The measurement of resistivity in a compressed material within a diamond anvil cell presents significant challenges.The high-pressure exper-imental setup makes it difficult to directly measure the size changes induced...The measurement of resistivity in a compressed material within a diamond anvil cell presents significant challenges.The high-pressure exper-imental setup makes it difficult to directly measure the size changes induced by pressure in the three crystallographic directions of the sample.In this study,we introduce a novel and effective method that addresses these technical challenges.This method is anticipated to offer a valuable foundation for high-pressure investigations on quantum materials,particularly those with anisotropic layered structures.展开更多
Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambria...Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambrian basement contains most of the region’s water resources. This is at the origin of the high failure rate during the various hydrogeological prospecting campaigns. Methodology: The database consists of resistivities from 42 holes and 51 trails drilled as part of the implementation of high-throughput drilling in the study area. The objective of this study is to deepen the knowledge of the fissured basement by interpreting profile curves and electrical soundings. It will be a question of classifying the different types of anomalies obtained on the profiles and their shapes. The orientation of the lineaments observed on the profiles was determined. Results: The interpretation of the geophysical data revealed various anomalies, the main ones being of the CC (Conductor Compartment) and CEDP (Contact between two bearings) types. These types of anomalies are mainly expressed in various forms: the “V”, “W” and “U” shapes. From these anomalies and the appearance of the electrical profiles, lineaments and their orientations were identified with N90-100, N130-140, N170-180 as major orientations. Conclusion: These results could contribute to a better understanding of the fractured environment of the Gagnoa region.展开更多
Al/Ni reactive multilayer foil(RMF)possesses excellent comprehensive properties as a promising substitute for traditional Cu bridge.A theoretical resistivity model of Al/Ni RMF was developed to guide the optimization ...Al/Ni reactive multilayer foil(RMF)possesses excellent comprehensive properties as a promising substitute for traditional Cu bridge.A theoretical resistivity model of Al/Ni RMF was developed to guide the optimization of EFIs.Al/Ni RMF with different bilayer thicknesses and bridge dimensions were prepared by MEMS technology and electrical explosion tests were carried out.According to physical and chemical reactions in bridge,the electrical explosion process was divided into 5 stages:heating of condensed bridge,vaporization and diffusion of Al layers,intermetallic combination reaction,intrinsic explosion,ionization of metal gases,which are obviously shown in measured voltage curve.Effects of interface and grain boundary scattering on the resistivity of film metal were considered.Focusing on variations of substance and state,the resistivity was developed as a function of temperature at each stage.Electrical explosion curves were calculated by this model at different bilayer thicknesses,bridge dimensions and capacitor voltages,which showed an excellent agreement with experimental ones.展开更多
Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection ...Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection neurons are at greater risk in AD whereas other regions display resistance to neurodegeneration.Interestingly,the cerebellum,a phylogenetically very old region,is affected only very late in the disease progression.展开更多
Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close rel...Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms.Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes.The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease,with emphasis on brain insulin resistance,is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.展开更多
The electrical resistivity method is a geophysical tool used to characterize the subsoil and can provide an important information for precision agriculture. The lack of knowledge about agronomic properties of the soil...The electrical resistivity method is a geophysical tool used to characterize the subsoil and can provide an important information for precision agriculture. The lack of knowledge about agronomic properties of the soil tends to affect the agricultural coffee production system. Therefore, research related to geoelectrical properties of soil such as resistivity for characterization the region of the study for coffee cultivation purposes can improve and optimize the production. This resistivity method allows to investigate the subsurface through different techniques: 1D vertical electrical sounding and electrical imaging. The acquisition of data using these techniques permitted the creation of 2D resistivity cross section from the study area. The geoelectrical data was acquired by using a resistivity meter equipment and was processed in different softwares. The results of the geoelectrical characterization from 1D resistivity model and 2D resistivity electrical sections show that in the study area of Kabiri, there are 8 varieties of geoelectrical layers with different resistivity or conductivity. Near survey in the study area, the lowest resistivity is around 0.322 Ω·m, while the highest is about 92.1 Ω·m. These values illustrated where is possible to plant coffee for suggestion of specific fertilization plan for some area to improve the cultivation.展开更多
