The unsteady viscous flow over a continuously permeable shrinking surface is studied. Similarity equations are obtained through the application of similar transformation techniques. Numerical techniques are used to so...The unsteady viscous flow over a continuously permeable shrinking surface is studied. Similarity equations are obtained through the application of similar transformation techniques. Numerical techniques are used to solve the similarity equations for different values of the unsteadiness parameter, the mass suction parameter, the shrinking parameter and the Prandtl number on the velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number. It is found that, different from an unsteady stretching sheet, dual solutions exist in a certain range of mass suction and unsteadiness parameters.展开更多
This article studies the three-dimensional boundary layer flow of an elastico- viscous fluid over a stretching surface. Velocity of the stretching sheet is assumed to be time-dependent. Effect of mass transfer with hi...This article studies the three-dimensional boundary layer flow of an elastico- viscous fluid over a stretching surface. Velocity of the stretching sheet is assumed to be time-dependent. Effect of mass transfer with higher order chemical reaction is further considered. Computations are made by the homptopy analysis method (HAM). Con- vergence of the obtained series solutions is explicitly analyzed. Variations of embedding parameters on the velocity and concentration are graphically discussed. Numerical com- putations of surface mass transfer are reported. Comparison of the present results with the numerical solutions is also given.展开更多
Cattaneo-Christov heat and mass flux models are considered rather than Fourier and Fick laws due to the presence of thermal and concentration transport hyperbolic phenomena. The generalized form of the Navier-Stokes m...Cattaneo-Christov heat and mass flux models are considered rather than Fourier and Fick laws due to the presence of thermal and concentration transport hyperbolic phenomena. The generalized form of the Navier-Stokes model is considered in hydromagnetic flow. Three-dimensional (3D) unsteady fluid motion is generated by the periodic oscillations of a rotating disk. Similarity transformations are used to obtain the normalized fluid flow model. The successive over relaxation (SOR) method with finite difference schemes are accomplished for the numerical solution of the obtained partial differential non-linear system. The flow features of the velocity, microrotation, temperature, and concentration fields are discussed in pictorial forms for various physical flow parameters. The couple stresses and heat and mass transfer rates for different physical quantities are explained via tabular forms. For better insight of the physical fluid model, 3D fluid phenomena and two-dimensional (2D) contours are also plotted. The results show that the micropolar fluids contain microstructure having non-symmetric stress tensor and are useful in lubrication theory. Moreover, the thermal and concentration waves in Cattaneo-Christov models have a significance role in the laser heating and enhancement in thermal conductivity.展开更多
The possible states in the flow past two identical cylinders in tandem arrangements are investigated. The effect of the gap (L/D = 1.5, 1.75 and 2) between the two cylinders at Reynolds number (Re = 52,639) is tak...The possible states in the flow past two identical cylinders in tandem arrangements are investigated. The effect of the gap (L/D = 1.5, 1.75 and 2) between the two cylinders at Reynolds number (Re = 52,639) is taken into consideration. The presence of three-dimensional flow structures was observed to include notable changes to the response of the flow as result of variation of cylinder separation. A number of planes (z/h = 0.02, 0.25, 0.5 and 0.98) were taken at 20 step times of interval 0.005 s. to cover the details of flow along the cylinders. CFD FLUENT program was used to detect the flow structure. It is observed that the gap between the two cylinders affects the flow regime, i.e., there is no distinct vortex shedding downstream of the first cylinder.展开更多
The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three ...The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three dimensional N-S equations were obtained by the finite volume method. The focus of this numerical simulation was to research the characteristics of pressure distribution (drag and litt forces) and vortex tubes at high Reynolds numbers. The results of the calculations showed that the forces at every section in the spanwise direction of the cylinder were symmetrical about the middle section and smaller than the forces calculated in two dimensional cases. Moreover, the flow around the cylinder obviously presents three dimensional characteristics.展开更多
A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and...A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and uses a third-order flux-difference splitting technique for the convective terms and the second-order central difference for the viscous terms. The numerical flux of semi-discrete equations is computed by using the Roe approximation. Time accuracy is obtained in the numerical solutions by subiterating the equations in pseudotime for each physical time step. The algebraic turbulence model of Baldwin-Lomax is ulsed in this work. As examples, the solutions of flow through two dimensional flat, airfoil, prolate spheroid and cerebral aneurysm are computed and the results are compared with experimental data. The results show that the coefficient of pressure and skin friction are agreement with experimental data, the largest discrepancy occur in the separation region where the lagebraic turbulence model of Baldwin-Lomax could not exactly predict the flow.展开更多
Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed...Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations.展开更多
