This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△...This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2.展开更多
A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncatio...A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncation error is O(△t^2 + △x^4).展开更多
The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the ...The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the forced dissipative nonlinear atmospheric equations is obtained on account of the concept of computational quasi-stability, Therefore, it provides the new train of thought and theoretical basis for designing computational stable difference scheme of the forced dissipative nonlinear atmospheric equations. Key words Computational quasi-stability - Computational stability - Forced dissipative nonlinear evolution equation - Explicit difference scheme This work was supported by the National Outstanding Youth Scientist Foundation of China (Grant No. 49825109), the Key Innovation Project of Chinese Academy of Sciences (KZCX1-10-07), the National Natural Science Foundation of China (Grant Nos, 49905007 and 49975020) and the Outstanding State Key Laboratory Project (Grant No. 40023001).展开更多
A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation. When the order of truncation error is 0(Deltat + (Deltax)(2)), the stability condition is mesh rat...A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation. When the order of truncation error is 0(Deltat + (Deltax)(2)), the stability condition is mesh ratio r = Deltat/(Deltax)(2) = Deltat/(Deltay)(2) = Deltat/(Deltaz)(2) less than or equal to 1/2, which is better than that of all the other explicit difference schemes. And when the order of truncation error is 0((Deltat)(2) + (Deltax)(4)), the stability condition is r less than or equal to 1/6, which contains the known results.展开更多
Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmos...Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmospheric and oceanic equations is analyzed and the computationally stable explicit complete square conservative difference schemes are constructed. The theoretical analysis and numerical experiment prove that the explicit complete square conservative difference schemes are computationally stable and deserve to be disseminated.展开更多
In this paper, a class of explicit difference schemes with parameters for solving five-dimensional heat-conduction equation are constructed and studied.the truncation error reaches O(τ^2+ h%4), and the stability c...In this paper, a class of explicit difference schemes with parameters for solving five-dimensional heat-conduction equation are constructed and studied.the truncation error reaches O(τ^2+ h%4), and the stability condition is given. Finally, the numerical examples and numerical results are presented to show the advantage of the schemes and the correctness of theoretical analysis.展开更多
The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechan...The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechanics (English Edition), 2007, 28(7), 943-953, has the same performance as the conventional finite difference schemes. It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless, we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations, especially for higher accurate schemes.展开更多
In this paper, an explicit three_level symmetrical differencing scheme with parameters for solving parabolic partial differential equation of three_dimension will be considered. The stability condition and local trunc...In this paper, an explicit three_level symmetrical differencing scheme with parameters for solving parabolic partial differential equation of three_dimension will be considered. The stability condition and local truncation error for the scheme are r<1/2 and O( Δ t 2+ Δ x 4+ Δ y 4+ Δ z 4) ,respectively.展开更多
A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and t...A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and the truncation error is 0(<Delta>t(2) + Deltax(4)).展开更多
Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at pr...Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at predicting stage, a cubic spline function is adopted at correcting stage, which made the time discretization accuracy up to fourth order; For spatial discretization, a three-point explicit compact difference scheme with arbitrary order accuracy is employed. The extended Boussinesq equations derived by Beji and Nadaoka are solved by the proposed scheme. The numerical results agree well with the experimental data. At the same time, the comparisons of the two numerical results between the present scheme and low accuracy difference method are made, which further show the necessity of using high accuracy scheme to solve the extended Boussinesq equations. As a valid sample, the wave propagation on the rectangular step is formulated by the present scheme, the modelled results are in better agreement with the experimental data than those of Kittitanasuan.展开更多
In this paper. a three explicit difference shcemes with high order accuracy for solving the equations of two-dimensional parabolic type is proposed. The stability condition is r=△t/△x ̄ 2=△t/△y ̄2≤1/4 and the...In this paper. a three explicit difference shcemes with high order accuracy for solving the equations of two-dimensional parabolic type is proposed. The stability condition is r=△t/△x ̄ 2=△t/△y ̄2≤1/4 and the truncation error is O (△t ̄2 + △x ̄4 ).展开更多
A class of two-level high-order accuracy explicit difference scheme for solving 3-D parabolic P.D.E is constructed. Its truncation error is (Δt2+Δx4) and the stability condition is r=Δt/Δx2=Δt/Δy2=Δt/Δz2≤1/6.
