Objective:This study aimed to explore the applications of three-dimensional (3D) technology, including virtual reality, augmented reality (AR), and 3D printing system, in the field of medicine, particularly in renal i...Objective:This study aimed to explore the applications of three-dimensional (3D) technology, including virtual reality, augmented reality (AR), and 3D printing system, in the field of medicine, particularly in renal interventions for cancer treatment.Methods:A specialized software transforms 2D medical images into precise 3D digital models, facilitating improved anatomical understanding and surgical planning. Patient-specific 3D printed anatomical models are utilized for preoperative planning, intraoperative guidance, and surgical education. AR technology enables the overlay of digital perceptions onto real-world surgical environments.Results:Patient-specific 3D printed anatomical models have multiple applications, such as preoperative planning, intraoperative guidance, trainee education, and patient counseling. Virtual reality involves substituting the real world with a computer-generated 3D environment, while AR overlays digitally created perceptions onto the existing reality. The advances in 3D modeling technology have sparked considerable interest in their application to partial nephrectomy in the realm of renal cancer. 3D printing, also known as additive manufacturing, constructs 3D objects based on computer-aided design or digital 3D models. Utilizing 3D-printed preoperative renal models provides benefits for surgical planning, offering a more reliable assessment of the tumor's relationship with vital anatomical structures and enabling better preparation for procedures. AR technology allows surgeons to visualize patient-specific renal anatomical structures and their spatial relationships with surrounding organs by projecting CT/MRI images onto a live laparoscopic video. Incorporating patient-specific 3D digital models into healthcare enhances best practice, resulting in improved patient care, increased patient satisfaction, and cost saving for the healthcare system.展开更多
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean...Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.展开更多
A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal d...A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal direction and z-level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohal Sea. The results are in good agreement both with the analytical solutions and measurement results.展开更多
The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete elem...The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.展开更多
This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize t...This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.展开更多
The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challeng...The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challenges to grid resilience. Virtual power plants(VPPs) are emerging technologies to improve the grid resilience and advance the transformation. By judiciously aggregating geographically distributed energy resources(DERs) as individual electrical entities, VPPs can provide capacity and ancillary services to grid operations and participate in electricity wholesale markets. This paper aims to provide a concise overview of the concept and development of VPPs and the latest progresses in VPP operation, with the focus on VPP scheduling and control. Based on this overview, we identify a few potential challenges in VPP operation and discuss the opportunities of integrating the multi-agent system(MAS)-based strategy into the VPP operation to enhance its scalability, performance and resilience.展开更多
Artificial intelligence(AI)is the study of algorithms that enable machines to analyze and execute cognitive activities including problem solving,object and word recognition,reduce the inevitable errors to improve the ...Artificial intelligence(AI)is the study of algorithms that enable machines to analyze and execute cognitive activities including problem solving,object and word recognition,reduce the inevitable errors to improve the diagnostic accuracy,and decision-making.Hepatobiliary procedures are technically complex and the use of AI in perioperative management can improve patient outcomes as discussed below.Three-dimensional(3D)reconstruction of images obtained via ultrasound,computed tomography scan or magnetic resonance imaging,can help surgeons better visualize the surgical sites with added depth perception.Preoperative 3D planning is associated with lesser operative time and intraoperative complications.Also,a more accurate assessment is noted,which leads to fewer operative complications.Images can be converted into physical models with 3D printing technology,which can be of educational value to students and trainees.3D images can be combined to provide 3D visualization,which is used for preoperative navigation,allowing for more precise localization of tumors and vessels.Nevertheless,AI enables surgeons to provide better,personalized care for each patient.展开更多
Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enha...Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enhancing the requests of image quality and stability of the virtual construction scene, taking a tower crane for example. We studied the technology of three-dimensional modeling and optimization of a virtual tower crane, and a method named two-stage model optimization was put forward. This depended on the modeling stage using Solidworks and 3DS Max and the performance optimization stage in EON. The practice of software development indicates that the proposed methods of three-dimensional modeling and optimization could satisfy the performance request of virtual construction system and be popularized to other virtual system.展开更多
By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three- dimensional wave-induced current are carried out in this study. The wave model is based on the numerical so...By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three- dimensional wave-induced current are carried out in this study. The wave model is based on the numerical solution of the modified wave action equation and eikonal equation, which can describe the wave refraction and diffraction. The hydrodynamic model is driven by the wave-induced radiation stresses and affected by the wave turbulence. The numerical implementation of the module has used the finite-volume schemes on unstructured grid, which provides great flexibility for modeling the waves and currents in the complex actual nearshore, and ensures the conservation of energy propagation. The applicability of the proposed model is evaluated in calculating the cases of wave set-up, longshore currents, undertow on a sloping beach, rip currents and meandering longshore currents on a tri-cuspate beach. The results indicate that it is necessary to introduce the depth-dependent radiation stresses into the numerical simulation of wave-induced currents, and comparisons show that the present model makes better prediction on the wave procedure as well as both horizontal and vertical structures in the wave-induced current field.展开更多
Objective To evaluate the predictive validity of IRIS™(Intuitive Surgical®,Sunnyvale,CA,USA)as a planning tool for robot-assisted partial nephrectomy(RAPN)by assessing the degree of overlap with intraoperative ex...Objective To evaluate the predictive validity of IRIS™(Intuitive Surgical®,Sunnyvale,CA,USA)as a planning tool for robot-assisted partial nephrectomy(RAPN)by assessing the degree of overlap with intraoperative execution.Methods Thirty-one patients scheduled for RAPN by four experienced urologists were enrolled in a prospective study.Prior to surgery,urologists reviewed the IRIS™three-dimensional model on an iphone Operating System(iOS)app and completed a questionnaire outlining their surgical plan including surgical approach,and ischemia technique as well as confidence in executing this plan.Postoperatively,questionnaires assessing the procedural approach,clinical utility,efficiency,and effectiveness of IRIS™were completed.The degree of overlap between the preoperative and intraoperative questionnaires and between the planned approach and actual execution of the procedure was analyzed.Questionnaires were answered on a 5-point Likert scale and scores of 4 or greater were considered positive.Results Mean age was 65.1 years with a mean tumor size of 27.7 mm(interquartile range 17.5-44.0 mm).Hilar tumors consisted of 32.3%;48.4%of patients had R.E.N.A.L.nephrometry scores of 7-9.On preoperative questionnaires,the surgeons reported that in 67.7%cases they were confident that they can perform the procedure successfully,and on intraoperative questionnaires,the surgeons reported that in 96.8%cases IRIS™helped achieve good spatial sensation of the anatomy.There was a high degree of overlap between preoperative and intraoperative questionnaires for the surgical approach,interpreting anatomical details and clinical utility.When comparing plans for selective or off-clamp,the preoperative plan was executed in 90.0%of cases intraoperatively.Conclusion A high degree of overlap between the preoperative surgical approach and intraoperative RAPN execution was found using IRIS™.This is the first study to evaluate the predictive accuracy of IRIS™during RAPN by comparing preoperative plan and intraoperative execution.展开更多
An optimal burst height is required for the fly-over and shoot-down smart ammunition with an EFP warhead at the instant of explosion which brings a special requirement to the miss distance of the terminal guidance law...An optimal burst height is required for the fly-over and shoot-down smart ammunition with an EFP warhead at the instant of explosion which brings a special requirement to the miss distance of the terminal guidance law. In this paper, a guidance law based on the virtual target scheme is proposed. First, the practical pursuit-evasion issue between the ammunition and the target with specific miss distance is transformed into a virtuai pursuit-evasion problem with zero miss distance. Secondly, a complete three-dimensional pursuit-evasion kinematics model is established without any simplifications. And then, a suboptimal guidance law is designed based on the θ-D method which has constraints of the elevation and azimuth angular velocity of the virtual line of sight (LOS). Finally, in order to verify the performance of the proposed guidance law, three test cases are conducted. Numericai results show that under the proposed terminal guidance law, the smart ammunition not only can fly above the target with an optimal burst height but also have a smaller normal acceleration on the terminal trajectory.展开更多