In this paper, responses of a new dual-induction resistivity logging-while-drilling (LWD) tool in 3D inhomogeneous formation models are simulated by the vectorfinite element method (VFEM), the influences of the bo...In this paper, responses of a new dual-induction resistivity logging-while-drilling (LWD) tool in 3D inhomogeneous formation models are simulated by the vectorfinite element method (VFEM), the influences of the borehole, invaded zone, surroundingstrata, and tool eccentricity are analyzed, and calibration loop parameters and calibrationcoefficients of the LWD tool are discussed. The results show that the tool has a greater depthof investigation than that of the existing electromagnetic propagation LWD tools and is moresensitive to azimuthal conductivity. Both deep and medium induction responses have linearrelationships with the formation conductivity, considering optimal calibration loop parametersand calibration coefficients. Due to the different depths of investigation and resolution, deepinduction and medium induction are affected differently by the formation model parameters,thereby having different correction factors. The simulation results can provide theoreticalreferences for the research and interpretation of the dual-induction resistivity LWD tools.展开更多
There exist different response characteristics in the resistivity measurements of dual laterolog (DLL) and logging while drilling (LWD) electromagnetic wave propagation logging in highly deviated and horizontal we...There exist different response characteristics in the resistivity measurements of dual laterolog (DLL) and logging while drilling (LWD) electromagnetic wave propagation logging in highly deviated and horizontal wells due to the difference in their measuring principles. In this study, we first use the integral equation method simulated the response characteristics of LWD resistivity and use the three dimensional finite element method (3D-FEM) simulated the response characteristics of DLL resistivity in horizontal wells, and then analyzed the response differences between the DLL and LWD resistivity. The comparative analysis indicated that the response differences may be caused by different factors such as differences in the angle of instrument inclination, anisotropy, formation interface, and mud intrusion. In the interface, the curves of the LWD resistivity become sharp with increases in the deviation while those of the DLL resistivity gradually become smooth. Both curves are affected by the anisotropy although the effect on DLL resistivity is lower than the LWD resistivity. These differences aid in providing a reasonable explanation in the horizontal well. However, this can also simultaneously lead to false results. At the end of the study, we explain the effects of the differences in the interpretation of the horizontal well based on the results and actual data analysis.展开更多
The dynamic monitoring of landslides in engineering geology has focused on the correlation among landslide stability,rainwater infiltration,and subsurface hydrogeology.However,the understanding of this complicated cor...The dynamic monitoring of landslides in engineering geology has focused on the correlation among landslide stability,rainwater infiltration,and subsurface hydrogeology.However,the understanding of this complicated correlation is still poor and inadequate.Thus,in this study,we investigated a typical landslide in southwestern China via time-lapse electrical resistivity tomography(TLERT) in November 2013 and August 2014.We studied landslide mechanisms based on the spatiotemporal characteristics of surface water infiltration and flow within the landslide body.Combined with borehole data,inverted resistivity models accurately defined the interface between Quaternary sediments and bedrock.Preferential flow pathways attributed to fracture zones and fissures were also delineated.In addition,we found that surface water permeates through these pathways into the slipping mass and drains away as fissure water in the fractured bedrock,probably causing the weakly weathered layer to gradually soften and erode,eventually leading to a landslide.Clearly,TLERT dynamic monitoring can provide precursory information of critical sliding and can be used in landslide stability analysis and prediction.展开更多
To minimize the number of solutions in 3D resistivity inversion, an inherent problem in inversion, the amount of data considered have to be large and prior constraints need to be applied. Geological and geophysical da...To minimize the number of solutions in 3D resistivity inversion, an inherent problem in inversion, the amount of data considered have to be large and prior constraints need to be applied. Geological and geophysical data regarding the extent of a geological anomaly are important prior information. We propose the use of shape constraints in 3D electrical resistivity inversion, Three weighted orthogonal vectors (a normal and two tangent vectors) were used to control the resistivity differences at the boundaries of the anomaly. The spatial shape of the anomaly and the constraints on the boundaries of the anomaly are thus established. We incorporated the spatial shape constraints in the objective function of the 3D resistivity inversion and constructed the 3D resistivity inversion equation with spatial shape constraints. Subsequently, we used numerical modeling based on prior spatial shape data to constrain the direction vectors and weights of the 3D resistivity inversion. We established a reasonable range between the direction vectors and weights, and verified the feasibility and effectiveness of using spatial shape prior constraints in reducing excessive structures and the number of solutions. We applied the prior spatially shape-constrained inversion method to locate the aquifer at the Guangzhou subway. The spatial shape constraints were taken from ground penetrating radar data. The inversion results for the location and shape of the aquifer agree well with drilling data, and the number of inversion solutions is significantly reduced.展开更多
