Based on the infinitesimal and one parameter transformation, the problem of Lie symmetry of three-order Lagrangian equations has been studied. Under Lie transformation, the sufficient and necessary condition which kee...Based on the infinitesimal and one parameter transformation, the problem of Lie symmetry of three-order Lagrangian equations has been studied. Under Lie transformation, the sufficient and necessary condition which keeps three-order Lagrangian equations to be unchanged and the invariant are obtained in this paper.展开更多
Based on the three-order Lagrangian equation, pseudo-Hamilton actoon I^* is defined and the three-order Hamilton's principle and the conditions are obtained in the paper. Then, the Noether symmetry about three-order...Based on the three-order Lagrangian equation, pseudo-Hamilton actoon I^* is defined and the three-order Hamilton's principle and the conditions are obtained in the paper. Then, the Noether symmetry about three-order Lagrangian equations is deduced. Finally, an example is given to illustrate the application of the result.展开更多
Based on the three-order Lagrangian equations, Hamilton's function of acceleration H^* and generalized acceleration momentum P^*α are defined, and pseudo-Hamilton canonical equations corresponding to three-order L...Based on the three-order Lagrangian equations, Hamilton's function of acceleration H^* and generalized acceleration momentum P^*α are defined, and pseudo-Hamilton canonical equations corresponding to three-order Lagrangian equations are obtained. The equations are similar to Hamilton's canonical equations of analytical mechanics in form.展开更多
In this paper, a Petrov-Galerkin scheme named the Runge-Kutta control volume (RKCV) discontinuous finite ele- ment method is constructed to solve the one-dimensional compressible Euler equations in the Lagrangian co...In this paper, a Petrov-Galerkin scheme named the Runge-Kutta control volume (RKCV) discontinuous finite ele- ment method is constructed to solve the one-dimensional compressible Euler equations in the Lagrangian coordinate. Its advantages include preservation of the local conservation and a high resolution. Compared with the Runge-Kutta discon- tinuous Galerkin (RKDG) method, the RKCV method is easier to implement. Moreover, the advantages of the RKCV and the Lagrangian methods are combined in the new method. Several numerical examples are given to illustrate the accuracy and the reliability of the algorithm.展开更多
In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discreti...In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.展开更多
The conservation theorems of the generalized Lagrangian equations for nonconservative mechanical system are studied by using method of integrating factors. Firstly, the differential equations of motion of system are g...The conservation theorems of the generalized Lagrangian equations for nonconservative mechanical system are studied by using method of integrating factors. Firstly, the differential equations of motion of system are given, and the definition of integrating factors is given. Next, the necessary conditions for the existence of the conserved quantity are studied in detail. Finally, the conservation theorem and its inverse for the system are established, and an example is given to illustrate the application of the result.展开更多
In this paper, if the condition of variation δt = 0 is satisfied, the higher-order Lagrangian equations and higher-order Hamilton's equations, which show the consistency with the results of traditional analytical me...In this paper, if the condition of variation δt = 0 is satisfied, the higher-order Lagrangian equations and higher-order Hamilton's equations, which show the consistency with the results of traditional analytical mechanics, are obtained from the higher-order Lagrangian equations and higher-order Hamilton's equations. The results can enrich the theory of analytical mechanics.展开更多
A large number of problems in engineering can be formulated as the optimization of certain functionals. In this paper, we present an algorithm that uses the augmented Lagrangian methods for finding numerical solutions...A large number of problems in engineering can be formulated as the optimization of certain functionals. In this paper, we present an algorithm that uses the augmented Lagrangian methods for finding numerical solutions to engineering problems. These engineering problems are described by differential equations with boundary values and are formulated as optimization of some functionals. The algorithm achieves its simplicity and versatility by choosing linear equality relations recursively for the augmented Lagrangian associated with an optimization problem. We demonstrate the formulation of an optimization functional for a 4th order nonlinear differential equation with boundary values. We also derive the associated augmented Lagrangian for this 4th order differential equation. Numerical test results are included that match up with well-established experimental outcomes. These numerical results indicate that the new algorithm is fully capable of producing accurate and stable solutions to differential equations.展开更多
In this paper the fractional Euler Lagrange equations for irregular Lagrangian with holonomic constraints have been presented. The equations of motion are obtained using fractional Euler Lagrange equations in a simila...In this paper the fractional Euler Lagrange equations for irregular Lagrangian with holonomic constraints have been presented. The equations of motion are obtained using fractional Euler Lagrange equations in a similar manner to the usual mechanics. The results of fractional calculus reduce to those obtained from classical calculus (the standard Euler Lagrange equations) when γ→0 and α, βare equal unity only. Two problems are considered to demonstrate the application of the formalism.展开更多