To reduce the computing time of composite computer-generated holograms (CGHs) gen- eration based upon the angular projection algorithm for holographic three-dimensional (3D) display, a grid-based holographic displ...To reduce the computing time of composite computer-generated holograms (CGHs) gen- eration based upon the angular projection algorithm for holographic three-dimensional (3D) display, a grid-based holographic display ( GHD ) scheme was designed. The grid computing technology was applied to numerically process the different angular projections of an object in distributed-parallel manner to create the corresponding CGHs. The whole treatment of a projection was regarded as a job executed on the grid node machine. The number of jobs which were submitted to grid nodes, therefore, was equal to that of the projections of the object. A Condor-based grid testbed was constructed to verify the feasibility of the GHD scheme, and a graphical user interface (GUI) program and several service modules were developed for it. A 3D terrain model as an example was processed on the testbed. The result showed that the scheme was feasible and able to improve the execution elficiency greatly.展开更多
With the continuous promotion of computer technology, the application system of virtual simulation technology has been further optimized and improved, and has been widely used in various fields of social development, ...With the continuous promotion of computer technology, the application system of virtual simulation technology has been further optimized and improved, and has been widely used in various fields of social development, such as urban construction, interior design, industrial simulation and tourism teaching. China's three-dimensional animation production started relatively late, but has achieved good results with the support of related advanced technology in the process of development. Computer virtual simulation technology is an important technical support in the production of three-dimensional animation. In this paper, firstly, the related content of computer virtual simulation technology was introduced. Then, the specific application of this technology in the production of three-dimensional animation was further elaborated, so as to provide some reference for the improvement of the production effect of three-dimensional animation in the future.展开更多
In order to improve efficiency of virtual enterprise, a manufacturing grid and multilevel manufacturing system of virtual enterprise is built up. When selecting member enterprises and task assignment based on the manu...In order to improve efficiency of virtual enterprise, a manufacturing grid and multilevel manufacturing system of virtual enterprise is built up. When selecting member enterprises and task assignment based on the manufacturing grid, key activities are assigned to the suitable critical member enterprises by task decomposition, enterprise node searching and characteristic matching of manufacturing resources according to the characteristic matching strategy. By task merger, some ordinary activities are merged with corresponding key activities and assigned to corresponding critical member enterprises. However, the other ordinary activities are assigned to the related ordinary member enterprises with enterprise node searching and characteristic matching of manufacturing resources. Finally, an example of developing the artificial hip joint in the virtual enterprise is used to demonstrate that efficiency of the virtual enterprise is improved by using the manufacturing grid and the proposed strategies for member enterprise selection and task assignment.展开更多
The characteristics of three-dimensional (3-D) tidal current in the Oujiang Estuary are investigated according to in situ observations. The Oujiang Estuary has features of irregular coastline, complex topography, ma...The characteristics of three-dimensional (3-D) tidal current in the Oujiang Estuary are investigated according to in situ observations. The Oujiang Estuary has features of irregular coastline, complex topography, many islands, moveable boundary, and submerged dyke, therefore, σ 3-D numerical model oil an unstructured triangular grid has been degeloped. The σ coordinate transforination, the moveable boundary and submerged dyke treatment techniques were employed in the model so it is suitable for the tidal simulations in the Oujing Estuary with submerged dyke and moveable boundary problems. The model is evaluated with the in situ data, and the results show that the calculated water elevations at 19 stations and currents at 19 profiler stations are in good agreement with measured data both in magnitude and phase. This numerical model is applied to the 3-D tidal circulation simulations of experiments in stopping flow transport through the South Branch of the Oujiang Estuary, and the feasibility to cutoff the flow in the South Branch of the Oujiang Estuary is demonstrated by numerical simulation experiments. The developed numerical model simulated the 3-D tidal current circulations in complicated coastal and estuarine waters very well.展开更多