Most of the carbonate formation are highly heterogeneous with cavities of different sizes, which makes the prediction of cavity-filled reservoir in carbonate rocks difficult. Large cavities in carbonate formations pos...Most of the carbonate formation are highly heterogeneous with cavities of different sizes, which makes the prediction of cavity-filled reservoir in carbonate rocks difficult. Large cavities in carbonate formations pose serious threat to drilling operations. Logging-whiledrilling (LWD) is currently used to accurately identify and evaluate cavities in reservoirs during drilling. In this study, we use the self-adaptive hp-FEM algorithm simulate and calculate the LWD resistivity responses of fracture-cavity reservoir cavities. Compared with the traditional h-FEM method, the self-adaptive hp-FEM algorithm has the characteristics of the self-adaptive mesh refinement and the calculations exponentially converge to highly accurate solutions. Using numerical simulations, we investigated the effect of the cavity size, distance between cavity and borehole, and transmitted frequency on the LWD resistivity response. Based on the results, a method for recognizing cavities is proposed. This research can provide the theoretical basis for the accurate identification and quantitative evaluation of various carbonate reservoirs with cavities encountered in practice.展开更多
To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondar...To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.展开更多
We present a forward-modeling investigation of time-dependent ground magnetometric resistivity (MMR) anomalies associated with transient leachate transport in groundwater systems. Numerical geo-electrical models are...We present a forward-modeling investigation of time-dependent ground magnetometric resistivity (MMR) anomalies associated with transient leachate transport in groundwater systems. Numerical geo-electrical models are constructed based on the hydrological simulation results of leachate plumes from a highly conceptualized landfill system and the resultant MMR responses are computed using a modified finite difference software MMR2DFD. Three transmitter configurations (i.e., single source, MMR-TE, and MMR-TM modes) and two hydrological models (i.e., uniform and faulted porous media) are considered. Our forward modeling results for the uniform porous medium indicates that the magnetic field components perpendicular to the dominant current flow contain the most information of the underground targets and the MMR-TE mode is an appropriate configuration for detecting contaminant plumes. The modeling experiments for the faulted porous medium also confirm that the MMR method is capable of mapping and monitoring the extent of contaminant plumes in aroundwater systems.展开更多
The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy ...The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy and effect can not meet the precise requirement of the inversion. Two typical models of the geological bodies were designed, and forward calculation was carried out using finite element method. The forward-modeled profiles were obtained. 1% Gaussian random error was added in the forward models and then 2D and 3D inversions using a high-density resistivity method were undertaken to realistically simulate field data and analyze the sensitivity of the 2D and 3D inversion algorithms to noise. Contrast between the 2D and 3D inversion results of least squares inversion shows that two inversion results of high-density resistivity method all can basically reflect the spatial position of an anomalous body. However, the 3D inversion can more effectively eliminate the influence of interference from Gaussian random error and better reflect the distribution of resistivity in the anomalous bodies. Overall, the 3D inversion was better than 2D inversion in terms of embodying anomalous body positions, morphology and resistivity properties.展开更多
A resistivity distribution with a space of 3mm between test points was measured on a slice-of-silicon monocrystal (diameter 75mm) using an inclined four-point probe. This paper has determined the number of resistivi...A resistivity distribution with a space of 3mm between test points was measured on a slice-of-silicon monocrystal (diameter 75mm) using an inclined four-point probe. This paper has determined the number of resistivity divisions and their separations by statistical methods and introduced fuzzy mathematics to place the data into different fuzzy sets, after choosing the exponent function as a membership function for fuzzy sets and suitable values of thresholds. One fuzzy set corresponds to one resistivity isocontour. Then,the resistivity isocontours can be drawn with a definite separation and fi- nally shown in a map with MATLAB. The deviation of resistivity data on an isocontour is small and there are few residual test points without connections. So, the connection of the isocontours are high-quality and useful in application for instructing practical production.展开更多
Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell's equations for an anisotropic mo...Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell's equations for an anisotropic model, we introduce scalar potentials based on the divergence-free characteristic of the electric and magnetic (EM) fields. We then continue the EM fields down into the deep earth and upward into the seawater and couple them at the ocean bottom to the transmitting source. By studying both the DC apparent resistivity curves and their polar plots, we can resolve the anisotropy of the ocean bottom. Forward modeling of a high-resistivity thin layer in an anisotropic half-space demonstrates that the marine DC resistivity method in shallow water is very sensitive to the resistive reservoir but is not influenced by airwaves. As such, it is very suitable for oil and gas exploration in shallowwater areas but, to date, most modeling algorithms for studying marine DC resistivity are based on isotropic models. In this paper, we investigate one-dimensional anisotropic forward modeling for marine DC resistivity method, prove the algorithm to have high accuracy, and thus provide a theoretical basis for 2D and 3D forward modeling.展开更多
Electrical resistivity and viscosity of Pb–Sb alloys are measured to investigate Peierls distortion behavior in the melts. In Pb30Sb70, Pb20Sb80, and Pb10Sb90 melts, temperature dependence of resistivity deviates fro...Electrical resistivity and viscosity of Pb–Sb alloys are measured to investigate Peierls distortion behavior in the melts. In Pb30Sb70, Pb20Sb80, and Pb10Sb90 melts, temperature dependence of resistivity deviates from linear dependence during cooling. At 663 °C, different trends in isothermal behavior between experimental and theoretical resistivities, are interpreted as the existence of Peierls distortion in Sb-rich melts. In Pb30Sb70 and Pb20Sb80 melts, abnormal viscosity results verify the existence of abnormal structure transition, which is attributed to the formation of large Sb clusters with Peierls distortion. In undercooled liquid Pb20Sb80, minute resistivity coefficient and quadratic resistivity behavior are interpreted as the rapid increase of cluster size of Sb clusters with Peierls distortion, which provides preferential nucleation sites for higher structure similarity to the crystalline and lower liquid–solid interfacial energy.展开更多
The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime s...The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime soil are sensitive to water content, degree of saturation and unconfined strength. The cement soil and flyash lime soil with higher water content, greater degree of saturation, lower unconfined strength has lower electrical resistivity. Electrical resistivity is also correlated with additives. Based on the tests, it is concluded that the electrical resistivity method is available for checking the effectiveness of the soil improvement by the cement soil and flyash lime soil mixing pile in terms of engineering practice.展开更多
Four kinds of SiC fibers with different specific resistivities were prepared by the pyrolysis of cured polycarbosilane fiber. The results show that SiC fibers with different specific resistivities can be obtained by c...Four kinds of SiC fibers with different specific resistivities were prepared by the pyrolysis of cured polycarbosilane fiber. The results show that SiC fibers with different specific resistivities can be obtained by changing the curing and pyrolysis conditions. And the free carbon content and the ability to crystallize no longer affect the specific resistivities notably with the time when the fiber is covered with an excess carbon layer, and the fiber has a low specific resistivity. The excess carbon layer in the circular outer part is originated from the re-pyrolysis and deposition of hydrocarbon volatiles. The removal of the carbon by oxidative treatment may affect the surface property and also promote the magnitude of specific resistivity. The influence of the surface property on the specific resistivity can be considerable and should not be neglected.展开更多
By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been...By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been studied. The experimental results show that, with the increase of the Dy content, the system undergoes a transition from long range ferromagnetic order to the cluster-spin glass state and further to antiferromagnetic order. For the samples with x=0.20 and 0.30, their magnetic behaviors are abnormal at low temperature, and their resistivities at low temperature have a minimum value. These peculiar phenomena not only come from the lattice effect induced by doping, but also from extra magnetic coupling induced by doping.展开更多
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1403900 and 2021YFA1401800)the NSF of China(Grant Nos.U2032214 and 12104487).
文摘The measurement of resistivity in a compressed material within a diamond anvil cell presents significant challenges.The high-pressure exper-imental setup makes it difficult to directly measure the size changes induced by pressure in the three crystallographic directions of the sample.In this study,we introduce a novel and effective method that addresses these technical challenges.This method is anticipated to offer a valuable foundation for high-pressure investigations on quantum materials,particularly those with anisotropic layered structures.
