In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation o...In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.展开更多
Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the pro...Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.展开更多
In optical three-dimensional shape measurement, a method of improving the measurement precision for phase reconstruction without phase unwrapping is analyzed in detail. Intensities of any five consecutive pixels that ...In optical three-dimensional shape measurement, a method of improving the measurement precision for phase reconstruction without phase unwrapping is analyzed in detail. Intensities of any five consecutive pixels that lie in the x-axis direction of the phase domain are given. Partial derivatives of the phase function in the x- and y-axis directions are obtained with a phase-shifting mechanism, the origin of which is analysed. Furthermore, to avoid phase unwrapping in the phase reconstruction, we derive the gradient of the phase function and perform a two-dimensional integral along the x- and y-axis directions. The reconstructed phase can be obtained directly by performing numerical integration, and thus it is of great convenience for phase reconstruction. Finally, the results of numerical simulations and practical experiments verify the correctness of the proposed method.展开更多
Complex surface shape measurement has been a focus topic in the CAD/CAM field. A popular method for measuring dimensional information is using a 3D coordinate measuring machine (CMM)with a touch trigger probe. The mea...Complex surface shape measurement has been a focus topic in the CAD/CAM field. A popular method for measuring dimensional information is using a 3D coordinate measuring machine (CMM)with a touch trigger probe. The measurement set up with CMM, however, is a time consuming task and the accuracy of the measurement deteriorates as the speed of measurement increase. Non-contact measurement is favored since high speed measurement can be achieved and problems with vibration and friction can be eliminated. Although much research has been conducted in non-contact measurement using image capturing and processing schemes, accuracy is poor and measurement is limited. Some optical technologies developed provide a good accuracy but the dynamic range and versatility is very limited. A novel fiber-optic sensor used for the inspection of complex internal contours is presented in this paper, which is able to measure a surface shape in a non-contact manner with high accuracy and high speed, and is compact and flexible to be incorporated into a CMM. Modulation functions for tilted surface shape measurement, based on the Gaussian distribution of the emitting beam from single-mode fiber (SMF), were derived for specular reflection. The feasibility of the proposed measurement principle was verified by simulations.展开更多
A new 3D surface contouring and ranging system based on digital fringe projection and phase shifting technique is presented. Using the phase-shift technique, points cloud with high spatial resolution and limited accur...A new 3D surface contouring and ranging system based on digital fringe projection and phase shifting technique is presented. Using the phase-shift technique, points cloud with high spatial resolution and limited accuracy can be generated. Stereo-pair images obtained from two cameras can be used to compute 3D world coordinates of a point using traditional active triangulation approach, yet the camera calibration is crucial. Neural network is a well-known approach to approximate a nonlinear system without an explicit physical model, in this work it is used to train the stereo vision application system to calculating 3D world coordinates such that the camera calibration can be bypassed. The training set for neural network consists of a variety of stereo-pair images and the corresponding 3D world coordinates. The picture elements correspondence problem is solved by using projected color-coded fringes with different orientations. Color imbalance is completely eliminated by the new color-coded method. Once the high accuracy correspondence of 2D images with 3D points is acquired, high precision 3D points cloud can be recognized by the well trained net. The obvious advantage of this approach is that high spatial resolution can be obtained by the phase-shifting technique and high accuracy 3D object point coordinates are achieved by the well trained net which is independent of the camera model works for any type of camera. Some experiments verified the performance of the method.展开更多
This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on...This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.展开更多
The essential of feature matching technology lies in how to measure the similarity of spatial entities.Among all the possible similarity measures,the shape similarity measure is one of the most important measures beca...The essential of feature matching technology lies in how to measure the similarity of spatial entities.Among all the possible similarity measures,the shape similarity measure is one of the most important measures because it is easy to collect the necessary parameters and it is also well matched with the human intuition.In this paper a new shape similarity measure of linear entities based on the differences of direction change along each line is presented and its effectiveness is illustrated.展开更多