The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of ...The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of brushless doubly-fed reluctance generator(BDFRG) based on virtual synchronous generator(VSG) control is proposed to solve the problem in this paper.The output characteristics of BDFRG based on VSG are similar to a synchronous generator(SG),which can support the grid frequency and increase the system ‘inertia’.According to the mathematical model of BDFRG,the inner loop voltage source control of BDFRG is derived.In addition,the specific structure and parameter selection principle of outer loop VSG control are expounded.The voltage source control inner loop of BDFRG is combined with the VSG control outer loop to establish the overall architecture of BDFRG-VSG control strategy.Finally,the effectiveness and feasibility of the proposed strategy are verified in the simulation.展开更多
The global water demand and supply situation is becoming increasingly severe due to water shortage and uneven distribution of water resources.The highest water demand in the energy sector is attributable to power gene...The global water demand and supply situation is becoming increasingly severe due to water shortage and uneven distribution of water resources.The highest water demand in the energy sector is attributable to power generation.With cross-country and cross-continental power grid interconnections becoming a reality,electricity trading across countries and the creation of new opportunities for re-allocation of water resources are possible.This study expands the concept of virtual water and proposes a generalized virtual water flow in an interconnected power grid system to accurately estimate water resource benefits of clean power transmission from both the production and the consumption sides.By defining the water scarcity index as a price mechanism indicator,the benefits of water resources allocation through power grid interconnections are evaluated.Taking the Africa-Asia-Europe interconnection scenario as an example,the total water saving would amount to 88.95 million m^3 by 2030 and 337.8 million m^3 by 2050.This result shows that grid interconnections could promote the development of renewable energy and expand the benefits of available water resources.展开更多
A three-dimensional heterogeneous mass transfer model was proposed to investigate the enhancement of dispersed particles on gas absorption. The strategy to calculate local and overall enhancement factors is proposed. ...A three-dimensional heterogeneous mass transfer model was proposed to investigate the enhancement of dispersed particles on gas absorption. The strategy to calculate local and overall enhancement factors is proposed. Instead of a global grid, the composite overlapping grid is adopted, which simplifies the setup and solution of the three-dimensional model equations. It is found that dispersed particle hold-up, particle size, liquid-solid partition coefficient of transported component, characteristic contact time, and the shortest distance between particles and gas-liquid interface have major influence on absorption enhancement factor. The particle-particle interaction on gas absorption and the lateral diffusion of transported component in liquid film were studied with the multi-particle simulation. The proposed model predicted the experimental data from the literature reasonably well.展开更多
This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. Th...This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.展开更多
Based on surface mount products virtual assembly technology,the solder joint reliability of plastic ball grid array (PBGA) was studied. Four process parameters,including the upper pad diameter,the stencil thickness,th...Based on surface mount products virtual assembly technology,the solder joint reliability of plastic ball grid array (PBGA) was studied. Four process parameters,including the upper pad diameter,the stencil thickness,the chip weight on a single solder joint and the lower pad diameter were chose as four control factors. By using an L25(56) orthogonal array the PBGA solder joints which have 25 different process parameters’ levels combinations were designed. The numerical models of all the 25 PBGA solder joints were developed and the finite element analysis models were setup. The stress and strain distribution within the PBGA solder joints under thermal cycles were studied by finite element analysis,and the thermal fatigue life of PBGA solder joint was calculated using Coffin-Manson equation. Based on the calculated thermal fatigue life results,the range analysis was performed. The results of study show that that the impact sequence of the four factors from high to low on the fatigue life of PBGA solder joints are the stencil thickness,the upper pad diameter,the lower pad diameter and the chip weight on a single solder joint; the best level combination ofprocess parameters that results in the longest fatigue life is the lower pad diameter of 0.6 mm,the stencil thickness of 0.175 mm,the chip weight on asingle solder joint of 28×10 -5 N and the upper pad diameter of 0.5 mm.展开更多