文摘Introduction: Located in the central-western part of Côte d’Ivoire, the subsoil of the Gagnoa region is made up of sedimentary volcano formations and granitoids with developed fracturing. This complex Precambrian basement contains most of the region’s water resources. This is at the origin of the high failure rate during the various hydrogeological prospecting campaigns. Methodology: The database consists of resistivities from 42 holes and 51 trails drilled as part of the implementation of high-throughput drilling in the study area. The objective of this study is to deepen the knowledge of the fissured basement by interpreting profile curves and electrical soundings. It will be a question of classifying the different types of anomalies obtained on the profiles and their shapes. The orientation of the lineaments observed on the profiles was determined. Results: The interpretation of the geophysical data revealed various anomalies, the main ones being of the CC (Conductor Compartment) and CEDP (Contact between two bearings) types. These types of anomalies are mainly expressed in various forms: the “V”, “W” and “U” shapes. From these anomalies and the appearance of the electrical profiles, lineaments and their orientations were identified with N90-100, N130-140, N170-180 as major orientations. Conclusion: These results could contribute to a better understanding of the fractured environment of the Gagnoa region.
基金National Natural Science Foundation of China(Grant No.11872013)for supporting this project.
文摘Al/Ni reactive multilayer foil(RMF)possesses excellent comprehensive properties as a promising substitute for traditional Cu bridge.A theoretical resistivity model of Al/Ni RMF was developed to guide the optimization of EFIs.Al/Ni RMF with different bilayer thicknesses and bridge dimensions were prepared by MEMS technology and electrical explosion tests were carried out.According to physical and chemical reactions in bridge,the electrical explosion process was divided into 5 stages:heating of condensed bridge,vaporization and diffusion of Al layers,intermetallic combination reaction,intrinsic explosion,ionization of metal gases,which are obviously shown in measured voltage curve.Effects of interface and grain boundary scattering on the resistivity of film metal were considered.Focusing on variations of substance and state,the resistivity was developed as a function of temperature at each stage.Electrical explosion curves were calculated by this model at different bilayer thicknesses,bridge dimensions and capacitor voltages,which showed an excellent agreement with experimental ones.
基金supported by a grant of the Deutsche Forschungsgemeinschaft(DFGCRC1177 and joint DFG/ANR grant)(to CB)a fellowship of the Deutscher Akademischer Austauschdienst(DAAD)(to TNMP)。
文摘Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection neurons are at greater risk in AD whereas other regions display resistance to neurodegeneration.Interestingly,the cerebellum,a phylogenetically very old region,is affected only very late in the disease progression.
基金support from Region Stockholm,ALF-project(FoUI-960041)Open Access funding is provided by Karolinska Institute(both to IM)。
文摘Type 2 diabetes mellitus and Parkinson's disease are chronic diseases linked to a growing pandemic that affects older adults and causes significant socio-economic burden.Epidemiological data supporting a close relationship between these two aging-related diseases have resulted in the investigation of shared pathophysiological molecular mechanisms.Impaired insulin signaling in the brain has gained increasing attention during the last decade and has been suggested to contribute to the development of Parkinson's disease through the dysregulation of several pathological processes.The contribution of type 2 diabetes mellitus and insulin resistance in neurodegeneration in Parkinson's disease,with emphasis on brain insulin resistance,is extensively discussed in this article and new therapeutic strategies targeting this pathological link are presented and reviewed.
文摘The electrical resistivity method is a geophysical tool used to characterize the subsoil and can provide an important information for precision agriculture. The lack of knowledge about agronomic properties of the soil tends to affect the agricultural coffee production system. Therefore, research related to geoelectrical properties of soil such as resistivity for characterization the region of the study for coffee cultivation purposes can improve and optimize the production. This resistivity method allows to investigate the subsurface through different techniques: 1D vertical electrical sounding and electrical imaging. The acquisition of data using these techniques permitted the creation of 2D resistivity cross section from the study area. The geoelectrical data was acquired by using a resistivity meter equipment and was processed in different softwares. The results of the geoelectrical characterization from 1D resistivity model and 2D resistivity electrical sections show that in the study area of Kabiri, there are 8 varieties of geoelectrical layers with different resistivity or conductivity. Near survey in the study area, the lowest resistivity is around 0.322 Ω·m, while the highest is about 92.1 Ω·m. These values illustrated where is possible to plant coffee for suggestion of specific fertilization plan for some area to improve the cultivation.