In this communication a generalized three- dimensional steady flow of a viscous fluid between two infinite parallel plates is considered. The flow is generated due to uniform stretching of the lower plate in x- and y-...In this communication a generalized three- dimensional steady flow of a viscous fluid between two infinite parallel plates is considered. The flow is generated due to uniform stretching of the lower plate in x- and y-directions. It is assumed that the upper plate is uniformly porous and is subjected to constant injection. The governing system is fully coupled and nonlinear in nature. A complete analytic solution which is uniformly valid for all values of the dimensionless parameters β Re and λ is obtained by using a purely analytic technique, namely the homotopy analysis method. Also the effects of the parameters β Re and λ on the velocity field are discussed through graphs.展开更多
This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is...This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics.展开更多
Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas i...Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas in the specific reactor.In order to understand the dynamic characteristics of the reactor,a three-dimensional numerical model has been established by the method of Computational Fluid Dynamics(CFD).Along the height of the reactor,the particle distribution in the bed becomes thinner and the mean solid volume fraction decreases from 4.18%to 0.37%.Meanwhile,the pressure fluctuation range decreased from 398.76 Pa at the entrance to a much lower value of 74.47 Pa at the exit.In this simulation,three parameters of gas inlet velocity,operating temperature and solid particle diameter are changed to explore their influences on gas-solid multiphase flow.The results show that gas velocity has a great influence on particle distribution.When the gas inlet velocity decreases from 6.51 to 1.98 m/s,the minimum height that particles can reach decreases from 169 to 100 mm.Additionally,as the operating temperature increases,the particle holdup inside the reactor changes from 0.843%to 0.700%.This indicates that the particle residence time reduces,which is not conducive to the follow-up reaction.Moreover,with the increase of particle size,the fluctuation range of the pressure at the bottom of the reactor increases,and its standard deviation increases from 55.34 to 1266.37 Pa.展开更多
The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT...The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF.展开更多
The magnetohydrodynamic(MHD) steady and unsteady axisymmetric flows of a viscous fluid over a two-dimensional shrinking sheet are addressed. The mathematical analysis is carried out in the presence of a large magnet...The magnetohydrodynamic(MHD) steady and unsteady axisymmetric flows of a viscous fluid over a two-dimensional shrinking sheet are addressed. The mathematical analysis is carried out in the presence of a large magnetic field. The steady state problem results in a singular perturbation problem having an infinite domain singularity. The secular term appearing in the solution is removed and a two-term uniformly valid solution is derived using the Lindstedt–Poincaré technique. This asymptotic solution is validated by comparing it with the numerical solution. The solution for the unsteady problem is also presented analytically in the asymptotic limit of large magnetic field. The results of velocity profile and skin friction are shown graphically to explore the physical features of the flow field. The stability analysis of the unsteady flow is made to validate the asymptotic solution.展开更多
This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed fo...This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed for the velocity and temperature fields. Graphs for the velocity and temperature are plotted to examine the behaviors with different parameters. Numerical values of the local Nusselt number are presented and discussed. The present results are compared with the existing limiting solutions, showing good agreement with each other.展开更多
The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the...The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the velocity and temperature fields. Convergence of series solutions is ensured graphically and numerically. The variations of key parameters on the physical quantities are shown and discussed in detail. Constructed series solutions are compared with the existing solutions in the limiting case and an excellent agreement is noticed. Nusselt numbers are computed with and without magnetic fields. It is observed that the Nusselt number decreases in the presence of magnetic field.展开更多
Transonic shocks play a pivotal role in designation of supersonic inlets and ramjets.For the three-dimensional steady non-isentropic compressible Euler system with frictions,we constructe a family of transonic shock s...Transonic shocks play a pivotal role in designation of supersonic inlets and ramjets.For the three-dimensional steady non-isentropic compressible Euler system with frictions,we constructe a family of transonic shock solutions in rectilinear ducts with square cross-sections.In this article,we are devoted to proving rigorously that a large class of these transonic shock solutions are stable,under multidimensional small perturbations of the upcoming supersonic flows and back pressures at the exits of ducts in suitable function spaces.This manifests that frictions have a stabilization effect on transonic shocks in ducts,in consideration of previous works which shown that transonic shocks in purely steady Euler flows are not stable in such ducts.Except its implications to applications,because frictions lead to a stronger coupling between the elliptic and hyperbolic parts of the three-dimensional steady subsonic Euler system,we develop the framework established in previous works to study more complex and interesting Venttsel problems of nonlocal elliptic equations.展开更多