Wireless communication for high-speed railways (HSRs) that provides reliable and high data rate communi- cation between the train and trackside networks is a challenging task. It is estimated that the wireless commu...Wireless communication for high-speed railways (HSRs) that provides reliable and high data rate communi- cation between the train and trackside networks is a challenging task. It is estimated that the wireless communication traffic could be as high as 65 Mbps per high-speed train. The development of such HSR communications systems and standards requires, in turn, accurate models for the HSR propagation channel. This article provides an overview of ex- isting HSR channel measurement campaigns in recent years. Particularly, some important measurement and modeling results in various HSR scenarios, such as viaduct and U-shaped groove (USG), are briefly described and analyzed. In addition, we review a novel channel sounding method, which can highly improve the measurement efficiency in HSR environment.展开更多
Three-dimensional(3-D) free-form shape measurement,a challenging task pursued by computer vision,is mainly characterized with single view acquisition and multiple view registration.Most of the conventional scanning ...Three-dimensional(3-D) free-form shape measurement,a challenging task pursued by computer vision,is mainly characterized with single view acquisition and multiple view registration.Most of the conventional scanning systems are less flexibility and difficult to realize engineering applications for employing sequential registration tactic.To develop portable scanning system and engineering registration method overcoming problems of error accumulation and propagation is the research direction.In this paper,one 3-D free-form shape measuring system using unconstrained range sensor is designed.A quasi-active stereo binocular visual sensor embedded within a scanning mechanism is used as the range sensor.Error compensation is performed by residual amendment according to camera calibration lattice.Artificial control points are designed and adhered on object and one camera is introduced to shot these control points from different positions and orientations.Then ray bundle adjustment(BA) method is used to calculate the space coordinates of all the control points,so as to set up a global control net work.Registration can be completed by mapping at least 3 control points observed by range sensor in single view acquisition into the global control network.In this system,no calibration for laser plane is required and the motion of range sensor is completely free.The overlapping of neighboring region is unessential for registration.Therefore,the working range of the system can be easily extended.The measuring precision mainly depends on the quality of global control network.The sequential distances of coding control points are observed by electronic theodolites and then compared with those obtained according to BA result.Experimental results show that relative distance error of control points is no more than 0.2%.The proposed measuring system is portable,provides good capacity for global error control,and contributes to the engineering application of 3-D free-form shape measurement.展开更多
Objective The purpose of this study was to explore an objective measure to assess actual body shape of children and adolescents in China. Methods Based on the Chinese National Survey on Student's Constitution and He...Objective The purpose of this study was to explore an objective measure to assess actual body shape of children and adolescents in China. Methods Based on the Chinese National Survey on Student's Constitution and Health (CNSSCH) in 2005, 210 927 children and adolescents' (7-18 years) body height, body weight, chest circumference, sitting height, chest circumference-height ratio, chest circumference-sitting height ratio, chest circumference-low limb ratio, and sitting height-low limb ratio measurements were used to develop an objective measure by using transformation variables and explored factor analysis (EFA). Discrimination power of the objective measure was evaluated based on BMI reference and Receiver Operating Characteristic curves (ROC). Results The objective measure included four dimensions scores:transverse dimension (TD) indicating weight and chest circumference; length dimension (LD) indicating height and sitting height;transverse-length ratio dimension (TLD) indicating chest circumference-height ratio, chest circumference-sitting height and chest circumference-low limb ratio; proportion dimension (PD) indicating sitting height-low limb ratio. The whole dimension (WD) indicating the whole body shape was showed by the average of four dimensions scores. Four dimensions and WD scores were approximately 80 in children and adolescents with normal weight, and higher than those of overweight, obesity, and underweight (all P-values〈0.001). Areas under ROC of overweight and obesity compared with normal weight ranged from 0.88 to 1.00 for scores of TD, TLD, and WD. Conclusion The objective measure which included four dimensions was explored, and TD, TLD, and WD had significant discrimination power.展开更多