A new non-interpolating semi-Lagrangian scheme has been proposed, which can eliminate any interpolation,and consequently numerical smoothing of forecast fields. Here the new scheme is applied to KdV equation and its p...A new non-interpolating semi-Lagrangian scheme has been proposed, which can eliminate any interpolation,and consequently numerical smoothing of forecast fields. Here the new scheme is applied to KdV equation and its performance is assessed by comparing the numerical results with those produced by Ritchie's scheme (1986).The comparison shows that the non-interpolating semi-Lagrangian scheme appears to have efficiency advantages.展开更多
A Lagrangian lattice Boltzmann method for solving Euler equations is proposed. The key step in formulating this method is the introduction of the displacement distribution function. The equilibrium distribution functi...A Lagrangian lattice Boltzmann method for solving Euler equations is proposed. The key step in formulating this method is the introduction of the displacement distribution function. The equilibrium distribution function consists of macroscopic Lagrangian variables at time steps n and n + 1. It is different from the standard lattice Boltzmann method. In this method the element, instead of each particle, is required to satisfy the basic law. The element is considered as one large particle, which results in simpler version than the corresponding Eulerian one, because the advection term disappears here. Our numerical examples successfully reproduce the classical results.展开更多
The derivations of several conservation laws of the generalized nonlocal nonlinear Schrodinger equation are presented. These invaxiants are the number of particles, the momentum, the angular momentum and the Hamiltoni...The derivations of several conservation laws of the generalized nonlocal nonlinear Schrodinger equation are presented. These invaxiants are the number of particles, the momentum, the angular momentum and the Hamiltonian in the quantum mechanical analogy. The Lagrangian is also presented.展开更多
We have obtained exact static plane-symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of invariant , taking into account their own gravitational field. It is shown th...We have obtained exact static plane-symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of invariant , taking into account their own gravitational field. It is shown that the initial set of the Einstein and spinor field equations with a power-law nonlinearity have regular solutions with a localized energy density of the spinor field only if m=0 (m is the mass parameter in the spinor field equations). Equations with power and polynomial nonlinearities are studied in detail. In this case, a soliton-like configuration has negative energy. We have also obtained exact static plane-symmetric solutions to the above spinor field equations in flat space-time. It is proved that in this case soliton-like solutions are absent.展开更多
This paper deals with an extension of a previous work [Gravitation & Cosmology, Vol. 4, 1998, pp 107-113] to exact spherical symmetric solutions to the spinor field equations with nonlinear terms which are arbitra...This paper deals with an extension of a previous work [Gravitation & Cosmology, Vol. 4, 1998, pp 107-113] to exact spherical symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of S=ψψ, taking into account their own gravitational field. Equations with power and polynomial nonlinearities are studied in detail. It is shown that the initial set of the Einstein and spinor field equations with a power nonlinearity has regular solutions with spinor field localized energy and charge densities. The total energy and charge are finite. Besides, exact solutions, including soliton-like solutions, to the spinor field equations are also obtained in flat space-time.展开更多
お? Following the theoretical result of Eliassen, the Sawyer-Eliassen equation for frontal circulations and the equation for forcing the meridional circulation within a circumpolar vortex are extended in isentropic ...お? Following the theoretical result of Eliassen, the Sawyer-Eliassen equation for frontal circulations and the equation for forcing the meridional circulation within a circumpolar vortex are extended in isentropic coordinates to describe the forcing of the azimuthally averaged mass-weighted radial-vertical circulation within translating extratropical and tropical cyclones. Several physical processes which are not evident in studies employing isobaric coordinates are isolated in this isentropic study. These processes include the effects of pressure torque, inertial torque and storm translation that are associated with the asymmetric structure in isentropic coordinates. This isentropic study also includes the effects of eddy angular momentum transport, diabatic heating and frictional torque that are common in both isentropic and isobaric studies. All of the processes are modulated by static, inertial and baroclinic stabilities. Consistent with the theoretical result of Eliassen, the numerical solution from this isentropic study shows that the roles of torque, diabatic heating and hydrodynamic stability in forcing the radial-vertical circulation within stable vortices are that 1) positive (negative) torque which results in the counterclockwise (clockwise) rotation of vortices also forces the outflow (inflow) branch of the radial-vertical circulation, 2) diabatic heating (cooling) forces the ascent (descent) branch of the radial-vertical circulation and 3) for given forcing, the weaker hydrodynamic stability results in a stronger radial-vertical circulation. It is the net inflow or convergence (net outflow or divergence), vertical motions and the associated redistribution of properties that favor the evolution of vortices with colorful weather events. Numerical solutions of this isentropic study are given in companion articles. The relatively important contribution of various physical processes to the forcing of the azimuthally-averaged mass-weighted radial-vertical circulation within different translating cyclones and in their different stages of development will be investigated.展开更多
This paper provides a functional equation satisfied by the dichromatic sum function of rooted outer-planar maps. By the equation, the dichromatic sum function can be found explicitly.