文摘Objective:This study aimed to explore the applications of three-dimensional (3D) technology, including virtual reality, augmented reality (AR), and 3D printing system, in the field of medicine, particularly in renal interventions for cancer treatment.Methods:A specialized software transforms 2D medical images into precise 3D digital models, facilitating improved anatomical understanding and surgical planning. Patient-specific 3D printed anatomical models are utilized for preoperative planning, intraoperative guidance, and surgical education. AR technology enables the overlay of digital perceptions onto real-world surgical environments.Results:Patient-specific 3D printed anatomical models have multiple applications, such as preoperative planning, intraoperative guidance, trainee education, and patient counseling. Virtual reality involves substituting the real world with a computer-generated 3D environment, while AR overlays digitally created perceptions onto the existing reality. The advances in 3D modeling technology have sparked considerable interest in their application to partial nephrectomy in the realm of renal cancer. 3D printing, also known as additive manufacturing, constructs 3D objects based on computer-aided design or digital 3D models. Utilizing 3D-printed preoperative renal models provides benefits for surgical planning, offering a more reliable assessment of the tumor's relationship with vital anatomical structures and enabling better preparation for procedures. AR technology allows surgeons to visualize patient-specific renal anatomical structures and their spatial relationships with surrounding organs by projecting CT/MRI images onto a live laparoscopic video. Incorporating patient-specific 3D digital models into healthcare enhances best practice, resulting in improved patient care, increased patient satisfaction, and cost saving for the healthcare system.
基金The National Key R&D Program of China under contract No.2021YFC3101603.
文摘Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.
基金The Major State Basic Research Program of China under contract No. 2012CB417002the National Natural Science Foundation of China under contract Nos 50909065 and 51109039
文摘A new three-dimensional semi-implicit finite-volume ocean model has been developed for simulating the coastal ocean circulation, which is based on the staggered C-unstructured non-orthogonal grid in the hor- izontal direction and z-level grid in the vertical direction. The three-dimensional model is discretized by the semi-implicit finite-volume method, in that the free-surface and the vertical diffusion are semi-implicit, thereby removing stability limitations associated with the surface gravity wave and vertical diffusion terms. The remaining terms in the momentum equations are discretized explicitly by an integral method. The partial cell method is used for resolving topography, which enables the model to better represent irregular topography. The model has been tested against analytical cases for wind and tidal oscillation circulation, and is applied to simulating the tidal flow in the Bohal Sea. The results are in good agreement both with the analytical solutions and measurement results.
基金Project(51378006) supported by National Natural Science Foundation of ChinaProject(141076) supported by Huoyingdong Foundation of the Ministry of Education of China+1 种基金Project(2242015R30027) supported by Excellent Young Teacher Program of Southeast University,ChinaProject(BK20140109) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.
基金Postdoctoral Fund of China (No. 2003034518), Fund of Health Bureau of Zhejiang Province (No. 2004B042), China
文摘This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.
基金Department of Navy Awards N00014-22-1-2001 and N00014-23-1-2124 issued by the Office of Naval Research。
文摘The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challenges to grid resilience. Virtual power plants(VPPs) are emerging technologies to improve the grid resilience and advance the transformation. By judiciously aggregating geographically distributed energy resources(DERs) as individual electrical entities, VPPs can provide capacity and ancillary services to grid operations and participate in electricity wholesale markets. This paper aims to provide a concise overview of the concept and development of VPPs and the latest progresses in VPP operation, with the focus on VPP scheduling and control. Based on this overview, we identify a few potential challenges in VPP operation and discuss the opportunities of integrating the multi-agent system(MAS)-based strategy into the VPP operation to enhance its scalability, performance and resilience.
文摘Artificial intelligence(AI)is the study of algorithms that enable machines to analyze and execute cognitive activities including problem solving,object and word recognition,reduce the inevitable errors to improve the diagnostic accuracy,and decision-making.Hepatobiliary procedures are technically complex and the use of AI in perioperative management can improve patient outcomes as discussed below.Three-dimensional(3D)reconstruction of images obtained via ultrasound,computed tomography scan or magnetic resonance imaging,can help surgeons better visualize the surgical sites with added depth perception.Preoperative 3D planning is associated with lesser operative time and intraoperative complications.Also,a more accurate assessment is noted,which leads to fewer operative complications.Images can be converted into physical models with 3D printing technology,which can be of educational value to students and trainees.3D images can be combined to provide 3D visualization,which is used for preoperative navigation,allowing for more precise localization of tumors and vessels.Nevertheless,AI enables surgeons to provide better,personalized care for each patient.
