A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course ...A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to mea- sure the wave loads and the free motions for a pair of side-by- side arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numer- ical resonances and peak shift can be found in the 3DP pre- dictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free sur- face and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two ves- sels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.展开更多
According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response mo...According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio.展开更多
The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident...The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves.展开更多
For the global and structural fatigue strength analysis of a semi-submersible platform, wave loads under design conditions are calculated by use of the three-dimensional boundary element method. Methods for calculatin...For the global and structural fatigue strength analysis of a semi-submersible platform, wave loads under design conditions are calculated by use of the three-dimensional boundary element method. Methods for calculating the forward-speed free-surface Green function are discussed and a computer program with this Green function is developed. According to the special rules, the wave loads under several typical design conditions of the platform are calculated. The maximum vertical bending moment, torsion moment and horizontal split force are determined from a series of contour maps of wave loads for the wave period of 5 to 18 seconds at a certain interval and the wave phase of 0degrees to 360degrees at a certain interval. The wave height is determined by the function of wave period with a given exceedance probability. The maximum wave loads under the combination of wave parameters are used as the input of hydrodynamic pressure in the three-dimensional finite element analysis process. The transfer functions of wave loads on the platform are used for the fatigue strength analysis of the K-tubular joint and the sub-model of the structure.展开更多
Extensive 3-D model tests have been performed to study the effects of wave obliquity and multi-directionality on the wave loads acting on vertical breakwaters. The variation of horizontal and uplift forces acting on a...Extensive 3-D model tests have been performed to study the effects of wave obliquity and multi-directionality on the wave loads acting on vertical breakwaters. The variation of horizontal and uplift forces acting on an unit length of a breakwater with wave direction, the longitudinal distribution of wave forces, as well as the longitudinal load reduction are analyzed. Some empirical formulae of the longitudinal distribution coefficient and the longitudinal load reduction factor are presented for practical use.展开更多
In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wa...In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.展开更多
In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate wid...In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate width B/L,wave height Hs/D and incident angle θ0 on the wave forces were analyzed and discussed. The results showed that:(1) The envelopes of the total wave pressure were generally symmetrical along the direction of plate width under the incident angles(θ0) being 0°, 15°, 30°, 45° and 60°. In particular, the envelopes of wave pressure atθ0=30° were larger than all other cases.(2) The synchronous pressure distribution of the breakwater under oblique wave action was more complicated comparing to the normal incident waves.(3) Based on data analysis, an empirical formula was obtained to estimate the total vertical force of the twin-plate breakwater.This empirical formula can be a good reference for the design basis of engineering applications under specified wave conditions.展开更多
An experimental study is carried out for waves passing an isolated reef terrain in a wave tank. A three-dimensional model of a representative and isolated reef terrain in the West Pacific is built. Random wave trains ...An experimental study is carried out for waves passing an isolated reef terrain in a wave tank. A three-dimensional model of a representative and isolated reef terrain in the West Pacific is built. Random wave trains with various periods and wave heights are generated by a wave maker using the improved JONSWAP spectrum. It is observed that there are different kinds of generation processes and waveforms of freak waves. The freak wave factor Hm/Hs (where Hm is the maximum wave height of wave series, and Hs is significant wave height) is analyzed in detail, in terms of the skewness, kurtosis and water depth, as well as the relationship between freak wave height H& and skewness. The freak wave factor Hm/Hs is found to be in positive correlation with the kurtosis, while larger H[x tends to be related with bigger skewness. The rapid variation of water depth, such as slope and seamount, contributes to the occurrence probability of freak waves.展开更多
The dynamic stress intensity factor of a three-dimensionalelliptic crack under impact loading is determined with the finiteelement method. The computation results can take into account theinfluence of time and the rat...The dynamic stress intensity factor of a three-dimensionalelliptic crack under impact loading is determined with the finiteelement method. The computation results can take into account theinfluence of time and the ratio of the wave speeds on the stressintensity factor. The present method is suitable not only forthree-dimensional dynamic crack, but also for three-dimensionaldynamic contact.展开更多