This article considers a family of 3D-Hartree-type equation with Coulomb potential |x|^-1, whose initial data oscillates so that a caustic appears. In the linear geometric optics case, by using the Lagrangian integr...This article considers a family of 3D-Hartree-type equation with Coulomb potential |x|^-1, whose initial data oscillates so that a caustic appears. In the linear geometric optics case, by using the Lagrangian integrals, a uniform description of the solution outside the caustic, and near the caustic are obtained.展开更多
This paper concerns the development and application of the Hamiltonian function which is the sum of kinetic energy and potential energy of the system. Two dimensional water wave equations for irrotational, incompressi...This paper concerns the development and application of the Hamiltonian function which is the sum of kinetic energy and potential energy of the system. Two dimensional water wave equations for irrotational, incompressible, inviscid fluid have been constructed in cartesian coordinates and also in cylindrical coordinates. Then Lagrangian function within a certain flow region is expanded under the assumption that the dispersion μ and the nonlinearity ε satisfied . Using Hamilton’s principle for water wave evolution Hamiltonian formulation is derived. It is obvious that the motion of the system is conservative. Then Hamilton’s canonical equation of motion is also derived.展开更多
This paper tries to make a comparison and connection between Fokker-Planck or forward Kolmogorov equation and psychological future time which is based on quantum mechanics. It will be showed that in quantum finance fo...This paper tries to make a comparison and connection between Fokker-Planck or forward Kolmogorov equation and psychological future time which is based on quantum mechanics. It will be showed that in quantum finance forward interest rate model can be further improved by noting that the predicted correlation structure for field theory models depends only on variable where t is present time and x is future time. On the other side, forward Kolmogorov equation is a parabolic partial differential equation, requiring international conditions at time t and to be solved for . The aforementioned equation is to be used if there are some special states now and it is necessary to know what can happen later. It will be tried to establish the connection between these two equations. It is proved that the psychological future time if applied and implemented in Fokker-Planck equation is unstable and is changeable so it is not easily predictable. Some kinds of nonlinear functions can be applied in order to establish the notion of psychological future time, however it is unstable and it should be continuously changed.展开更多
The improved Dirac equation is completely solved in the case of the hydrogen atom. A method of separation of variables in spherical coordinates is used. The angular functions are the same as with the linear Dirac equa...The improved Dirac equation is completely solved in the case of the hydrogen atom. A method of separation of variables in spherical coordinates is used. The angular functions are the same as with the linear Dirac equation: they account for the spin 1/2 of the electron. The existence of a probability density governs the radial equations. This gives all the quantum numbers required by spectroscopy, the true number of energy levels and the true levels obtained by Sommerfeld’s formula.展开更多
文摘Based on the infinitesimal and one parameter transformation, the problem of Lie symmetry of three-order Lagrangian equations has been studied. Under Lie transformation, the sufficient and necessary condition which keeps three-order Lagrangian equations to be unchanged and the invariant are obtained in this paper.
文摘Based on the three-order Lagrangian equation, pseudo-Hamilton actoon I^* is defined and the three-order Hamilton's principle and the conditions are obtained in the paper. Then, the Noether symmetry about three-order Lagrangian equations is deduced. Finally, an example is given to illustrate the application of the result.