Based on three-dimensional cellular automata (CA), a new stochastic simulation model to simulate the microstructures and particle flow of talus deposit is proposed. Ill addition, an auto-modeling program CARS is dev...Based on three-dimensional cellular automata (CA), a new stochastic simulation model to simulate the microstructures and particle flow of talus deposit is proposed. Ill addition, an auto-modeling program CARS is developed, with which nunaerical simulations can be conducted conveniently. For the problem of simulating mechanical behaviors of talus deposit, spatial anangement or sphere shapes should be considered. In the new modeling method, four sphere anangement models are developed for the particle flow simulation of talus deposit. Numerical results show that the talus deposit has the mechanical characteristics of typical stress-strain curves, as other rock-like materials. The cohesion of talus deposit decreases with increasing rock content, while the internal friction angle increases with increasing rock contents. Finally, numerical simulation is verified with the results of field test.展开更多
The present research explores the three-dimensional boundary layer flow of the Maxwell nanofluid. The flow is generated by a bidirectional stretching surface. The mathematical formulation is carried out through a boun...The present research explores the three-dimensional boundary layer flow of the Maxwell nanofluid. The flow is generated by a bidirectional stretching surface. The mathematical formulation is carried out through a boundary layer approach with the heat source/sink, the Brownian motion, and the thermophoresis effects. The newly developed boundary conditions requiring zero nanoparticle mass flux at the boundary are employed in the flow analysis for the Maxwell fluid. The governing nonlinear boundary layer equations through appropriate transformations are reduced to the coupled nonlin- ear ordinary differential system. The resulting nonlinear system is solved. Graphs are plotted to examine the effects of various interesting parameters on the non-dimensional velocities, temperature, and concentration fields. The values of the local Nusselt number are computed and examined numerically.展开更多
Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and therm...Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and thermal buoyancy effects were accounted. Convective boundary conditions for heat and mass transfer analysis were explored. Series solutions of the resulting problem were developed. Effects of mixed convection, internal heat generation/absorption parameter and Biot numbers on the dimensionless velocity, temperature and concentration distributions were illustrated graphically. Numerical values of local Nusselt and Sherwood numbers were obtained and analyzed for all the physical parameters. It is found that both thermal and concentration boundary layer thicknesses are decreasing functions of stretching ratio. Variations of mixed convection parameter and concentration buoyancy parameter on the velocity profiles and associated boundary layer thicknesses are enhanced. Velocity profiles and temperature increase in the case of internal heat generation while they reduce for heat absorption. Heat transfer Biot number increases the thermal boundary layer thickness and temperature. Also concentration and its associated boundary layer are enhanced with an increase in mass transfer Biot number. The local Nusselt and Sherwood numbers have quite similar behaviors for increasing values of mixed convection parameter, concentration buoyancy parameter and Deborah number.展开更多
Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rul...Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rules are (1) for a rotor cascade without shroud band, the total number of nodal points equals that the saddle points on the skin-friction line vector fields in eachpitch range; (2) for an annular or straight cascade with no-clearances at blade ends, the total number of saddle points is two more than that of nodal points on the skin-friction line fields in a pitch; (3) the total number of saddles in the secondary flow fields on cross-sections in cascade is one less than that of nodes; (4) in the section streamline vector fields on a meridian surface penetrating a flow passage, and on leading and trailing edge sections, the total number of nodes is equal to that of saddles; (5) on the streamline vector fields of a blade-to-blade surface, the total number of nodes is one less than that of saddles.展开更多
An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing rati...An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing ratios (M=1.5, 2) on the flow field are studied. The experimental results reveal the classical phenomena of the formation of kidney vortex pair and secondary flow in wake region behind the jet hole. And the changes of the kidney vortex pair and the wake at different locations away from the hole on the suction and pressure sides are also studied. Compared with the flow field in stationary cascade, there are centrifugal force and Coriolis force existing in the flow field of rotating turbine, and these forces bring the radial velocity in the jet flow. The effect of rotatien on the flow field of the pressure side is more distinct than that on the suction side from the measured flow fields in Y-Z plane and radial velocity contours. The increase of blowing ratio makes the kidney vortex pair and the secondary flow in the wake region stronger and makes the range of the wake region enlarged.展开更多
基金Project supported by the Ministry of Science,Technology,and Innovation of Malaysia(No.06-01-02-SF0610)
文摘The unsteady viscous flow over a continuously permeable shrinking surface is studied. Similarity equations are obtained through the application of similar transformation techniques. Numerical techniques are used to solve the similarity equations for different values of the unsteadiness parameter, the mass suction parameter, the shrinking parameter and the Prandtl number on the velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number. It is found that, different from an unsteady stretching sheet, dual solutions exist in a certain range of mass suction and unsteadiness parameters.