基金supported by Special Project of Scientific Research of Education Department of Shaanxi Provincial Government under Grant No.11JK0967
文摘Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enhancing the requests of image quality and stability of the virtual construction scene, taking a tower crane for example. We studied the technology of three-dimensional modeling and optimization of a virtual tower crane, and a method named two-stage model optimization was put forward. This depended on the modeling stage using Solidworks and 3DS Max and the performance optimization stage in EON. The practice of software development indicates that the proposed methods of three-dimensional modeling and optimization could satisfy the performance request of virtual construction system and be popularized to other virtual system.
基金financially supported by the the National Natural Science Foundation of China(Grant No.51709054)the Public Science and Technology Research Funds Projects of Ocean(Grant Nos.201405025 and 201505019)
文摘By coupling the three-dimensional hydrodynamic model with the wave model, numerical simulations of the three- dimensional wave-induced current are carried out in this study. The wave model is based on the numerical solution of the modified wave action equation and eikonal equation, which can describe the wave refraction and diffraction. The hydrodynamic model is driven by the wave-induced radiation stresses and affected by the wave turbulence. The numerical implementation of the module has used the finite-volume schemes on unstructured grid, which provides great flexibility for modeling the waves and currents in the complex actual nearshore, and ensures the conservation of energy propagation. The applicability of the proposed model is evaluated in calculating the cases of wave set-up, longshore currents, undertow on a sloping beach, rip currents and meandering longshore currents on a tri-cuspate beach. The results indicate that it is necessary to introduce the depth-dependent radiation stresses into the numerical simulation of wave-induced currents, and comparisons show that the present model makes better prediction on the wave procedure as well as both horizontal and vertical structures in the wave-induced current field.
文摘Objective To evaluate the predictive validity of IRIS™(Intuitive Surgical®,Sunnyvale,CA,USA)as a planning tool for robot-assisted partial nephrectomy(RAPN)by assessing the degree of overlap with intraoperative execution.Methods Thirty-one patients scheduled for RAPN by four experienced urologists were enrolled in a prospective study.Prior to surgery,urologists reviewed the IRIS™three-dimensional model on an iphone Operating System(iOS)app and completed a questionnaire outlining their surgical plan including surgical approach,and ischemia technique as well as confidence in executing this plan.Postoperatively,questionnaires assessing the procedural approach,clinical utility,efficiency,and effectiveness of IRIS™were completed.The degree of overlap between the preoperative and intraoperative questionnaires and between the planned approach and actual execution of the procedure was analyzed.Questionnaires were answered on a 5-point Likert scale and scores of 4 or greater were considered positive.Results Mean age was 65.1 years with a mean tumor size of 27.7 mm(interquartile range 17.5-44.0 mm).Hilar tumors consisted of 32.3%;48.4%of patients had R.E.N.A.L.nephrometry scores of 7-9.On preoperative questionnaires,the surgeons reported that in 67.7%cases they were confident that they can perform the procedure successfully,and on intraoperative questionnaires,the surgeons reported that in 96.8%cases IRIS™helped achieve good spatial sensation of the anatomy.There was a high degree of overlap between preoperative and intraoperative questionnaires for the surgical approach,interpreting anatomical details and clinical utility.When comparing plans for selective or off-clamp,the preoperative plan was executed in 90.0%of cases intraoperatively.Conclusion A high degree of overlap between the preoperative surgical approach and intraoperative RAPN execution was found using IRIS™.This is the first study to evaluate the predictive accuracy of IRIS™during RAPN by comparing preoperative plan and intraoperative execution.