文摘Based on the three-order Lagrangian equations, Hamilton's function of acceleration H^* and generalized acceleration momentum P^*α are defined, and pseudo-Hamilton canonical equations corresponding to three-order Lagrangian equations are obtained. The equations are similar to Hamilton's canonical equations of analytical mechanics in form.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035 and 11171038)the Science Research Foundation of the Institute of Higher Education of Inner Mongolia Autonomous Region, China (Grant No. NJZZ12198)the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2012MS0102)
文摘In this paper, a Petrov-Galerkin scheme named the Runge-Kutta control volume (RKCV) discontinuous finite ele- ment method is constructed to solve the one-dimensional compressible Euler equations in the Lagrangian coordinate. Its advantages include preservation of the local conservation and a high resolution. Compared with the Runge-Kutta discon- tinuous Galerkin (RKDG) method, the RKCV method is easier to implement. Moreover, the advantages of the RKCV and the Lagrangian methods are combined in the new method. Several numerical examples are given to illustrate the accuracy and the reliability of the algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035,11171038,and 10771019)the Science Reaearch Foundation of Institute of Higher Education of Inner Mongolia Autonomous Region,China (Grant No. NJZZ12198)the Natural Science Foundation of Inner Mongolia Autonomous Region,China (Grant No. 2012MS0102)
文摘In this paper,Runge-Kutta Discontinuous Galerkin(RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical ?ux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical ?ux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.
基金The project supported by the Natural Science Foundation of Heilongjiang Province of China under Grant No. 9507
文摘The conservation theorems of the generalized Lagrangian equations for nonconservative mechanical system are studied by using method of integrating factors. Firstly, the differential equations of motion of system are given, and the definition of integrating factors is given. Next, the necessary conditions for the existence of the conserved quantity are studied in detail. Finally, the conservation theorem and its inverse for the system are established, and an example is given to illustrate the application of the result.
基金Foundation of Education Department of Jiangxi Province under Grant No.[2007]136the Natural Science Foundation of Jiangxi Province
文摘In this paper, if the condition of variation δt = 0 is satisfied, the higher-order Lagrangian equations and higher-order Hamilton's equations, which show the consistency with the results of traditional analytical mechanics, are obtained from the higher-order Lagrangian equations and higher-order Hamilton's equations. The results can enrich the theory of analytical mechanics.
文摘A large number of problems in engineering can be formulated as the optimization of certain functionals. In this paper, we present an algorithm that uses the augmented Lagrangian methods for finding numerical solutions to engineering problems. These engineering problems are described by differential equations with boundary values and are formulated as optimization of some functionals. The algorithm achieves its simplicity and versatility by choosing linear equality relations recursively for the augmented Lagrangian associated with an optimization problem. We demonstrate the formulation of an optimization functional for a 4th order nonlinear differential equation with boundary values. We also derive the associated augmented Lagrangian for this 4th order differential equation. Numerical test results are included that match up with well-established experimental outcomes. These numerical results indicate that the new algorithm is fully capable of producing accurate and stable solutions to differential equations.
文摘In this paper the fractional Euler Lagrange equations for irregular Lagrangian with holonomic constraints have been presented. The equations of motion are obtained using fractional Euler Lagrange equations in a similar manner to the usual mechanics. The results of fractional calculus reduce to those obtained from classical calculus (the standard Euler Lagrange equations) when γ→0 and α, βare equal unity only. Two problems are considered to demonstrate the application of the formalism.
文摘A new non-interpolating semi-Lagrangian scheme has been proposed, which can eliminate any interpolation,and consequently numerical smoothing of forecast fields. Here the new scheme is applied to KdV equation and its performance is assessed by comparing the numerical results with those produced by Ritchie's scheme (1986).The comparison shows that the non-interpolating semi-Lagrangian scheme appears to have efficiency advantages.
文摘A Lagrangian lattice Boltzmann method for solving Euler equations is proposed. The key step in formulating this method is the introduction of the displacement distribution function. The equilibrium distribution function consists of macroscopic Lagrangian variables at time steps n and n + 1. It is different from the standard lattice Boltzmann method. In this method the element, instead of each particle, is required to satisfy the basic law. The element is considered as one large particle, which results in simpler version than the corresponding Eulerian one, because the advection term disappears here. Our numerical examples successfully reproduce the classical results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10474023 and 10674050) and Specialized Research Fund for the Doctoral Program of Higher Education (Grant No 20060574006).
文摘The derivations of several conservation laws of the generalized nonlocal nonlinear Schrodinger equation are presented. These invaxiants are the number of particles, the momentum, the angular momentum and the Hamiltonian in the quantum mechanical analogy. The Lagrangian is also presented.
文摘We have obtained exact static plane-symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of invariant , taking into account their own gravitational field. It is shown that the initial set of the Einstein and spinor field equations with a power-law nonlinearity have regular solutions with a localized energy density of the spinor field only if m=0 (m is the mass parameter in the spinor field equations). Equations with power and polynomial nonlinearities are studied in detail. In this case, a soliton-like configuration has negative energy. We have also obtained exact static plane-symmetric solutions to the above spinor field equations in flat space-time. It is proved that in this case soliton-like solutions are absent.