A three-dimensional wave radiation stress is introduced into the hydrodynamic sediment coupled model COHERENS-SED, which has been developed through introducing wave-enhanced bottom shear stress, wave dependent surface...A three-dimensional wave radiation stress is introduced into the hydrodynamic sediment coupled model COHERENS-SED, which has been developed through introducing wave-enhanced bottom shear stress, wave dependent surface drag coefficient, wave-induced surface mixing, SWAN, damping function of sediment on turbulence, sediment model and depth-dependent wave radiation stress to COHERENS. The COHERENS-SED is adopted to study the effects induced by wave-induced three-dimensional longshore current on suspended sediment spreading of the Huanghe River (Yellow River) mouth. Several different cases divided by setting different wave parameters of inputting boundary waves are carried out. The modeling results agree with measurement data. In terms of simulation results, it is easy to know that three-dimensional wave radiation stress plays an obvious role when inputting boundary wave height is stronger than 3 m. Moreover, wave direction also affects the sediment spreading rules of the mouth strongly too.展开更多
A three-dimensional method of calculating wave loads of turret moored FPSO (Flo ating Production Storage and Offloading) tankers is presented. The linearized restoring forces acting on the ship hull by the mooring sys...A three-dimensional method of calculating wave loads of turret moored FPSO (Flo ating Production Storage and Offloading) tankers is presented. The linearized restoring forces acting on the ship hull by the mooring system are calculated according to the catenary theory, which are expressed as the function of linear stiffness coefficients and the displacements of the upper ends of mooring chains. The hydrodynamic coefficients of the ship are calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for ships with a low forward speed. The equations of ship motions are established with the effect of the restoring forces from the mooring system included as linear stiffness coefficients. The equations of motions are solved in frequency domain, and the responses of wave-induced motions and loads on the ship can be obtained. A computer pro gram based on this method has been developed,and some calculation examples are illustrated. Analysis results show that the method can give satisfying prediction of wave loads.展开更多
In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,th...In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,the separated Hopkinson pressure bar(SHPB)test system was used to simulate different impact load environments,and combined with the multi-layer high-voltage ceramic capacitor charging and discharging system,the instantaneous electrical signals of MCT high-voltage switch were collected.Combined with numerical simulation and theoretical analysis,the failure mode and stress wave propagation characteristics of MCT high voltage switch were determined.The mechanical and electrical coupling response characteristics and failure mechanism of MCT high voltage switch under dynamic load were revealed from macroscopic and microscopic levels.The results show that the damage modes of MCT high-voltage switches can be divided into non-functional damage,recoverable functional damage,non-recoverable damage and structural damage.Due to the gap between the metal gate and the oxide layer,the insulating oxide layer was charged.After placing for a period of time,the elastic deformation of the metal gate partially recovered and the accumulated charge disappeared,which induced the recoverable functional damage failure of the device.In addition,obvious cracks appeared on both sides of the monocrystalline silicon inside the MCT high-voltage switch,leading to unrecoverable damage of the device.展开更多
In this work,the three-dimensional(3 D)propagation behaviors in the nonlinear phononic crystal and elastic wave metamaterial with initial stresses are investigated.The analytical solutions of the fundamental wave and ...In this work,the three-dimensional(3 D)propagation behaviors in the nonlinear phononic crystal and elastic wave metamaterial with initial stresses are investigated.The analytical solutions of the fundamental wave and second harmonic with the quasilongitudinal(qP)and quasi-shear(qS_(1) and qS_(2))modes are derived.Based on the transfer and stiffness matrices,band gaps with initial stresses are obtained by the Bloch theorem.The transmission coefficients are calculated to support the band gap property,and the tunability of the nonreciprocal transmission by the initial stress is discussed.This work is expected to provide a way to tune the nonreciprocal transmission with vector characteristics.展开更多
A three-dimensional transformed Eulerian-mean(3D TEM) equation under a non-hydrostatic and non-geostrophic assumption is deduced in this study. The vertical component of the 3D wave activity flux deduced here is the p...A three-dimensional transformed Eulerian-mean(3D TEM) equation under a non-hydrostatic and non-geostrophic assumption is deduced in this study. The vertical component of the 3D wave activity flux deduced here is the primary difference from previous studies, which is suitable to mesoscale systems. Using the 3D TEM equation, the energy propagation of the inertia–gravity waves and how the generation and dissipation of the inertia–gravity waves drive the mean flow can be examined. During the mature stage of a heavy precipitation event, the maximum of the Eliassen–Palm(EP) flux divergence is primarily concentrated at the height of 10–14 km, where the energy of the inertia–gravity waves propagates forward(eastward) and upward. Examining the contribution of each term of the 3D TEM equation shows that the EP flux divergence is the primary contributor to the mean flow tendency. The EP flux divergence decelerates the zonal wind above and below the high-level jet at the height of 10 km and 15 km, and accelerates the high-level jet at the height of 12–14 km. This structure enhances the vertical wind shear of the environment and promotes the development of the rainstorm.展开更多