文摘This article studies the three-dimensional boundary layer flow of an elastico- viscous fluid over a stretching surface. Velocity of the stretching sheet is assumed to be time-dependent. Effect of mass transfer with higher order chemical reaction is further considered. Computations are made by the homptopy analysis method (HAM). Con- vergence of the obtained series solutions is explicitly analyzed. Variations of embedding parameters on the velocity and concentration are graphically discussed. Numerical com- putations of surface mass transfer are reported. Comparison of the present results with the numerical solutions is also given.
文摘Cattaneo-Christov heat and mass flux models are considered rather than Fourier and Fick laws due to the presence of thermal and concentration transport hyperbolic phenomena. The generalized form of the Navier-Stokes model is considered in hydromagnetic flow. Three-dimensional (3D) unsteady fluid motion is generated by the periodic oscillations of a rotating disk. Similarity transformations are used to obtain the normalized fluid flow model. The successive over relaxation (SOR) method with finite difference schemes are accomplished for the numerical solution of the obtained partial differential non-linear system. The flow features of the velocity, microrotation, temperature, and concentration fields are discussed in pictorial forms for various physical flow parameters. The couple stresses and heat and mass transfer rates for different physical quantities are explained via tabular forms. For better insight of the physical fluid model, 3D fluid phenomena and two-dimensional (2D) contours are also plotted. The results show that the micropolar fluids contain microstructure having non-symmetric stress tensor and are useful in lubrication theory. Moreover, the thermal and concentration waves in Cattaneo-Christov models have a significance role in the laser heating and enhancement in thermal conductivity.
文摘The possible states in the flow past two identical cylinders in tandem arrangements are investigated. The effect of the gap (L/D = 1.5, 1.75 and 2) between the two cylinders at Reynolds number (Re = 52,639) is taken into consideration. The presence of three-dimensional flow structures was observed to include notable changes to the response of the flow as result of variation of cylinder separation. A number of planes (z/h = 0.02, 0.25, 0.5 and 0.98) were taken at 20 step times of interval 0.005 s. to cover the details of flow along the cylinders. CFD FLUENT program was used to detect the flow structure. It is observed that the gap between the two cylinders affects the flow regime, i.e., there is no distinct vortex shedding downstream of the first cylinder.
文摘The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three dimensional N-S equations were obtained by the finite volume method. The focus of this numerical simulation was to research the characteristics of pressure distribution (drag and litt forces) and vortex tubes at high Reynolds numbers. The results of the calculations showed that the forces at every section in the spanwise direction of the cylinder were symmetrical about the middle section and smaller than the forces calculated in two dimensional cases. Moreover, the flow around the cylinder obviously presents three dimensional characteristics.
文摘A mixed algorithm of central and upwind difference scheme for the solution of steady/unsteady incompressible Navier-Stokes equations is presented. The algorithm is based on the method of artificial compressibility and uses a third-order flux-difference splitting technique for the convective terms and the second-order central difference for the viscous terms. The numerical flux of semi-discrete equations is computed by using the Roe approximation. Time accuracy is obtained in the numerical solutions by subiterating the equations in pseudotime for each physical time step. The algebraic turbulence model of Baldwin-Lomax is ulsed in this work. As examples, the solutions of flow through two dimensional flat, airfoil, prolate spheroid and cerebral aneurysm are computed and the results are compared with experimental data. The results show that the coefficient of pressure and skin friction are agreement with experimental data, the largest discrepancy occur in the separation region where the lagebraic turbulence model of Baldwin-Lomax could not exactly predict the flow.