基金supported by the National Oil and Gas Major Projects(No.2011ZX05020-002)
文摘In this paper, responses of a new dual-induction resistivity logging-while-drilling (LWD) tool in 3D inhomogeneous formation models are simulated by the vectorfinite element method (VFEM), the influences of the borehole, invaded zone, surroundingstrata, and tool eccentricity are analyzed, and calibration loop parameters and calibrationcoefficients of the LWD tool are discussed. The results show that the tool has a greater depthof investigation than that of the existing electromagnetic propagation LWD tools and is moresensitive to azimuthal conductivity. Both deep and medium induction responses have linearrelationships with the formation conductivity, considering optimal calibration loop parametersand calibration coefficients. Due to the different depths of investigation and resolution, deepinduction and medium induction are affected differently by the formation model parameters,thereby having different correction factors. The simulation results can provide theoreticalreferences for the research and interpretation of the dual-induction resistivity LWD tools.
基金supported by the National Science and Technology Major Project of China(Nos.2016ZX05014-002-001,2016ZX05002-005-001,and 2017ZX05005-005-005)
文摘There exist different response characteristics in the resistivity measurements of dual laterolog (DLL) and logging while drilling (LWD) electromagnetic wave propagation logging in highly deviated and horizontal wells due to the difference in their measuring principles. In this study, we first use the integral equation method simulated the response characteristics of LWD resistivity and use the three dimensional finite element method (3D-FEM) simulated the response characteristics of DLL resistivity in horizontal wells, and then analyzed the response differences between the DLL and LWD resistivity. The comparative analysis indicated that the response differences may be caused by different factors such as differences in the angle of instrument inclination, anisotropy, formation interface, and mud intrusion. In the interface, the curves of the LWD resistivity become sharp with increases in the deviation while those of the DLL resistivity gradually become smooth. Both curves are affected by the anisotropy although the effect on DLL resistivity is lower than the LWD resistivity. These differences aid in providing a reasonable explanation in the horizontal well. However, this can also simultaneously lead to false results. At the end of the study, we explain the effects of the differences in the interpretation of the horizontal well based on the results and actual data analysis.
基金funded by the National Basic Research Program of China(973 Program)(No.2013CB733203)the National Natural Science Foundation of China(No.41474055)
文摘The dynamic monitoring of landslides in engineering geology has focused on the correlation among landslide stability,rainwater infiltration,and subsurface hydrogeology.However,the understanding of this complicated correlation is still poor and inadequate.Thus,in this study,we investigated a typical landslide in southwestern China via time-lapse electrical resistivity tomography(TLERT) in November 2013 and August 2014.We studied landslide mechanisms based on the spatiotemporal characteristics of surface water infiltration and flow within the landslide body.Combined with borehole data,inverted resistivity models accurately defined the interface between Quaternary sediments and bedrock.Preferential flow pathways attributed to fracture zones and fissures were also delineated.In addition,we found that surface water permeates through these pathways into the slipping mass and drains away as fissure water in the fractured bedrock,probably causing the weakly weathered layer to gradually soften and erode,eventually leading to a landslide.Clearly,TLERT dynamic monitoring can provide precursory information of critical sliding and can be used in landslide stability analysis and prediction.