In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gam...In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gamma(2) = Delta t/Delta z(2) less than or equal to 1/4, and the truncation error is O(Delta t(2) + Delta x(4)).展开更多
The heat equation is a second-order parabolic partial differential equation, which can be solved in many ways using numerical methods. This paper provides a numerical solution that uses the finite difference method li...The heat equation is a second-order parabolic partial differential equation, which can be solved in many ways using numerical methods. This paper provides a numerical solution that uses the finite difference method like the explicit center difference method. The forward time and centered space (FTCS) is used to a problem containing the one-dimensional heat equation and the stability condition of the scheme is reported with different thermal conductivity of different materials. In this study, results obtained for different thermal conductivity of distinct materials are compared. Also, the results reveal the well-behavior properties of the materials in good agreement.展开更多
A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation is given here. According to such schemes, the full explicit difference scheme and the full implicit one, an alternating segme...A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation is given here. According to such schemes, the full explicit difference scheme and the full implicit one, an alternating segment explicit-implicit difference scheme for solving the KdV equation is constructed. The scheme is linear unconditionally stable by the analysis of linearization procedure, and is used directly on the parallel computer. The numerical experiments show that the method has high accuracy.展开更多
Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under sat...Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit(ADE)scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in nonuniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourthorder finite difference(FD) approximation to the spatial derivatives of the axisymmetric fluid-diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps,giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua(FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%-50% that of FLAC’s basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%-1.8%.展开更多
An explicit multi-conservation finite-difference scheme for solving the spherical shallow-water-wave equation set of barotropic atmosphere has been proposed. The numerical scheme is based on a special semi-discrete fo...An explicit multi-conservation finite-difference scheme for solving the spherical shallow-water-wave equation set of barotropic atmosphere has been proposed. The numerical scheme is based on a special semi-discrete form of the equations that conserves four basic physical integrals including the total energy, total mass, total potential vorticity and total enstrophy. Numerical tests show that the new scheme performs closely like but is much more time-saving than the implicit multi-conservation scheme.展开更多
The space-time fractional advection dispersion equations are linear partial pseudo-differential equations with spatial fractional derivatives in time and in space and are used to model transport at the earth surface. ...The space-time fractional advection dispersion equations are linear partial pseudo-differential equations with spatial fractional derivatives in time and in space and are used to model transport at the earth surface. The time fractional order is denoted by β∈ and ?is devoted to the space fractional order. The time fractional advection dispersion equations describe particle motion with memory in time. Space-fractional advection dispersion equations arise when velocity variations are heavy-tailed and describe particle motion that accounts for variation in the flow field over entire system. In this paper, I focus on finding the precise explicit discrete approximate solutions to these models for some values of ?with ?, ?while the Cauchy case as ?and the classical case as ?with ?are studied separately. I compare the numerical results of these models for different values of ?and ?and for some other related changes. The approximate solutions of these models are also discussed as a random walk with or without a memory depending on the value of . Then I prove that the discrete solution in the Fourierlaplace space of theses models converges in distribution to the Fourier-Laplace transform of the corresponding fractional differential equations for all the fractional values of ?and .展开更多
We consider the numerical solution of a singularly perturbed problem for the quasilinear parabolic differential equation, and construct a linear three-level finite difference scheme on a nonuniform grid. The uniform c...We consider the numerical solution of a singularly perturbed problem for the quasilinear parabolic differential equation, and construct a linear three-level finite difference scheme on a nonuniform grid. The uniform convergence in the sense of discrete L2 norm is proved and numerical examples are presented.展开更多
Presents a study that investigated the asymptotic behavior of discrete solutions in comparison to the case of continuous solutions. Numerical representation of the problem; Details on the solution of explicit differen...Presents a study that investigated the asymptotic behavior of discrete solutions in comparison to the case of continuous solutions. Numerical representation of the problem; Details on the solution of explicit difference scheme for the corresponding nonlinear elliptic equations; Results and discussion.展开更多
文摘This paper presents an explicit difference scheme with accuracy and branching stability for solving onedimensional parabolic type equation by the method of undetermined parameters and its truncation error is O(△t4+△x4). The stability condition is r=a△t/△x2<1/2.