In this paper, the extreme wave loads on an on-shore wave power device are investigated. First, boundary element method is applied to solve the three dimensional potential problem based on the small amplitude wave ass...In this paper, the extreme wave loads on an on-shore wave power device are investigated. First, boundary element method is applied to solve the three dimensional potential problem based on the small amplitude wave assumption. Then the motion of the Oscillating Water Column (OWC) inside the device and its laods on the device are calculated in time domain. Several protective techniques often applied are simulated by changing the constraint of the upper end of the chamber of the device. Numerical results are used to judge the effectiveness of these techniques. The investigation shows that damping can not effectively restrain the motion of OWC when the period of incident wave is long, which may cause dangerous loads on the structure. The shut chamber can effectively restrain the motion of OWC, but alternatively cause high pressure in the chamber. A Contracting opening with a Taper (CT) can exhaust a great amount of kinetic energy of OWC, and significantly decrease the loads. It is a promising protective technique.展开更多
The special issue on wave loads and motions of ships and offshore structures is the outcome of a workshop on the same topic that was organised in Harbin Engineering University in November 2017 with the objective of br...The special issue on wave loads and motions of ships and offshore structures is the outcome of a workshop on the same topic that was organised in Harbin Engineering University in November 2017 with the objective of bringing together recent work done on the subject area and providing a forum for discussing these results.展开更多
-The necessity of using irregular waves, especially multi- directional waves to conduct three-dimensional model tests for port engineering and the test method are described in this paper through an example of model te...-The necessity of using irregular waves, especially multi- directional waves to conduct three-dimensional model tests for port engineering and the test method are described in this paper through an example of model test for a port. The test results show that a deep navigation channel has a large effect on the waves in front of the breakwater near the port entrance and on the wave condition in the port.展开更多
The reflection of three-dimensional(3D) plane waves in a highly anisotropic(triclinic) medium under the context of generalized thermoelasticity is studied. The thermoelastic nature of the 3D plane waves in an anisotro...The reflection of three-dimensional(3D) plane waves in a highly anisotropic(triclinic) medium under the context of generalized thermoelasticity is studied. The thermoelastic nature of the 3D plane waves in an anisotropic medium is investigated in the perspective of the three-phase-lag(TPL), dual-phase-lag(DPL), Green-Naghdi-III(GNIII), Lord-Shulman(LS), and classical coupled(CL) theories. The reflection coefficients and energy ratios for all the reflected waves are obtained in a mathematical form. The rotational effects on the reflection characteristics of the 3D waves are discussed under the context of generalized thermoelasticity. Comparative analyses for the reflection coefficients of the waves among these generalized thermoelastic theories are performed. The energy ratios for each of the reflected waves establish the energy conservation law in the reflection phenomena of the plane waves. The highly anisotropic materials along with the rotation may have a significant role in the phenomenon of the reflection behavior of the 3D waves. Numerical computations are performed for the graphical representation of the study.展开更多
Based on the previous researches on scattering theory, a model of single and multiple scattering in a three-dimensional infinite medium with non-zero hypocentral distance is proposed in this paper. According to the as...Based on the previous researches on scattering theory, a model of single and multiple scattering in a three-dimensional infinite medium with non-zero hypocentral distance is proposed in this paper. According to the assumptionof three-dimensional medium with numerous, statistically isotropic and uniformly distributed scatterers, we obtain the analytic form of power spectrum of coda waves for single scattering and the integral form of power spectrum of coda waves for multiple scattering.展开更多
An improved three-dimensional incompressible smooth particle hydrodynamics(ISPH)model is developed to simulate the impact of regular wave on a horizontal plate.The improvement is the employment of a corrective functio...An improved three-dimensional incompressible smooth particle hydrodynamics(ISPH)model is developed to simulate the impact of regular wave on a horizontal plate.The improvement is the employment of a corrective function to enhance angular momentum conservation in a particle-based calculation.And a new estimation method is proposed to predict the pressure on the horizontal plate.Then,the model simulates the variation characteristics of impact pressures generated by regular wave slamming.The main features of velocity field and pressure field near the plate are presented.The present numerical model can be used to study wave impact load on the horizontal plate.展开更多
基金supported by the National Natural Science Foundation of China(50879090)the Key Research Program of Hydrodynamics of China(9140A14030712JB11044)
文摘A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to mea- sure the wave loads and the free motions for a pair of side-by- side arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numer- ical resonances and peak shift can be found in the 3DP pre- dictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free sur- face and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two ves- sels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.