基金Supported by the Fundamental Scientific Research Program of China Ministries and Commissions(B2220132013)
文摘An optimal burst height is required for the fly-over and shoot-down smart ammunition with an EFP warhead at the instant of explosion which brings a special requirement to the miss distance of the terminal guidance law. In this paper, a guidance law based on the virtual target scheme is proposed. First, the practical pursuit-evasion issue between the ammunition and the target with specific miss distance is transformed into a virtuai pursuit-evasion problem with zero miss distance. Secondly, a complete three-dimensional pursuit-evasion kinematics model is established without any simplifications. And then, a suboptimal guidance law is designed based on the θ-D method which has constraints of the elevation and azimuth angular velocity of the virtual line of sight (LOS). Finally, in order to verify the performance of the proposed guidance law, three test cases are conducted. Numericai results show that under the proposed terminal guidance law, the smart ammunition not only can fly above the target with an optimal burst height but also have a smaller normal acceleration on the terminal trajectory.
文摘To reduce the computing time of composite computer-generated holograms (CGHs) gen- eration based upon the angular projection algorithm for holographic three-dimensional (3D) display, a grid-based holographic display ( GHD ) scheme was designed. The grid computing technology was applied to numerically process the different angular projections of an object in distributed-parallel manner to create the corresponding CGHs. The whole treatment of a projection was regarded as a job executed on the grid node machine. The number of jobs which were submitted to grid nodes, therefore, was equal to that of the projections of the object. A Condor-based grid testbed was constructed to verify the feasibility of the GHD scheme, and a graphical user interface (GUI) program and several service modules were developed for it. A 3D terrain model as an example was processed on the testbed. The result showed that the scheme was feasible and able to improve the execution elficiency greatly.
文摘With the continuous promotion of computer technology, the application system of virtual simulation technology has been further optimized and improved, and has been widely used in various fields of social development, such as urban construction, interior design, industrial simulation and tourism teaching. China's three-dimensional animation production started relatively late, but has achieved good results with the support of related advanced technology in the process of development. Computer virtual simulation technology is an important technical support in the production of three-dimensional animation. In this paper, firstly, the related content of computer virtual simulation technology was introduced. Then, the specific application of this technology in the production of three-dimensional animation was further elaborated, so as to provide some reference for the improvement of the production effect of three-dimensional animation in the future.
文摘In order to improve efficiency of virtual enterprise, a manufacturing grid and multilevel manufacturing system of virtual enterprise is built up. When selecting member enterprises and task assignment based on the manufacturing grid, key activities are assigned to the suitable critical member enterprises by task decomposition, enterprise node searching and characteristic matching of manufacturing resources according to the characteristic matching strategy. By task merger, some ordinary activities are merged with corresponding key activities and assigned to corresponding critical member enterprises. However, the other ordinary activities are assigned to the related ordinary member enterprises with enterprise node searching and characteristic matching of manufacturing resources. Finally, an example of developing the artificial hip joint in the virtual enterprise is used to demonstrate that efficiency of the virtual enterprise is improved by using the manufacturing grid and the proposed strategies for member enterprise selection and task assignment.
基金The Natural Science Foundation of Tianjin, China under contract No.08JCZDZT00200
文摘The characteristics of three-dimensional (3-D) tidal current in the Oujiang Estuary are investigated according to in situ observations. The Oujiang Estuary has features of irregular coastline, complex topography, many islands, moveable boundary, and submerged dyke, therefore, σ 3-D numerical model oil an unstructured triangular grid has been degeloped. The σ coordinate transforination, the moveable boundary and submerged dyke treatment techniques were employed in the model so it is suitable for the tidal simulations in the Oujing Estuary with submerged dyke and moveable boundary problems. The model is evaluated with the in situ data, and the results show that the calculated water elevations at 19 stations and currents at 19 profiler stations are in good agreement with measured data both in magnitude and phase. This numerical model is applied to the 3-D tidal circulation simulations of experiments in stopping flow transport through the South Branch of the Oujiang Estuary, and the feasibility to cutoff the flow in the South Branch of the Oujiang Estuary is demonstrated by numerical simulation experiments. The developed numerical model simulated the 3-D tidal current circulations in complicated coastal and estuarine waters very well.
