secondly,in order to check the validity of the modeling code,the numerical results are compared with the analytical solutions for a homogeneous half-space model.Finally,other three models are simulated with three-dimensional electromagnetic responses.The results indicate that the method can be applied for solving three-dimensional electromagnetic responses.The algorithm has been demonstrated,which can be effective to modeling the complex geo-electrical structures.This efficient algorithm will help to study the distribution laws of3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.
基金This work was supported by the National Natural Science Foundation of China (No. 50275094).
文摘A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow theory of 3D rigid-plastic mechanics. For the treatments of essential boundary conditions and incompressibility constraint, the boundary singular kernel method and the modified penalty method are utilized, respectively. The arc-tangential friction model is employed to treat the contact conditions. The compression of rectangular blocks, a typical 3D upsetting operation, is analyzed for different friction conditions and the numerical results are compared with those obtained using commercial rigid-plastic FEM (finite element method) software Deform^3D. As results show, when handling 3D plastic deformations, the proposed approach eliminates the need of expensive meshing and remeshing procedures which are unavoidable in conventional FEM and can provide results that are in good agreement with finite element predictions.
基金Supported by the National Natural Science Foundation of China(51827804)CNPC Strategic Cooperation Science and Technology Major Project(ZLZX2020-01-05)Open Fund of State Key Laboratory of Rock Mechanics and Engineering(SKLGME021024).
文摘A fracture propagation model of radial well fracturing is established based on the finite element-meshless method.The model considers the coupling effect of fracturing fluid flow and rock matrix deformation.The fracture geometries of radial well fracturing are simulated,the induction effect of radial well on the fracture is quantitatively characterized,and the influences of azimuth,horizontal principle stress difference,and reservoir matrix permeability on the fracture geometries are revealed.The radial wells can induce the fractures to extend parallel to their axes when two radial wells in the same layer are fractured.When the radial wells are symmetrically distributed along the direction of the minimum horizontal principle stress with the azimuth greater than 15,the extrusion effect reduces the fracture length of radial wells.When the radial wells are symmetrically distributed along the direction of the maximum horizontal principal stress,the extrusion increases the fracture length of the radial wells.The fracture geometries are controlled by the rectification of radial borehole,the extrusion between radial wells in the same layer,and the deflection of the maximum horizontal principal stress.When the radial wells are distributed along the minimum horizontal principal stress symmetrically,the fracture length induced by the radial well decreases with the increase of azimuth;in contrast,when the radial wells are distributed along the maximum horizontal principal stress symmetrically,the fracture length induced by the radial well first decreases and then increases with the increase of azimuth.The fracture length induced by the radial well decreases with the increase of horizontal principal stress difference.The increase of rock matrix permeability and pore pressure of the matrix around radial wells makes the inducing effect of the radial well on fractures increase.
文摘Summary: This study sought to evaluate the contribution of two-dimensional ultrasound (2D-US) and three-dimensional skeletal imaging ultrasound (3D-SUIS) in the prenatal diagnosis of sirenomelia. Be- tween September 2010 and April 2014, a prospective study was conducted in a single referral center using 3D-SU1S performed after 2D-US in 10 cases of sirenomelia. Diagnostic accuracy and detailed findings were compared with postnatal three-dimensional helical computed tomography (3D-HCT), radiological findings and autopsy. Pregnancy was terminated in all 10 sirenomelia cases, including 9 singletons and I conjoined twin pregnancy, for a total of 5 males and 5 females. These cases of sirenomelia were deter- mined by autopsy and/or chromosomal examination. Initial 2D-US showed that there were 10 cases of oligohydranmios, bilateral renal agenesis, bladder agenesis, single umbilical artery, fusion of the lower limbs and spinal abnormalities; 8 cases of dipus or monopus; 2 cases of apus; and 8 cases of cardiac abnormalities. Subsequent 3D-SUIS showed that there were 9 cases of scoliosis, l0 cases of sacrococ- cygeal vertebra dysplasia, 3 cases of hemivertebra, 1 case of vertebral fusion, 3 cases of spina bifida, and 5 cases of rib abnormalities. 3D-SUIS identified significantly more skeletal abnormalities than did 2D-US, and its accuracy was 79.5% (70/88) compared with 3D-HCT and radiography. 3D-SUIS seems to be a useful complementary method to 2D-US and may improve the accuracy of identifying prenatal skeletal abnormalities related to sirenomelia.
基金Project supported by the Program of the Key Laboratory of Rock and Soil Mechanics of Chinese Academy of Sciences (No.Z110507)
文摘The singular hybrid boundary node method (SHBNM) is proposed for solving three-dimensional problems in linear elasticity. The SHBNM represents a coupling between the hybrid displacement variational formulations and moving least squares (MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the later. The rigid movement method was employed to solve the hyper-singular integrations. The 'boundary layer effect', which is the main drawback of the original Hybrid BNM, was overcome by an adaptive integration scheme. The source points of the fundamental solution were arranged directly on the boundary. Thus the uncertain scale factor taken in the regular hybrid boundary node method (RHBNM) can be avoided. Numerical examples for some 3D elastic problems were given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method were studied through the numerical examples.
文摘A technique for modelling of three-dimensional(3D)quasi-statically propagating cracks in elastic bodies by the displacement discontinuity method(DDM)was described.When the crack is closed,the Mohr-coulomb rule on the two contacted surfaces of the crack must be satisfied.A simple iterative method was adopted in order to consider three different states of cracks.Under the assumption that the advance of the point on the crack front would occur only in the normal plane which is through this edge point,the maximum energy release rate criterion is modified to be used as the criterion for the crack growth.With discretization,the process of crack propagation can be seen as the advance of the vertices of the crack front.The program MCP3D was developed based on these theories to simulate the 3D quasi-static crack propagation.A numerical example of a penny-shaped crack subject to tension and compression in an infinite elastic media was analyzed with MCP3D,and the results in comparison with others' show that the present method for 3D crack propagation is effective.