基金supported by JUST start-up fund for science research,the Jiangsu Natural Science Foundation(Grant No.BK20210885).
文摘According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio.
基金National Natural Science Foundation of China under Grant No.51478247National Key Research and Development Program of China under Grant No.2016YFC1402800
文摘The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves.
文摘For the global and structural fatigue strength analysis of a semi-submersible platform, wave loads under design conditions are calculated by use of the three-dimensional boundary element method. Methods for calculating the forward-speed free-surface Green function are discussed and a computer program with this Green function is developed. According to the special rules, the wave loads under several typical design conditions of the platform are calculated. The maximum vertical bending moment, torsion moment and horizontal split force are determined from a series of contour maps of wave loads for the wave period of 5 to 18 seconds at a certain interval and the wave phase of 0degrees to 360degrees at a certain interval. The wave height is determined by the function of wave period with a given exceedance probability. The maximum wave loads under the combination of wave parameters are used as the input of hydrodynamic pressure in the three-dimensional finite element analysis process. The transfer functions of wave loads on the platform are used for the fatigue strength analysis of the K-tubular joint and the sub-model of the structure.
文摘Extensive 3-D model tests have been performed to study the effects of wave obliquity and multi-directionality on the wave loads acting on vertical breakwaters. The variation of horizontal and uplift forces acting on an unit length of a breakwater with wave direction, the longitudinal distribution of wave forces, as well as the longitudinal load reduction are analyzed. Some empirical formulae of the longitudinal distribution coefficient and the longitudinal load reduction factor are presented for practical use.
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 51279130 and No. 51239008
文摘In this study, the coupled heave-pitch motion equations of a spar platform were established by considering lst-order and 2nd-order random wave loads and the effects of time-varying displacement volume and transient wave elevation. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of 2nd-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. 2nd-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the 2nd-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.
基金The National Natural Science Foundation of China under contract Nos 51079025 and 11272079the Research Funds from State Key Laboratory of Coastal and Offshore Engineering under contract No.LY1602
文摘In this study, systematic physical model tests were performed to investigate the wave forces on the twin-plate breakwater under irregular waves. Based on the experimental results, the effects of the relative plate width B/L,wave height Hs/D and incident angle θ0 on the wave forces were analyzed and discussed. The results showed that:(1) The envelopes of the total wave pressure were generally symmetrical along the direction of plate width under the incident angles(θ0) being 0°, 15°, 30°, 45° and 60°. In particular, the envelopes of wave pressure atθ0=30° were larger than all other cases.(2) The synchronous pressure distribution of the breakwater under oblique wave action was more complicated comparing to the normal incident waves.(3) Based on data analysis, an empirical formula was obtained to estimate the total vertical force of the twin-plate breakwater.This empirical formula can be a good reference for the design basis of engineering applications under specified wave conditions.
基金The Qingdao National Laboratory for Marine Science and Technology under contract No.QNLM20160RP0402the National Natural Science Foundation of China under contract Nos 51522902 and 51579040+1 种基金the Fundamental Research Funds for the Central Universities under contract No.DUT17ZD233the Ministry of Industry and Information Technology of China under contract No.[2016]22
文摘An experimental study is carried out for waves passing an isolated reef terrain in a wave tank. A three-dimensional model of a representative and isolated reef terrain in the West Pacific is built. Random wave trains with various periods and wave heights are generated by a wave maker using the improved JONSWAP spectrum. It is observed that there are different kinds of generation processes and waveforms of freak waves. The freak wave factor Hm/Hs (where Hm is the maximum wave height of wave series, and Hs is significant wave height) is analyzed in detail, in terms of the skewness, kurtosis and water depth, as well as the relationship between freak wave height H& and skewness. The freak wave factor Hm/Hs is found to be in positive correlation with the kurtosis, while larger H[x tends to be related with bigger skewness. The rapid variation of water depth, such as slope and seamount, contributes to the occurrence probability of freak waves.