基金Supported by the Major State Basic Research Development Program of China(2011CB706501)the National Natural Science Foundation of China(51276157)
文摘Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations.
文摘In this communication a generalized three- dimensional steady flow of a viscous fluid between two infinite parallel plates is considered. The flow is generated due to uniform stretching of the lower plate in x- and y-directions. It is assumed that the upper plate is uniformly porous and is subjected to constant injection. The governing system is fully coupled and nonlinear in nature. A complete analytic solution which is uniformly valid for all values of the dimensionless parameters β Re and λ is obtained by using a purely analytic technique, namely the homotopy analysis method. Also the effects of the parameters β Re and λ on the velocity field are discussed through graphs.
基金Project supported by the Executive Agency for Higher Education Research Development and Innovation Funding of Romania(No.PN-III-P4-PCE-2021-0993)。
文摘This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics.
基金Funding Statement:This work was supported by the National Key Research and Development Program of China[Grant No.2019YFC1906802].
文摘Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas in the specific reactor.In order to understand the dynamic characteristics of the reactor,a three-dimensional numerical model has been established by the method of Computational Fluid Dynamics(CFD).Along the height of the reactor,the particle distribution in the bed becomes thinner and the mean solid volume fraction decreases from 4.18%to 0.37%.Meanwhile,the pressure fluctuation range decreased from 398.76 Pa at the entrance to a much lower value of 74.47 Pa at the exit.In this simulation,three parameters of gas inlet velocity,operating temperature and solid particle diameter are changed to explore their influences on gas-solid multiphase flow.The results show that gas velocity has a great influence on particle distribution.When the gas inlet velocity decreases from 6.51 to 1.98 m/s,the minimum height that particles can reach decreases from 169 to 100 mm.Additionally,as the operating temperature increases,the particle holdup inside the reactor changes from 0.843%to 0.700%.This indicates that the particle residence time reduces,which is not conducive to the follow-up reaction.Moreover,with the increase of particle size,the fluctuation range of the pressure at the bottom of the reactor increases,and its standard deviation increases from 55.34 to 1266.37 Pa.
文摘The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF.
文摘The magnetohydrodynamic(MHD) steady and unsteady axisymmetric flows of a viscous fluid over a two-dimensional shrinking sheet are addressed. The mathematical analysis is carried out in the presence of a large magnetic field. The steady state problem results in a singular perturbation problem having an infinite domain singularity. The secular term appearing in the solution is removed and a two-term uniformly valid solution is derived using the Lindstedt–Poincaré technique. This asymptotic solution is validated by comparing it with the numerical solution. The solution for the unsteady problem is also presented analytically in the asymptotic limit of large magnetic field. The results of velocity profile and skin friction are shown graphically to explore the physical features of the flow field. The stability analysis of the unsteady flow is made to validate the asymptotic solution.
基金supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah,Saudi Arabia (No. 2-135/HiCi)
文摘This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed for the velocity and temperature fields. Graphs for the velocity and temperature are plotted to examine the behaviors with different parameters. Numerical values of the local Nusselt number are presented and discussed. The present results are compared with the existing limiting solutions, showing good agreement with each other.
文摘The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the velocity and temperature fields. Convergence of series solutions is ensured graphically and numerically. The variations of key parameters on the physical quantities are shown and discussed in detail. Constructed series solutions are compared with the existing solutions in the limiting case and an excellent agreement is noticed. Nusselt numbers are computed with and without magnetic fields. It is observed that the Nusselt number decreases in the presence of magnetic field.
基金This work was supported in part by National Nature Science Foundation of China(11371141 and 11871218)by Science and Technology Commission of Shanghai Municipality(18dz2271000).
文摘Transonic shocks play a pivotal role in designation of supersonic inlets and ramjets.For the three-dimensional steady non-isentropic compressible Euler system with frictions,we constructe a family of transonic shock solutions in rectilinear ducts with square cross-sections.In this article,we are devoted to proving rigorously that a large class of these transonic shock solutions are stable,under multidimensional small perturbations of the upcoming supersonic flows and back pressures at the exits of ducts in suitable function spaces.This manifests that frictions have a stabilization effect on transonic shocks in ducts,in consideration of previous works which shown that transonic shocks in purely steady Euler flows are not stable in such ducts.Except its implications to applications,because frictions lead to a stronger coupling between the elliptic and hyperbolic parts of the three-dimensional steady subsonic Euler system,we develop the framework established in previous works to study more complex and interesting Venttsel problems of nonlocal elliptic equations.