基金NSF of the Education Department of Henan Province(20031100010)
文摘A high-order accuracy explicit difference scheme for solving 4-dimensional heatconduction equation is constructed. The stability condition is r = △t/△x^2 = △t/△y^2 = △t/△z^2 = △t/△w^2 〈 3/8, and the truncation error is O(△t^2 + △x^4).
基金the National Outstanding Youth Scientist Foundation of China (GrantNo. 49825109), the Key Innovation Project of Chinese Academ
文摘The computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations is analyzed and the computational quasi-stability criterion of explicit difference schemes of the forced dissipative nonlinear atmospheric equations is obtained on account of the concept of computational quasi-stability, Therefore, it provides the new train of thought and theoretical basis for designing computational stable difference scheme of the forced dissipative nonlinear atmospheric equations. Key words Computational quasi-stability - Computational stability - Forced dissipative nonlinear evolution equation - Explicit difference scheme This work was supported by the National Outstanding Youth Scientist Foundation of China (Grant No. 49825109), the Key Innovation Project of Chinese Academy of Sciences (KZCX1-10-07), the National Natural Science Foundation of China (Grant Nos, 49905007 and 49975020) and the Outstanding State Key Laboratory Project (Grant No. 40023001).
文摘A class of two-level explicit difference schemes are presented for solving three-dimensional heat conduction equation. When the order of truncation error is 0(Deltat + (Deltax)(2)), the stability condition is mesh ratio r = Deltat/(Deltax)(2) = Deltat/(Deltay)(2) = Deltat/(Deltaz)(2) less than or equal to 1/2, which is better than that of all the other explicit difference schemes. And when the order of truncation error is 0((Deltat)(2) + (Deltax)(4)), the stability condition is r less than or equal to 1/6, which contains the known results.
基金the Outstanding State Key Laboratory Project of National Science Foundation of China (Grant No. 40023001 )the Key Innovatio
文摘Based on the forced dissipetive nonlinear evolution equations for describing the motion of atmosphere and ocean, the computational stability of the explicit difference schemes of the forced dissipotive nonlinear atmospheric and oceanic equations is analyzed and the computationally stable explicit complete square conservative difference schemes are constructed. The theoretical analysis and numerical experiment prove that the explicit complete square conservative difference schemes are computationally stable and deserve to be disseminated.
基金Supported by NSF of the Education Department of Henan Province(20031100010)
文摘In this paper, a class of explicit difference schemes with parameters for solving five-dimensional heat-conduction equation are constructed and studied.the truncation error reaches O(τ^2+ h%4), and the stability condition is given. Finally, the numerical examples and numerical results are presented to show the advantage of the schemes and the correctness of theoretical analysis.
基金Supported by the National Natural Science Foundation of China (Nos.50876114 and 10602043)the Program for New Century Excellent Talents in University,and the Scientific Research Key Project Fund of Ministry of Education (No.106142)
文摘The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechanics (English Edition), 2007, 28(7), 943-953, has the same performance as the conventional finite difference schemes. It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless, we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations, especially for higher accurate schemes.
文摘In this paper, an explicit three_level symmetrical differencing scheme with parameters for solving parabolic partial differential equation of three_dimension will be considered. The stability condition and local truncation error for the scheme are r<1/2 and O( Δ t 2+ Δ x 4+ Δ y 4+ Δ z 4) ,respectively.
文摘A family of high-order accuracy explict difference schemes for solving 3-dimension parabolic P. D. E. is constructed. The stability condition is r = Deltat/Deltax(2) Deltat/Deltay(2) = Deltat/Deltaz(2) < 1/2 ,and the truncation error is 0(<Delta>t(2) + Deltax(4)).
基金The project was financially supported by the National Natural Science Foundation of China (Grant No50479053)
文摘Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at predicting stage, a cubic spline function is adopted at correcting stage, which made the time discretization accuracy up to fourth order; For spatial discretization, a three-point explicit compact difference scheme with arbitrary order accuracy is employed. The extended Boussinesq equations derived by Beji and Nadaoka are solved by the proposed scheme. The numerical results agree well with the experimental data. At the same time, the comparisons of the two numerical results between the present scheme and low accuracy difference method are made, which further show the necessity of using high accuracy scheme to solve the extended Boussinesq equations. As a valid sample, the wave propagation on the rectangular step is formulated by the present scheme, the modelled results are in better agreement with the experimental data than those of Kittitanasuan.