基金the National Natural Science Foundation of China( No.K19672007)
文摘The dynamic stress intensity factor of a three-dimensionalelliptic crack under impact loading is determined with the finiteelement method. The computation results can take into account theinfluence of time and the ratio of the wave speeds on the stressintensity factor. The present method is suitable not only forthree-dimensional dynamic crack, but also for three-dimensionaldynamic contact.
基金The Natural Science Foundation Study on Mechanics of Non-breaking wave-induced vertical mixing on Pollutant Dispersion of Huanghe River Estuary under contract No.51179178Project from Establishment of Fine Sediment Transport Modeling System for the Yellow Sea+1 种基金which is a sub-project of Development of Operational Oceanographic systemScience & Technology Development Project of Qingdao under contract No.09-1-3-18-jch
文摘A three-dimensional wave radiation stress is introduced into the hydrodynamic sediment coupled model COHERENS-SED, which has been developed through introducing wave-enhanced bottom shear stress, wave dependent surface drag coefficient, wave-induced surface mixing, SWAN, damping function of sediment on turbulence, sediment model and depth-dependent wave radiation stress to COHERENS. The COHERENS-SED is adopted to study the effects induced by wave-induced three-dimensional longshore current on suspended sediment spreading of the Huanghe River (Yellow River) mouth. Several different cases divided by setting different wave parameters of inputting boundary waves are carried out. The modeling results agree with measurement data. In terms of simulation results, it is easy to know that three-dimensional wave radiation stress plays an obvious role when inputting boundary wave height is stronger than 3 m. Moreover, wave direction also affects the sediment spreading rules of the mouth strongly too.
文摘A three-dimensional method of calculating wave loads of turret moored FPSO (Flo ating Production Storage and Offloading) tankers is presented. The linearized restoring forces acting on the ship hull by the mooring system are calculated according to the catenary theory, which are expressed as the function of linear stiffness coefficients and the displacements of the upper ends of mooring chains. The hydrodynamic coefficients of the ship are calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for ships with a low forward speed. The equations of ship motions are established with the effect of the restoring forces from the mooring system included as linear stiffness coefficients. The equations of motions are solved in frequency domain, and the responses of wave-induced motions and loads on the ship can be obtained. A computer pro gram based on this method has been developed,and some calculation examples are illustrated. Analysis results show that the method can give satisfying prediction of wave loads.
基金Youth Talent Project of Basic Scientific Research Project of Liaoning Province Education Department(Grant No.LJKZ0270)Youth Project of Basic Scientific Research Project of Liaoning Province Education Department(Grant No.LJKQZ2021055).
文摘In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,the separated Hopkinson pressure bar(SHPB)test system was used to simulate different impact load environments,and combined with the multi-layer high-voltage ceramic capacitor charging and discharging system,the instantaneous electrical signals of MCT high-voltage switch were collected.Combined with numerical simulation and theoretical analysis,the failure mode and stress wave propagation characteristics of MCT high voltage switch were determined.The mechanical and electrical coupling response characteristics and failure mechanism of MCT high voltage switch under dynamic load were revealed from macroscopic and microscopic levels.The results show that the damage modes of MCT high-voltage switches can be divided into non-functional damage,recoverable functional damage,non-recoverable damage and structural damage.Due to the gap between the metal gate and the oxide layer,the insulating oxide layer was charged.After placing for a period of time,the elastic deformation of the metal gate partially recovered and the accumulated charge disappeared,which induced the recoverable functional damage failure of the device.In addition,obvious cracks appeared on both sides of the monocrystalline silicon inside the MCT high-voltage switch,leading to unrecoverable damage of the device.
基金Project supported by the National Natural Science Foundation of China(Nos.11922209,11991031 and 12021002)。
文摘In this work,the three-dimensional(3 D)propagation behaviors in the nonlinear phononic crystal and elastic wave metamaterial with initial stresses are investigated.The analytical solutions of the fundamental wave and second harmonic with the quasilongitudinal(qP)and quasi-shear(qS_(1) and qS_(2))modes are derived.Based on the transfer and stiffness matrices,band gaps with initial stresses are obtained by the Bloch theorem.The transmission coefficients are calculated to support the band gap property,and the tunability of the nonreciprocal transmission by the initial stress is discussed.This work is expected to provide a way to tune the nonreciprocal transmission with vector characteristics.