文摘This paper deals with an extension of a previous work [Gravitation & Cosmology, Vol. 4, 1998, pp 107-113] to exact spherical symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of S=ψψ, taking into account their own gravitational field. Equations with power and polynomial nonlinearities are studied in detail. It is shown that the initial set of the Einstein and spinor field equations with a power nonlinearity has regular solutions with spinor field localized energy and charge densities. The total energy and charge are finite. Besides, exact solutions, including soliton-like solutions, to the spinor field equations are also obtained in flat space-time.
文摘お? Following the theoretical result of Eliassen, the Sawyer-Eliassen equation for frontal circulations and the equation for forcing the meridional circulation within a circumpolar vortex are extended in isentropic coordinates to describe the forcing of the azimuthally averaged mass-weighted radial-vertical circulation within translating extratropical and tropical cyclones. Several physical processes which are not evident in studies employing isobaric coordinates are isolated in this isentropic study. These processes include the effects of pressure torque, inertial torque and storm translation that are associated with the asymmetric structure in isentropic coordinates. This isentropic study also includes the effects of eddy angular momentum transport, diabatic heating and frictional torque that are common in both isentropic and isobaric studies. All of the processes are modulated by static, inertial and baroclinic stabilities. Consistent with the theoretical result of Eliassen, the numerical solution from this isentropic study shows that the roles of torque, diabatic heating and hydrodynamic stability in forcing the radial-vertical circulation within stable vortices are that 1) positive (negative) torque which results in the counterclockwise (clockwise) rotation of vortices also forces the outflow (inflow) branch of the radial-vertical circulation, 2) diabatic heating (cooling) forces the ascent (descent) branch of the radial-vertical circulation and 3) for given forcing, the weaker hydrodynamic stability results in a stronger radial-vertical circulation. It is the net inflow or convergence (net outflow or divergence), vertical motions and the associated redistribution of properties that favor the evolution of vortices with colorful weather events. Numerical solutions of this isentropic study are given in companion articles. The relatively important contribution of various physical processes to the forcing of the azimuthally-averaged mass-weighted radial-vertical circulation within different translating cyclones and in their different stages of development will be investigated.
基金Supported by the National Natural Science Foundation of China
文摘This paper provides a functional equation satisfied by the dichromatic sum function of rooted outer-planar maps. By the equation, the dichromatic sum function can be found explicitly.
文摘This article considers a family of 3D-Hartree-type equation with Coulomb potential |x|^-1, whose initial data oscillates so that a caustic appears. In the linear geometric optics case, by using the Lagrangian integrals, a uniform description of the solution outside the caustic, and near the caustic are obtained.
文摘This paper concerns the development and application of the Hamiltonian function which is the sum of kinetic energy and potential energy of the system. Two dimensional water wave equations for irrotational, incompressible, inviscid fluid have been constructed in cartesian coordinates and also in cylindrical coordinates. Then Lagrangian function within a certain flow region is expanded under the assumption that the dispersion μ and the nonlinearity ε satisfied . Using Hamilton’s principle for water wave evolution Hamiltonian formulation is derived. It is obvious that the motion of the system is conservative. Then Hamilton’s canonical equation of motion is also derived.
文摘This paper tries to make a comparison and connection between Fokker-Planck or forward Kolmogorov equation and psychological future time which is based on quantum mechanics. It will be showed that in quantum finance forward interest rate model can be further improved by noting that the predicted correlation structure for field theory models depends only on variable where t is present time and x is future time. On the other side, forward Kolmogorov equation is a parabolic partial differential equation, requiring international conditions at time t and to be solved for . The aforementioned equation is to be used if there are some special states now and it is necessary to know what can happen later. It will be tried to establish the connection between these two equations. It is proved that the psychological future time if applied and implemented in Fokker-Planck equation is unstable and is changeable so it is not easily predictable. Some kinds of nonlinear functions can be applied in order to establish the notion of psychological future time, however it is unstable and it should be continuously changed.
文摘The improved Dirac equation is completely solved in the case of the hydrogen atom. A method of separation of variables in spherical coordinates is used. The angular functions are the same as with the linear Dirac equation: they account for the spin 1/2 of the electron. The existence of a probability density governs the radial equations. This gives all the quantum numbers required by spectroscopy, the true number of energy levels and the true levels obtained by Sommerfeld’s formula.