A flexible calibration method based on a front-coated flat mirror is proposed for a laser light-sectioning three-dimensional(3D)measurement system. Since the calibration target and its mirror image are spatially separ...A flexible calibration method based on a front-coated flat mirror is proposed for a laser light-sectioning three-dimensional(3D)measurement system. Since the calibration target and its mirror image are spatially separated and can be recorded in an image by a camera,the proposed method requires only a single composite image that contains a non-planar checkerboard pattern,a laser strip projected on the target and their mirror images to complete the calibration of the camera and the laser plane in one step. Levenberg-Marquardt(LM)algorithm is used to optimize the system parameters,and the measurement accuracy and speed are improved to enable online 3D inspection. Static and dynamic online 3D measurements are carried out on a cup and a triple stepped shaft,respectively,to validate the proposed method. The shaft has two steps with the depth of(0.5±0.01)mm and(2±0.01)mm to be measured online when the shaft is rotated and translated at the same time. The measurement results can be output at a frequency of 7 to 11 readings per second with standard deviations of 0.040 mm and 0.051 mm. The experimental results verify the effectiveness and flexibility of the proposed method.展开更多
Abstract Reactivity measurement is an essential part of a zero-power physics test,which is critical to reactor design and development.The rod drop experimental technique is used to measure the control rod worth in a z...Abstract Reactivity measurement is an essential part of a zero-power physics test,which is critical to reactor design and development.The rod drop experimental technique is used to measure the control rod worth in a zero-power physics test.The conventional rod drop experimental technique is limited by the spatial effect and the difference between the calculated static reactivity and measured dynamic reactivity;thus,the method must be improved.In this study,a modified rod drop experimental technique that constrains the detector neutron flux shape function based on three-dimensional space–time dynamics to reduce the reactivity perturbation and a new method for calculating the detector neutron flux shape function are proposed.Correction factors were determined using Monte Carlo N-particle transport code and transient analysis code for a pressurized water reactor at the Ulsan National Institute of Science and Technology and Xi’an Jiaotong University,and a large reactivity of over 2000 pcm was measured using the modified technique.This research evaluated the modified technique accuracy,studied the influence of the correction factors on the modification,and investigated the effect of constraining the shape function on the reactivity perturbation reduction caused by the difference between the calculated neutron flux and true value,using the new method to calculate the shape function of the detector neutron flux and avoiding the neutron detector response function(weighting factor)calculation.展开更多
A whole-field 3D surface measurement system for semiconductor wafer inspection is described.The system consists of an optical fiber plate,which can split the light beam into N^2 subbeams to realize the whole-field ins...A whole-field 3D surface measurement system for semiconductor wafer inspection is described.The system consists of an optical fiber plate,which can split the light beam into N^2 subbeams to realize the whole-field inspection.A special prism is used to separate the illumination light and signal light.This setup is characterized by high precision,high speed and simple structure.展开更多
Pattern discovery from time series is of fundamental importance. Most of the algorithms of pattern discovery in time series capture the values of time series based on some kinds of similarity measures. Affected by the...Pattern discovery from time series is of fundamental importance. Most of the algorithms of pattern discovery in time series capture the values of time series based on some kinds of similarity measures. Affected by the scale and baseline, value-based methods bring about problem when the objective is to capture the shape. Thus, a similarity measure based on shape, Sh measure, is originally proposed, andthe properties of this similarity and corresponding proofs are given. Then a time series shape pattern discovery algorithm based on Sh measure is put forward. The proposed algorithm is terminated in finite iteration with given computational and storage complexity. Finally the experiments on synthetic datasets and sunspot datasets demonstrate that the time series shape pattern algorithm is valid.展开更多