文摘A three-dimensional transformed Eulerian-mean(3D TEM) equation under a non-hydrostatic and non-geostrophic assumption is deduced in this study. The vertical component of the 3D wave activity flux deduced here is the primary difference from previous studies, which is suitable to mesoscale systems. Using the 3D TEM equation, the energy propagation of the inertia–gravity waves and how the generation and dissipation of the inertia–gravity waves drive the mean flow can be examined. During the mature stage of a heavy precipitation event, the maximum of the Eliassen–Palm(EP) flux divergence is primarily concentrated at the height of 10–14 km, where the energy of the inertia–gravity waves propagates forward(eastward) and upward. Examining the contribution of each term of the 3D TEM equation shows that the EP flux divergence is the primary contributor to the mean flow tendency. The EP flux divergence decelerates the zonal wind above and below the high-level jet at the height of 10 km and 15 km, and accelerates the high-level jet at the height of 12–14 km. This structure enhances the vertical wind shear of the environment and promotes the development of the rainstorm.
文摘In this paper, the extreme wave loads on an on-shore wave power device are investigated. First, boundary element method is applied to solve the three dimensional potential problem based on the small amplitude wave assumption. Then the motion of the Oscillating Water Column (OWC) inside the device and its laods on the device are calculated in time domain. Several protective techniques often applied are simulated by changing the constraint of the upper end of the chamber of the device. Numerical results are used to judge the effectiveness of these techniques. The investigation shows that damping can not effectively restrain the motion of OWC when the period of incident wave is long, which may cause dangerous loads on the structure. The shut chamber can effectively restrain the motion of OWC, but alternatively cause high pressure in the chamber. A Contracting opening with a Taper (CT) can exhaust a great amount of kinetic energy of OWC, and significantly decrease the loads. It is a promising protective technique.
文摘The special issue on wave loads and motions of ships and offshore structures is the outcome of a workshop on the same topic that was organised in Harbin Engineering University in November 2017 with the objective of bringing together recent work done on the subject area and providing a forum for discussing these results.
文摘-The necessity of using irregular waves, especially multi- directional waves to conduct three-dimensional model tests for port engineering and the test method are described in this paper through an example of model test for a port. The test results show that a deep navigation channel has a large effect on the waves in front of the breakwater near the port entrance and on the wave condition in the port.
基金the National Board for Higher Mathematics of India(NBHM)(No.2/48(3)/2016/NBHM(R.P)/R D Ⅱ/4528)。
文摘The reflection of three-dimensional(3D) plane waves in a highly anisotropic(triclinic) medium under the context of generalized thermoelasticity is studied. The thermoelastic nature of the 3D plane waves in an anisotropic medium is investigated in the perspective of the three-phase-lag(TPL), dual-phase-lag(DPL), Green-Naghdi-III(GNIII), Lord-Shulman(LS), and classical coupled(CL) theories. The reflection coefficients and energy ratios for all the reflected waves are obtained in a mathematical form. The rotational effects on the reflection characteristics of the 3D waves are discussed under the context of generalized thermoelasticity. Comparative analyses for the reflection coefficients of the waves among these generalized thermoelastic theories are performed. The energy ratios for each of the reflected waves establish the energy conservation law in the reflection phenomena of the plane waves. The highly anisotropic materials along with the rotation may have a significant role in the phenomenon of the reflection behavior of the 3D waves. Numerical computations are performed for the graphical representation of the study.
文摘Based on the previous researches on scattering theory, a model of single and multiple scattering in a three-dimensional infinite medium with non-zero hypocentral distance is proposed in this paper. According to the assumptionof three-dimensional medium with numerous, statistically isotropic and uniformly distributed scatterers, we obtain the analytic form of power spectrum of coda waves for single scattering and the integral form of power spectrum of coda waves for multiple scattering.
基金Supported by the National Science Foundation of China(51109022)the National Science Foundation of Liaoning Province(201202020)the Key Laboratory Foundation of Dalian University of Technoloty(LP12005)
文摘An improved three-dimensional incompressible smooth particle hydrodynamics(ISPH)model is developed to simulate the impact of regular wave on a horizontal plate.The improvement is the employment of a corrective function to enhance angular momentum conservation in a particle-based calculation.And a new estimation method is proposed to predict the pressure on the horizontal plate.Then,the model simulates the variation characteristics of impact pressures generated by regular wave slamming.The main features of velocity field and pressure field near the plate are presented.The present numerical model can be used to study wave impact load on the horizontal plate.