基金supported by the National Program on Key Basic Research Project of China(973 Program)(No.2013CB036002,No.2014CB046901)the National Major Scientific Equipment Developed Special Project(No.51327802)+3 种基金National Natural Science Foundation of China(No.51139004,No.41102183)the Research Fund for the Doctoral Program of Higher Education of China(No.20110131120070)Natural Science Foundation of Shandong Province(No.ZR2011EEQ013)the Graduate Innovation Fund of Shandong University(No.YZC12083)
文摘To minimize the number of solutions in 3D resistivity inversion, an inherent problem in inversion, the amount of data considered have to be large and prior constraints need to be applied. Geological and geophysical data regarding the extent of a geological anomaly are important prior information. We propose the use of shape constraints in 3D electrical resistivity inversion, Three weighted orthogonal vectors (a normal and two tangent vectors) were used to control the resistivity differences at the boundaries of the anomaly. The spatial shape of the anomaly and the constraints on the boundaries of the anomaly are thus established. We incorporated the spatial shape constraints in the objective function of the 3D resistivity inversion and constructed the 3D resistivity inversion equation with spatial shape constraints. Subsequently, we used numerical modeling based on prior spatial shape data to constrain the direction vectors and weights of the 3D resistivity inversion. We established a reasonable range between the direction vectors and weights, and verified the feasibility and effectiveness of using spatial shape prior constraints in reducing excessive structures and the number of solutions. We applied the prior spatially shape-constrained inversion method to locate the aquifer at the Guangzhou subway. The spatial shape constraints were taken from ground penetrating radar data. The inversion results for the location and shape of the aquifer agree well with drilling data, and the number of inversion solutions is significantly reduced.
基金supported by the National Natural Science Foundation of China(No. 41074099)
文摘Most of the carbonate formation are highly heterogeneous with cavities of different sizes, which makes the prediction of cavity-filled reservoir in carbonate rocks difficult. Large cavities in carbonate formations pose serious threat to drilling operations. Logging-whiledrilling (LWD) is currently used to accurately identify and evaluate cavities in reservoirs during drilling. In this study, we use the self-adaptive hp-FEM algorithm simulate and calculate the LWD resistivity responses of fracture-cavity reservoir cavities. Compared with the traditional h-FEM method, the self-adaptive hp-FEM algorithm has the characteristics of the self-adaptive mesh refinement and the calculations exponentially converge to highly accurate solutions. Using numerical simulations, we investigated the effect of the cavity size, distance between cavity and borehole, and transmitted frequency on the LWD resistivity response. Based on the results, a method for recognizing cavities is proposed. This research can provide the theoretical basis for the accurate identification and quantitative evaluation of various carbonate reservoirs with cavities encountered in practice.
基金supported by the Natural Science Foundation of China(Nos.41404057,41674077 and 411640034)the Nuclear Energy Development Project of China,and the‘555’Project of Gan Po Excellent People
文摘To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.
基金Supported by the Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning (Grant No. 200508)Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (Grant No. 200889016).
文摘We present a forward-modeling investigation of time-dependent ground magnetometric resistivity (MMR) anomalies associated with transient leachate transport in groundwater systems. Numerical geo-electrical models are constructed based on the hydrological simulation results of leachate plumes from a highly conceptualized landfill system and the resultant MMR responses are computed using a modified finite difference software MMR2DFD. Three transmitter configurations (i.e., single source, MMR-TE, and MMR-TM modes) and two hydrological models (i.e., uniform and faulted porous media) are considered. Our forward modeling results for the uniform porous medium indicates that the magnetic field components perpendicular to the dominant current flow contain the most information of the underground targets and the MMR-TE mode is an appropriate configuration for detecting contaminant plumes. The modeling experiments for the faulted porous medium also confirm that the MMR method is capable of mapping and monitoring the extent of contaminant plumes in aroundwater systems.
基金Projects(41074085,41374118)supported by the National Natural Science Foundation of ChinaProject(20120162110015)supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-12-0551)supported by Program for New Century Excellent Talents in University,China
文摘The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy and effect can not meet the precise requirement of the inversion. Two typical models of the geological bodies were designed, and forward calculation was carried out using finite element method. The forward-modeled profiles were obtained. 1% Gaussian random error was added in the forward models and then 2D and 3D inversions using a high-density resistivity method were undertaken to realistically simulate field data and analyze the sensitivity of the 2D and 3D inversion algorithms to noise. Contrast between the 2D and 3D inversion results of least squares inversion shows that two inversion results of high-density resistivity method all can basically reflect the spatial position of an anomalous body. However, the 3D inversion can more effectively eliminate the influence of interference from Gaussian random error and better reflect the distribution of resistivity in the anomalous bodies. Overall, the 3D inversion was better than 2D inversion in terms of embodying anomalous body positions, morphology and resistivity properties.