The surface accuracy of a radio telescope is directly related to its operational efficiency and detection sensitivity.This is crucial under high-frequency observation conditions,where surface shape errors need to be c...The surface accuracy of a radio telescope is directly related to its operational efficiency and detection sensitivity.This is crucial under high-frequency observation conditions,where surface shape errors need to be controlled to within 1/16 of the working wavelength.In addition,the primary reflector of large radio telescopes is subject to dynamic deformation,caused by factors such as gravity and thermal effects.This paper presents a method for detecting the surface shape of radio telescopes using radio interferometry techniques combined with active reflector adjustment technology.This enables accurate assessment and correction of surface errors,ensuring the electrical performance of the radio telescope.This study investigates the practical applications of high-precision measurement techniques,such as microwave holography,out-of-focus holography,and wavefront distortion methods at the Tianma 65 m radio telescope(TMRT).Furthermore,the study presents the construction method of gravity models at different elevation angles and demonstrates the efficacy of the active reflector model.The results of the measurements indicate that the application of these methods to the TMRT has led to a notable enhancement of the accuracy of the primary reflector and a substantial improvement in efficiency in the Q-band.Through a process of iterative measurements and adjustments,the surface shape error is ultimately reduced to 0.28 mm root mean square(RMS).展开更多
This paper describes a multiple camera-based method to reconstruct the 3D shape of a human foot. From a foot database, an initial 3D model of the foot represented by a cloud of points is built. The shape parameters, w...This paper describes a multiple camera-based method to reconstruct the 3D shape of a human foot. From a foot database, an initial 3D model of the foot represented by a cloud of points is built. The shape parameters, which can characterize more than 92% of a foot, are defined by using the principal component analysis method. Then, using "active shape models", the initial 3D model is adapted to the real foot captured in multiple images by applying some constraints (edge points' distance and color variance). We insist here on the experiment part where we demonstrate the efficiency of the proposed method on a plastic foot model, and also on real human feet with various shapes. We propose and compare different ways of texturing the foot which is needed for reconstruction. We present an experiment performed on the plastic foot model and on human feet and propose two different ways to improve the final 3D shapers accuracy according to the previous experiments' results. The first improvement proposed is the densification of the cloud of points used to represent the initial model and the foot database. The second improvement concerns the projected patterns used to texture the foot. We conclude by showing the obtained results for a human foot with the average computed shape error being only 1.06 mm.展开更多
文摘In order to accurately measure an object’s three-dimensional surface shape,the influence of sampling on it was studied.First,on the basis of deriving spectra expressions through the Fourier transform,the generation of CCD pixels was analyzed,and its expression was given.Then,based on the discrete expression of deformation fringes obtained after sampling,its Fourier spectrum expression was derived,resulting in an infinitely repeated"spectra island"in the frequency domain.Finally,on the basis of using a low-pass filter to remove high-order harmonic components and retaining only one fundamental frequency component,the inverse Fourier transform was used to reconstruct the signal strength.A method of reducing the sampling interval,i.e.,reducing the number of sampling points per fringe,was proposed to increase the ratio between the sampling frequency and the fundamental frequency of the grating.This was done to reconstruct the object’s surface shape more accurately under the condition of m>4.The basic principle was verified through simulation and experiment.In the simulation,the sampling intervals were 8 pixels,4 pixels,2 pixels,and 1 pixel,the maximum absolute error values obtained in the last three situations were 88.80%,38.38%,and 31.50%in the first situation,respectively,and the corresponding average absolute error values are 71.84%,43.27%,and 32.26%.It is demonstrated that the smaller the sampling interval,the better the recovery effect.Taking the same four sampling intervals in the experiment as in the simulation can also lead to the same conclusions.The simulated and experimental results show that reducing the sampling interval can improve the accuracy of object surface shape measurement and achieve better reconstruction results.
基金Project supported by the Zhejiang Provincial Welfare Technology Applied Research Project,China(Grant No.2017C31080)
文摘Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61144006)
文摘In optical three-dimensional shape measurement, a method of improving the measurement precision for phase reconstruction without phase unwrapping is analyzed in detail. Intensities of any five consecutive pixels that lie in the x-axis direction of the phase domain are given. Partial derivatives of the phase function in the x- and y-axis directions are obtained with a phase-shifting mechanism, the origin of which is analysed. Furthermore, to avoid phase unwrapping in the phase reconstruction, we derive the gradient of the phase function and perform a two-dimensional integral along the x- and y-axis directions. The reconstructed phase can be obtained directly by performing numerical integration, and thus it is of great convenience for phase reconstruction. Finally, the results of numerical simulations and practical experiments verify the correctness of the proposed method.