基金Supported by the National Natural Science Foundation of China(50979030 and 50911130366)
文摘Based on three-dimensional cellular automata (CA), a new stochastic simulation model to simulate the microstructures and particle flow of talus deposit is proposed. Ill addition, an auto-modeling program CARS is developed, with which nunaerical simulations can be conducted conveniently. For the problem of simulating mechanical behaviors of talus deposit, spatial anangement or sphere shapes should be considered. In the new modeling method, four sphere anangement models are developed for the particle flow simulation of talus deposit. Numerical results show that the talus deposit has the mechanical characteristics of typical stress-strain curves, as other rock-like materials. The cohesion of talus deposit decreases with increasing rock content, while the internal friction angle increases with increasing rock contents. Finally, numerical simulation is verified with the results of field test.
文摘The present research explores the three-dimensional boundary layer flow of the Maxwell nanofluid. The flow is generated by a bidirectional stretching surface. The mathematical formulation is carried out through a boundary layer approach with the heat source/sink, the Brownian motion, and the thermophoresis effects. The newly developed boundary conditions requiring zero nanoparticle mass flux at the boundary are employed in the flow analysis for the Maxwell fluid. The governing nonlinear boundary layer equations through appropriate transformations are reduced to the coupled nonlin- ear ordinary differential system. The resulting nonlinear system is solved. Graphs are plotted to examine the effects of various interesting parameters on the non-dimensional velocities, temperature, and concentration fields. The values of the local Nusselt number are computed and examined numerically.
文摘Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and thermal buoyancy effects were accounted. Convective boundary conditions for heat and mass transfer analysis were explored. Series solutions of the resulting problem were developed. Effects of mixed convection, internal heat generation/absorption parameter and Biot numbers on the dimensionless velocity, temperature and concentration distributions were illustrated graphically. Numerical values of local Nusselt and Sherwood numbers were obtained and analyzed for all the physical parameters. It is found that both thermal and concentration boundary layer thicknesses are decreasing functions of stretching ratio. Variations of mixed convection parameter and concentration buoyancy parameter on the velocity profiles and associated boundary layer thicknesses are enhanced. Velocity profiles and temperature increase in the case of internal heat generation while they reduce for heat absorption. Heat transfer Biot number increases the thermal boundary layer thickness and temperature. Also concentration and its associated boundary layer are enhanced with an increase in mass transfer Biot number. The local Nusselt and Sherwood numbers have quite similar behaviors for increasing values of mixed convection parameter, concentration buoyancy parameter and Deborah number.
文摘Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rules are (1) for a rotor cascade without shroud band, the total number of nodal points equals that the saddle points on the skin-friction line vector fields in eachpitch range; (2) for an annular or straight cascade with no-clearances at blade ends, the total number of saddle points is two more than that of nodal points on the skin-friction line fields in a pitch; (3) the total number of saddles in the secondary flow fields on cross-sections in cascade is one less than that of nodes; (4) in the section streamline vector fields on a meridian surface penetrating a flow passage, and on leading and trailing edge sections, the total number of nodes is equal to that of saddles; (5) on the streamline vector fields of a blade-to-blade surface, the total number of nodes is one less than that of saddles.
基金This project is supported by National Natural Science Foundation ofChina(No. 50406017)
文摘An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing ratios (M=1.5, 2) on the flow field are studied. The experimental results reveal the classical phenomena of the formation of kidney vortex pair and secondary flow in wake region behind the jet hole. And the changes of the kidney vortex pair and the wake at different locations away from the hole on the suction and pressure sides are also studied. Compared with the flow field in stationary cascade, there are centrifugal force and Coriolis force existing in the flow field of rotating turbine, and these forces bring the radial velocity in the jet flow. The effect of rotatien on the flow field of the pressure side is more distinct than that on the suction side from the measured flow fields in Y-Z plane and radial velocity contours. The increase of blowing ratio makes the kidney vortex pair and the secondary flow in the wake region stronger and makes the range of the wake region enlarged.