文摘A resistivity distribution with a space of 3mm between test points was measured on a slice-of-silicon monocrystal (diameter 75mm) using an inclined four-point probe. This paper has determined the number of resistivity divisions and their separations by statistical methods and introduced fuzzy mathematics to place the data into different fuzzy sets, after choosing the exponent function as a membership function for fuzzy sets and suitable values of thresholds. One fuzzy set corresponds to one resistivity isocontour. Then,the resistivity isocontours can be drawn with a definite separation and fi- nally shown in a map with MATLAB. The deviation of resistivity data on an isocontour is small and there are few residual test points without connections. So, the connection of the isocontours are high-quality and useful in application for instructing practical production.
基金financially supported by the National Hi-tech Research and Development Program of China(863 Program)(No.2012AA09A20103)
文摘Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell's equations for an anisotropic model, we introduce scalar potentials based on the divergence-free characteristic of the electric and magnetic (EM) fields. We then continue the EM fields down into the deep earth and upward into the seawater and couple them at the ocean bottom to the transmitting source. By studying both the DC apparent resistivity curves and their polar plots, we can resolve the anisotropy of the ocean bottom. Forward modeling of a high-resistivity thin layer in an anisotropic half-space demonstrates that the marine DC resistivity method in shallow water is very sensitive to the resistive reservoir but is not influenced by airwaves. As such, it is very suitable for oil and gas exploration in shallowwater areas but, to date, most modeling algorithms for studying marine DC resistivity are based on isotropic models. In this paper, we investigate one-dimensional anisotropic forward modeling for marine DC resistivity method, prove the algorithm to have high accuracy, and thus provide a theoretical basis for 2D and 3D forward modeling.
基金Project (50971083) supported by the National Natural Science Foundation of China
文摘Electrical resistivity and viscosity of Pb–Sb alloys are measured to investigate Peierls distortion behavior in the melts. In Pb30Sb70, Pb20Sb80, and Pb10Sb90 melts, temperature dependence of resistivity deviates from linear dependence during cooling. At 663 °C, different trends in isothermal behavior between experimental and theoretical resistivities, are interpreted as the existence of Peierls distortion in Sb-rich melts. In Pb30Sb70 and Pb20Sb80 melts, abnormal viscosity results verify the existence of abnormal structure transition, which is attributed to the formation of large Sb clusters with Peierls distortion. In undercooled liquid Pb20Sb80, minute resistivity coefficient and quadratic resistivity behavior are interpreted as the rapid increase of cluster size of Sb clusters with Peierls distortion, which provides preferential nucleation sites for higher structure similarity to the crystalline and lower liquid–solid interfacial energy.
文摘The electrical resistivity characteristics of cement soil and flyash lime soil are investigated in the laboratory and the field. It is shown that the electrical resistivities of the cement soil and flyash lime soil are sensitive to water content, degree of saturation and unconfined strength. The cement soil and flyash lime soil with higher water content, greater degree of saturation, lower unconfined strength has lower electrical resistivity. Electrical resistivity is also correlated with additives. Based on the tests, it is concluded that the electrical resistivity method is available for checking the effectiveness of the soil improvement by the cement soil and flyash lime soil mixing pile in terms of engineering practice.
文摘Four kinds of SiC fibers with different specific resistivities were prepared by the pyrolysis of cured polycarbosilane fiber. The results show that SiC fibers with different specific resistivities can be obtained by changing the curing and pyrolysis conditions. And the free carbon content and the ability to crystallize no longer affect the specific resistivities notably with the time when the fiber is covered with an excess carbon layer, and the fiber has a low specific resistivity. The excess carbon layer in the circular outer part is originated from the re-pyrolysis and deposition of hydrocarbon volatiles. The removal of the carbon by oxidative treatment may affect the surface property and also promote the magnitude of specific resistivity. The influence of the surface property on the specific resistivity can be considerable and should not be neglected.
基金This work was supported by the National Nature Science Foundation of China (No. 19934003) the State Key Project of Fundamental Research of China (No.001CB610604) the Item of Nature Science Research of Anhui (No. 2001kj244).
文摘By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been studied. The experimental results show that, with the increase of the Dy content, the system undergoes a transition from long range ferromagnetic order to the cluster-spin glass state and further to antiferromagnetic order. For the samples with x=0.20 and 0.30, their magnetic behaviors are abnormal at low temperature, and their resistivities at low temperature have a minimum value. These peculiar phenomena not only come from the lattice effect induced by doping, but also from extra magnetic coupling induced by doping.