文摘In this paper. a three explicit difference shcemes with high order accuracy for solving the equations of two-dimensional parabolic type is proposed. The stability condition is r=△t/△x ̄ 2=△t/△y ̄2≤1/4 and the truncation error is O (△t ̄2 + △x ̄4 ).
文摘A class of two-level high-order accuracy explicit difference scheme for solving 3-D parabolic P.D.E is constructed. Its truncation error is (Δt2+Δx4) and the stability condition is r=Δt/Δx2=Δt/Δy2=Δt/Δz2≤1/6.
文摘In this paper, a new three-level explicit difference scheme with high-order accuracy is proposed for solving three-dimensional parabolic equations. The stability condition is r = Delta t/Delta x(2) = Delta t/Delta gamma(2) = Delta t/Delta z(2) less than or equal to 1/4, and the truncation error is O(Delta t(2) + Delta x(4)).
文摘The heat equation is a second-order parabolic partial differential equation, which can be solved in many ways using numerical methods. This paper provides a numerical solution that uses the finite difference method like the explicit center difference method. The forward time and centered space (FTCS) is used to a problem containing the one-dimensional heat equation and the stability condition of the scheme is reported with different thermal conductivity of different materials. In this study, results obtained for different thermal conductivity of distinct materials are compared. Also, the results reveal the well-behavior properties of the materials in good agreement.
基金Project supported by the National Natural Science Foundation of China(No.10671113)the Natural Science Foundation of Shandong Province of China(No.Y2003A04)
文摘A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation is given here. According to such schemes, the full explicit difference scheme and the full implicit one, an alternating segment explicit-implicit difference scheme for solving the KdV equation is constructed. The scheme is linear unconditionally stable by the analysis of linearization procedure, and is used directly on the parallel computer. The numerical experiments show that the method has high accuracy.
基金the support from the University Transportation Center for Underground Transportation Infrastructure at the Colorado School of Mines for partially funding this research under Grant No. 69A3551747118 of the Fixing America's Surface Transportation Act (FAST Act) of U.S. DoT FY2016
文摘Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit(ADE)scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in nonuniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourthorder finite difference(FD) approximation to the spatial derivatives of the axisymmetric fluid-diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps,giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua(FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%-50% that of FLAC’s basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%-1.8%.
基金the National Key Development and Planning Project for the Basic Research (973) (Grant No.2005CB321703)the Science Funds for Creative Research Groups (Grant No.40221503)
文摘An explicit multi-conservation finite-difference scheme for solving the spherical shallow-water-wave equation set of barotropic atmosphere has been proposed. The numerical scheme is based on a special semi-discrete form of the equations that conserves four basic physical integrals including the total energy, total mass, total potential vorticity and total enstrophy. Numerical tests show that the new scheme performs closely like but is much more time-saving than the implicit multi-conservation scheme.
文摘The space-time fractional advection dispersion equations are linear partial pseudo-differential equations with spatial fractional derivatives in time and in space and are used to model transport at the earth surface. The time fractional order is denoted by β∈ and ?is devoted to the space fractional order. The time fractional advection dispersion equations describe particle motion with memory in time. Space-fractional advection dispersion equations arise when velocity variations are heavy-tailed and describe particle motion that accounts for variation in the flow field over entire system. In this paper, I focus on finding the precise explicit discrete approximate solutions to these models for some values of ?with ?, ?while the Cauchy case as ?and the classical case as ?with ?are studied separately. I compare the numerical results of these models for different values of ?and ?and for some other related changes. The approximate solutions of these models are also discussed as a random walk with or without a memory depending on the value of . Then I prove that the discrete solution in the Fourierlaplace space of theses models converges in distribution to the Fourier-Laplace transform of the corresponding fractional differential equations for all the fractional values of ?and .
文摘We consider the numerical solution of a singularly perturbed problem for the quasilinear parabolic differential equation, and construct a linear three-level finite difference scheme on a nonuniform grid. The uniform convergence in the sense of discrete L2 norm is proved and numerical examples are presented.
基金Project(Grant 10101018) Supported by National Natural Science Foundation of China.
文摘Presents a study that investigated the asymptotic behavior of discrete solutions in comparison to the case of continuous solutions. Numerical representation of the problem; Details on the solution of explicit difference scheme for the corresponding nonlinear elliptic equations; Results and discussion.