基金supported in part by the National Natural Science Foundation of China under Grant 51537007。
文摘The brushless doubly-fed wind power system based on conventional power control strategies lacks ‘inertia’ and the ability to support grid,which leads to the decline of grid stability.Therefore,a control strategy of brushless doubly-fed reluctance generator(BDFRG) based on virtual synchronous generator(VSG) control is proposed to solve the problem in this paper.The output characteristics of BDFRG based on VSG are similar to a synchronous generator(SG),which can support the grid frequency and increase the system ‘inertia’.According to the mathematical model of BDFRG,the inner loop voltage source control of BDFRG is derived.In addition,the specific structure and parameter selection principle of outer loop VSG control are expounded.The voltage source control inner loop of BDFRG is combined with the VSG control outer loop to establish the overall architecture of BDFRG-VSG control strategy.Finally,the effectiveness and feasibility of the proposed strategy are verified in the simulation.
基金supported by the State Grid GEIGC Science and Technology Project under the “Research on Global Energy Transition Scenario and Model Development and Application under the New Pattern of Global Environmental Protection” framework(Grant No.52450018000W)
文摘The global water demand and supply situation is becoming increasingly severe due to water shortage and uneven distribution of water resources.The highest water demand in the energy sector is attributable to power generation.With cross-country and cross-continental power grid interconnections becoming a reality,electricity trading across countries and the creation of new opportunities for re-allocation of water resources are possible.This study expands the concept of virtual water and proposes a generalized virtual water flow in an interconnected power grid system to accurately estimate water resource benefits of clean power transmission from both the production and the consumption sides.By defining the water scarcity index as a price mechanism indicator,the benefits of water resources allocation through power grid interconnections are evaluated.Taking the Africa-Asia-Europe interconnection scenario as an example,the total water saving would amount to 88.95 million m^3 by 2030 and 337.8 million m^3 by 2050.This result shows that grid interconnections could promote the development of renewable energy and expand the benefits of available water resources.
基金Supported by the National Natural Science Foundation of China (No. 20136010).
文摘A three-dimensional heterogeneous mass transfer model was proposed to investigate the enhancement of dispersed particles on gas absorption. The strategy to calculate local and overall enhancement factors is proposed. Instead of a global grid, the composite overlapping grid is adopted, which simplifies the setup and solution of the three-dimensional model equations. It is found that dispersed particle hold-up, particle size, liquid-solid partition coefficient of transported component, characteristic contact time, and the shortest distance between particles and gas-liquid interface have major influence on absorption enhancement factor. The particle-particle interaction on gas absorption and the lateral diffusion of transported component in liquid film were studied with the multi-particle simulation. The proposed model predicted the experimental data from the literature reasonably well.
文摘This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.
基金Funded by Science Foundation of Guangxi Zhuang Autonomous Region (No.02336060) .
文摘Based on surface mount products virtual assembly technology,the solder joint reliability of plastic ball grid array (PBGA) was studied. Four process parameters,including the upper pad diameter,the stencil thickness,the chip weight on a single solder joint and the lower pad diameter were chose as four control factors. By using an L25(56) orthogonal array the PBGA solder joints which have 25 different process parameters’ levels combinations were designed. The numerical models of all the 25 PBGA solder joints were developed and the finite element analysis models were setup. The stress and strain distribution within the PBGA solder joints under thermal cycles were studied by finite element analysis,and the thermal fatigue life of PBGA solder joint was calculated using Coffin-Manson equation. Based on the calculated thermal fatigue life results,the range analysis was performed. The results of study show that that the impact sequence of the four factors from high to low on the fatigue life of PBGA solder joints are the stencil thickness,the upper pad diameter,the lower pad diameter and the chip weight on a single solder joint; the best level combination ofprocess parameters that results in the longest fatigue life is the lower pad diameter of 0.6 mm,the stencil thickness of 0.175 mm,the chip weight on asingle solder joint of 28×10 -5 N and the upper pad diameter of 0.5 mm.