文摘Complex surface shape measurement has been a focus topic in the CAD/CAM field. A popular method for measuring dimensional information is using a 3D coordinate measuring machine (CMM)with a touch trigger probe. The measurement set up with CMM, however, is a time consuming task and the accuracy of the measurement deteriorates as the speed of measurement increase. Non-contact measurement is favored since high speed measurement can be achieved and problems with vibration and friction can be eliminated. Although much research has been conducted in non-contact measurement using image capturing and processing schemes, accuracy is poor and measurement is limited. Some optical technologies developed provide a good accuracy but the dynamic range and versatility is very limited. A novel fiber-optic sensor used for the inspection of complex internal contours is presented in this paper, which is able to measure a surface shape in a non-contact manner with high accuracy and high speed, and is compact and flexible to be incorporated into a CMM. Modulation functions for tilted surface shape measurement, based on the Gaussian distribution of the emitting beam from single-mode fiber (SMF), were derived for specular reflection. The feasibility of the proposed measurement principle was verified by simulations.
基金Supported by the Eleventh Five-Year Pre-research Project of China.
文摘A new 3D surface contouring and ranging system based on digital fringe projection and phase shifting technique is presented. Using the phase-shift technique, points cloud with high spatial resolution and limited accuracy can be generated. Stereo-pair images obtained from two cameras can be used to compute 3D world coordinates of a point using traditional active triangulation approach, yet the camera calibration is crucial. Neural network is a well-known approach to approximate a nonlinear system without an explicit physical model, in this work it is used to train the stereo vision application system to calculating 3D world coordinates such that the camera calibration can be bypassed. The training set for neural network consists of a variety of stereo-pair images and the corresponding 3D world coordinates. The picture elements correspondence problem is solved by using projected color-coded fringes with different orientations. Color imbalance is completely eliminated by the new color-coded method. Once the high accuracy correspondence of 2D images with 3D points is acquired, high precision 3D points cloud can be recognized by the well trained net. The obvious advantage of this approach is that high spatial resolution can be obtained by the phase-shifting technique and high accuracy 3D object point coordinates are achieved by the well trained net which is independent of the camera model works for any type of camera. Some experiments verified the performance of the method.
文摘This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.
文摘The essential of feature matching technology lies in how to measure the similarity of spatial entities.Among all the possible similarity measures,the shape similarity measure is one of the most important measures because it is easy to collect the necessary parameters and it is also well matched with the human intuition.In this paper a new shape similarity measure of linear entities based on the differences of direction change along each line is presented and its effectiveness is illustrated.
基金supported in part by the National Natural Science Foundations(Nos.61032002 and 61102050)the National Science and Technology Major Project(No.2011ZX03001-007-01)+1 种基金the Beijing Natural Science Foundation(No.4122061)the Fundamental Research Funds for the Central Universities(No.2012YJS005)
文摘Wireless communication for high-speed railways (HSRs) that provides reliable and high data rate communi- cation between the train and trackside networks is a challenging task. It is estimated that the wireless communication traffic could be as high as 65 Mbps per high-speed train. The development of such HSR communications systems and standards requires, in turn, accurate models for the HSR propagation channel. This article provides an overview of ex- isting HSR channel measurement campaigns in recent years. Particularly, some important measurement and modeling results in various HSR scenarios, such as viaduct and U-shaped groove (USG), are briefly described and analyzed. In addition, we review a novel channel sounding method, which can highly improve the measurement efficiency in HSR environment.
基金supported by Fujian Provincial Natural Science Foundation for the Youth of China (Grant No. 2009J05136)Key Program of National Natural Science Foundation of China (Grant No.50735003)
文摘Three-dimensional(3-D) free-form shape measurement,a challenging task pursued by computer vision,is mainly characterized with single view acquisition and multiple view registration.Most of the conventional scanning systems are less flexibility and difficult to realize engineering applications for employing sequential registration tactic.To develop portable scanning system and engineering registration method overcoming problems of error accumulation and propagation is the research direction.In this paper,one 3-D free-form shape measuring system using unconstrained range sensor is designed.A quasi-active stereo binocular visual sensor embedded within a scanning mechanism is used as the range sensor.Error compensation is performed by residual amendment according to camera calibration lattice.Artificial control points are designed and adhered on object and one camera is introduced to shot these control points from different positions and orientations.Then ray bundle adjustment(BA) method is used to calculate the space coordinates of all the control points,so as to set up a global control net work.Registration can be completed by mapping at least 3 control points observed by range sensor in single view acquisition into the global control network.In this system,no calibration for laser plane is required and the motion of range sensor is completely free.The overlapping of neighboring region is unessential for registration.Therefore,the working range of the system can be easily extended.The measuring precision mainly depends on the quality of global control network.The sequential distances of coding control points are observed by electronic theodolites and then compared with those obtained according to BA result.Experimental results show that relative distance error of control points is no more than 0.2%.The proposed measuring system is portable,provides good capacity for global error control,and contributes to the engineering application of 3-D free-form shape measurement.
基金supported by the Research Special Fund for Public Welfare of Health(201202010)
文摘Objective The purpose of this study was to explore an objective measure to assess actual body shape of children and adolescents in China. Methods Based on the Chinese National Survey on Student's Constitution and Health (CNSSCH) in 2005, 210 927 children and adolescents' (7-18 years) body height, body weight, chest circumference, sitting height, chest circumference-height ratio, chest circumference-sitting height ratio, chest circumference-low limb ratio, and sitting height-low limb ratio measurements were used to develop an objective measure by using transformation variables and explored factor analysis (EFA). Discrimination power of the objective measure was evaluated based on BMI reference and Receiver Operating Characteristic curves (ROC). Results The objective measure included four dimensions scores:transverse dimension (TD) indicating weight and chest circumference; length dimension (LD) indicating height and sitting height;transverse-length ratio dimension (TLD) indicating chest circumference-height ratio, chest circumference-sitting height and chest circumference-low limb ratio; proportion dimension (PD) indicating sitting height-low limb ratio. The whole dimension (WD) indicating the whole body shape was showed by the average of four dimensions scores. Four dimensions and WD scores were approximately 80 in children and adolescents with normal weight, and higher than those of overweight, obesity, and underweight (all P-values〈0.001). Areas under ROC of overweight and obesity compared with normal weight ranged from 0.88 to 1.00 for scores of TD, TLD, and WD. Conclusion The objective measure which included four dimensions was explored, and TD, TLD, and WD had significant discrimination power.
基金supported in part by the National Natural Science Foundation of China (No. 11802132)the Natural Science Foundation of Jiangsu Province(No.BK20180446)。
文摘A flexible calibration method based on a front-coated flat mirror is proposed for a laser light-sectioning three-dimensional(3D)measurement system. Since the calibration target and its mirror image are spatially separated and can be recorded in an image by a camera,the proposed method requires only a single composite image that contains a non-planar checkerboard pattern,a laser strip projected on the target and their mirror images to complete the calibration of the camera and the laser plane in one step. Levenberg-Marquardt(LM)algorithm is used to optimize the system parameters,and the measurement accuracy and speed are improved to enable online 3D inspection. Static and dynamic online 3D measurements are carried out on a cup and a triple stepped shaft,respectively,to validate the proposed method. The shaft has two steps with the depth of(0.5±0.01)mm and(2±0.01)mm to be measured online when the shaft is rotated and translated at the same time. The measurement results can be output at a frequency of 7 to 11 readings per second with standard deviations of 0.040 mm and 0.051 mm. The experimental results verify the effectiveness and flexibility of the proposed method.
文摘Abstract Reactivity measurement is an essential part of a zero-power physics test,which is critical to reactor design and development.The rod drop experimental technique is used to measure the control rod worth in a zero-power physics test.The conventional rod drop experimental technique is limited by the spatial effect and the difference between the calculated static reactivity and measured dynamic reactivity;thus,the method must be improved.In this study,a modified rod drop experimental technique that constrains the detector neutron flux shape function based on three-dimensional space–time dynamics to reduce the reactivity perturbation and a new method for calculating the detector neutron flux shape function are proposed.Correction factors were determined using Monte Carlo N-particle transport code and transient analysis code for a pressurized water reactor at the Ulsan National Institute of Science and Technology and Xi’an Jiaotong University,and a large reactivity of over 2000 pcm was measured using the modified technique.This research evaluated the modified technique accuracy,studied the influence of the correction factors on the modification,and investigated the effect of constraining the shape function on the reactivity perturbation reduction caused by the difference between the calculated neutron flux and true value,using the new method to calculate the shape function of the detector neutron flux and avoiding the neutron detector response function(weighting factor)calculation.
文摘A whole-field 3D surface measurement system for semiconductor wafer inspection is described.The system consists of an optical fiber plate,which can split the light beam into N^2 subbeams to realize the whole-field inspection.A special prism is used to separate the illumination light and signal light.This setup is characterized by high precision,high speed and simple structure.
文摘Pattern discovery from time series is of fundamental importance. Most of the algorithms of pattern discovery in time series capture the values of time series based on some kinds of similarity measures. Affected by the scale and baseline, value-based methods bring about problem when the objective is to capture the shape. Thus, a similarity measure based on shape, Sh measure, is originally proposed, andthe properties of this similarity and corresponding proofs are given. Then a time series shape pattern discovery algorithm based on Sh measure is put forward. The proposed algorithm is terminated in finite iteration with given computational and storage complexity. Finally the experiments on synthetic datasets and sunspot datasets demonstrate that the time series shape pattern algorithm is valid.
基金supported by the National Key R&D Program of China(2018YFA0404702,2019YFA0708904,2021YFC2203501)Shanghai Key Laboratory of Space Navigation and Positioning Techniques,the National Natural Science Foundation of China(12273097,11903068).
文摘The surface accuracy of a radio telescope is directly related to its operational efficiency and detection sensitivity.This is crucial under high-frequency observation conditions,where surface shape errors need to be controlled to within 1/16 of the working wavelength.In addition,the primary reflector of large radio telescopes is subject to dynamic deformation,caused by factors such as gravity and thermal effects.This paper presents a method for detecting the surface shape of radio telescopes using radio interferometry techniques combined with active reflector adjustment technology.This enables accurate assessment and correction of surface errors,ensuring the electrical performance of the radio telescope.This study investigates the practical applications of high-precision measurement techniques,such as microwave holography,out-of-focus holography,and wavefront distortion methods at the Tianma 65 m radio telescope(TMRT).Furthermore,the study presents the construction method of gravity models at different elevation angles and demonstrates the efficacy of the active reflector model.The results of the measurements indicate that the application of these methods to the TMRT has led to a notable enhancement of the accuracy of the primary reflector and a substantial improvement in efficiency in the Q-band.Through a process of iterative measurements and adjustments,the surface shape error is ultimately reduced to 0.28 mm root mean square(RMS).
基金This work was supported by Grant-in-Aid for Scientific Research (C) (No.17500119)
文摘This paper describes a multiple camera-based method to reconstruct the 3D shape of a human foot. From a foot database, an initial 3D model of the foot represented by a cloud of points is built. The shape parameters, which can characterize more than 92% of a foot, are defined by using the principal component analysis method. Then, using "active shape models", the initial 3D model is adapted to the real foot captured in multiple images by applying some constraints (edge points' distance and color variance). We insist here on the experiment part where we demonstrate the efficiency of the proposed method on a plastic foot model, and also on real human feet with various shapes. We propose and compare different ways of texturing the foot which is needed for reconstruction. We present an experiment performed on the plastic foot model and on human feet and propose two different ways to improve the final 3D shapers accuracy according to the previous experiments' results. The first improvement proposed is the densification of the cloud of points used to represent the initial model and the foot database. The second improvement concerns the projected patterns used to texture the foot. We conclude by showing the obtained results for a human foot with the average computed shape error being only 1.06 mm.